File size: 2,002 Bytes
dadd79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
datasets:
- TheFinAI/FinCoT
language:
- en
base_model:
- Qwen/Qwen3-14B
pipeline_tag: text-generation
tags:
- finance
---
# πŸ¦™ Fino1-8B

**Fin-o1-8B** is a fine-tuned version of **Qwen3-14B**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**.
Check our paper arxiv.org/abs/2502.08127 for more details.

## πŸ“Œ Model Details  
- **Model Name**: `Fin-o1-14B`  
- **Base Model**: `Qwen3-14B`  
- **Fine-Tuned On**: `TheFinAI/FinCoT` Derived from FinQA, TATQA, DocMath-Eval, Econ-Logic, BizBench-QA, DocFinQA dataset.  
- **Training Method**: SFT and GRPO  
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`  
- **Tokenizer**: Inherited from `Qwen3-8B`  


## πŸ“Š Training Configuration  
- **Training Hardware**: `GPU: [e.g., 8xA100]`  
- **Batch Size**: `[e.g., 16]`  
- **Learning Rate**: `[e.g., 2e-5]`  
- **Epochs**: `[e.g., 3]`  
- **Optimizer**: `[e.g., AdamW, LAMB]`  

## πŸ”§ Usage  
To use `Fin-o1-14B` with Hugging Face's `transformers` library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "TheFinAI/Fin-o1-14B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

input_text = "What is the results of 3-5?"
inputs = tokenizer(input_text, return_tensors="pt")

output = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## πŸ’‘ Citation  

If you use this model in your research, please cite:
```python
@article{qian2025fino1,
  title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance},
  author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian},
  journal={arXiv preprint arXiv:2502.08127},
  year={2025}
}