MTPw / model.py
teszenofficial's picture
Upload 4 files
77d62e8 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class RotaryPositionalEmbedding(nn.Module):
"""RoPE - Rotary Position Embedding"""
def __init__(self, dim, max_seq_len=2048, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.max_seq_len = max_seq_len
def forward(self, seq_len, device):
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return emb.cos(), emb.sin()
def apply_rotary_pos_emb(q, k, cos, sin):
"""Aplica RoPE a queries y keys"""
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class MultiHeadSelfAttention(nn.Module):
"""Multi-Head Self-Attention con RoPE y optimizaciones"""
def __init__(self, d_model, n_heads, dropout=0.1, max_seq_len=2048):
super().__init__()
assert d_model % n_heads == 0
self.d_model = d_model
self.n_heads = n_heads
self.d_k = d_model // n_heads
self.q_linear = nn.Linear(d_model, d_model, bias=False)
self.k_linear = nn.Linear(d_model, d_model, bias=False)
self.v_linear = nn.Linear(d_model, d_model, bias=False)
self.out_linear = nn.Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
self.attn_dropout = nn.Dropout(dropout)
self.rope = RotaryPositionalEmbedding(self.d_k, max_seq_len)
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
def forward(self, x, mask=None):
batch_size, seq_len, d_model = x.size()
Q = self.q_linear(x).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
K = self.k_linear(x).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
V = self.v_linear(x).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
cos, sin = self.rope(seq_len, x.device)
cos = cos[None, None, :, :]
sin = sin[None, None, :, :]
Q, K = apply_rotary_pos_emb(Q, K, cos, sin)
if self.flash and mask is None:
context = F.scaled_dot_product_attention(
Q, K, V,
attn_mask=None,
dropout_p=self.dropout.p if self.training else 0.0,
is_causal=True
)
else:
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
attn_weights = F.softmax(scores, dim=-1)
attn_weights = self.attn_dropout(attn_weights)
context = torch.matmul(attn_weights, V)
context = context.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
output = self.out_linear(context)
return self.dropout(output)
class SwiGLU(nn.Module):
"""SwiGLU activation"""
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.w1 = nn.Linear(d_model, d_ff, bias=False)
self.w2 = nn.Linear(d_ff, d_model, bias=False)
self.w3 = nn.Linear(d_model, d_ff, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x)))
class FeedForward(nn.Module):
"""Feed-Forward estándar"""
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.linear2(self.dropout(F.gelu(self.linear1(x))))
class RMSNorm(nn.Module):
"""RMSNorm"""
def __init__(self, dim, eps=1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * norm * self.weight
class TransformerBlock(nn.Module):
"""Transformer Block mejorado"""
def __init__(self, d_model, n_heads, d_ff, dropout=0.1, max_seq_len=2048, use_swiglu=True):
super().__init__()
self.attention = MultiHeadSelfAttention(d_model, n_heads, dropout, max_seq_len)
if use_swiglu:
self.feed_forward = SwiGLU(d_model, d_ff, dropout)
else:
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.norm1 = RMSNorm(d_model)
self.norm2 = RMSNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask=None):
x = x + self.attention(self.norm1(x), mask)
x = x + self.feed_forward(self.norm2(x))
return x
class MTPMiniModel(nn.Module):
"""MTP Mini - Modelo mejorado para generación coherente"""
def __init__(self, vocab_size, d_model=512, n_layers=8, n_heads=8,
d_ff=2048, max_seq_len=512, dropout=0.2, use_swiglu=True):
super().__init__()
self.vocab_size = vocab_size
self.d_model = d_model
self.max_seq_len = max_seq_len
self.token_embedding = nn.Embedding(vocab_size, d_model)
self.dropout = nn.Dropout(dropout)
self.blocks = nn.ModuleList([
TransformerBlock(d_model, n_heads, d_ff, dropout, max_seq_len, use_swiglu)
for _ in range(n_layers)
])
self.norm_f = RMSNorm(d_model)
self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
# Weight tying
self.lm_head.weight = self.token_embedding.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, input_ids, targets=None, use_eos_weight=False):
batch_size, seq_len = input_ids.size()
mask = torch.tril(torch.ones(seq_len, seq_len, device=input_ids.device)).view(1, 1, seq_len, seq_len)
x = self.dropout(self.token_embedding(input_ids))
for block in self.blocks:
x = block(x, mask)
x = self.norm_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
if use_eos_weight:
# Dar más peso al token EOS para aprender a terminar
weights = torch.ones(self.vocab_size, device=logits.device)
weights[3] = 2.0 # EOS token
loss = F.cross_entropy(
logits.view(-1, self.vocab_size),
targets.view(-1),
weight=weights,
label_smoothing=0.1
)
else:
loss = F.cross_entropy(
logits.view(-1, self.vocab_size),
targets.view(-1),
label_smoothing=0.1
)
return logits, loss
def generate(self, input_ids, max_new_tokens=150, temperature=0.7,
top_k=40, top_p=0.92, repetition_penalty=1.15,
min_length=20, eos_token_id=3, stop_sequences=None):
"""Generación mejorada con control de longitud y coherencia"""
self.eval()
generated = input_ids.clone()
generated_text_tokens = 0
with torch.no_grad():
for step in range(max_new_tokens):
input_ids_cond = generated if generated.size(1) <= self.max_seq_len else generated[:, -self.max_seq_len:]
logits, _ = self(input_ids_cond)
logits = logits[:, -1, :].clone()
# Repetition penalty mejorado
if repetition_penalty != 1.0:
for token_id in set(generated[0].tolist()):
if logits[0, token_id] < 0:
logits[0, token_id] *= repetition_penalty
else:
logits[0, token_id] /= repetition_penalty
# Penalizar tokens repetidos recientes más fuertemente
if generated.size(1) > 10:
recent_tokens = generated[0, -10:].tolist()
for token_id in set(recent_tokens):
count = recent_tokens.count(token_id)
if count > 2:
logits[0, token_id] -= count * 2.0
# No permitir EOS hasta longitud mínima
if generated_text_tokens < min_length:
logits[0, eos_token_id] = float('-inf')
else:
# Aumentar probabilidad de EOS gradualmente
eos_boost = (generated_text_tokens - min_length) * 0.1
logits[0, eos_token_id] += eos_boost
# Temperature
logits = logits / temperature
# Top-k
if top_k > 0:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = float('-inf')
# Top-p (nucleus)
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = float('-inf')
# Sample
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Check for EOS
if next_token.item() == eos_token_id and generated_text_tokens >= min_length:
break
generated = torch.cat([generated, next_token], dim=1)
generated_text_tokens += 1
return generated
def count_parameters(self):
return sum(p.numel() for p in self.parameters() if p.requires_grad)