metadata
license: mit
bitnet_b1_58-3B-Coder
Code finetuned version of bitnet_b1_58-3B
Usage
from tokenization_bitnet import BitnetTokenizer
from transformers import AutoModelForCausalLM
import torch
PROMPT = """### Instruction
{instruction}
### Response
"""
instruction = <Your code instruction here>
prompt = PROMPT.format(instruction=instruction)
tokenizer = BitnetTokenizer.from_pretrained(
"TechxGenus/bitnet_b1_58-3B-Coder",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"TechxGenus/bitnet_b1_58-3B-Coder",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048)
print(tokenizer.decode(outputs[0]))
Note
Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.