SentenceTransformer based on UMCU/sap_umls_medroberta.nl_meantoken

This is a sentence-transformers model finetuned from UMCU/sap_umls_medroberta.nl_meantoken. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: UMCU/sap_umls_medroberta.nl_meantoken
  • Maximum Sequence Length: 30 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 30, 'do_lower_case': False, 'architecture': 'RobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.5411, 0.3837],
#         [0.5411, 1.0000, 0.4648],
#         [0.3837, 0.4648, 1.0000]])

Training Details

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.0.0
  • Transformers: 4.48.0
  • PyTorch: 2.5.0+cu121
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Downloads last month
6
Safetensors
Model size
126M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for UMCU/sap_umls_medroberta.nl_mean_sbert

Base model

CLTL/MedRoBERTa.nl
Finetuned
(1)
this model