File size: 2,002 Bytes
dadd79b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
datasets:
- TheFinAI/FinCoT
language:
- en
base_model:
- Qwen/Qwen3-14B
pipeline_tag: text-generation
tags:
- finance
---
# π¦ Fino1-8B
**Fin-o1-8B** is a fine-tuned version of **Qwen3-14B**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**.
Check our paper arxiv.org/abs/2502.08127 for more details.
## π Model Details
- **Model Name**: `Fin-o1-14B`
- **Base Model**: `Qwen3-14B`
- **Fine-Tuned On**: `TheFinAI/FinCoT` Derived from FinQA, TATQA, DocMath-Eval, Econ-Logic, BizBench-QA, DocFinQA dataset.
- **Training Method**: SFT and GRPO
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
- **Tokenizer**: Inherited from `Qwen3-8B`
## π Training Configuration
- **Training Hardware**: `GPU: [e.g., 8xA100]`
- **Batch Size**: `[e.g., 16]`
- **Learning Rate**: `[e.g., 2e-5]`
- **Epochs**: `[e.g., 3]`
- **Optimizer**: `[e.g., AdamW, LAMB]`
## π§ Usage
To use `Fin-o1-14B` with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "TheFinAI/Fin-o1-14B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = "What is the results of 3-5?"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## π‘ Citation
If you use this model in your research, please cite:
```python
@article{qian2025fino1,
title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance},
author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian},
journal={arXiv preprint arXiv:2502.08127},
year={2025}
} |