Create README.md
#3
by
sy1998
- opened
README.md
ADDED
|
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
license_link: https://huggingface.co/UbiquantAI/Fleming-R1-32B/blob/main/LICENSE
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Fleming-VL-8B
|
| 9 |
+
<p align="center" style="margin: 0;">
|
| 10 |
+
<a href="https://github.com/UbiquantAI/Fleming-R1" aria-label="GitHub Repository" style="text-decoration:none;">
|
| 11 |
+
<span style="display:inline-flex;align-items:center;gap:.35em;">
|
| 12 |
+
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16"
|
| 13 |
+
width="16" height="16" aria-hidden="true"
|
| 14 |
+
style="vertical-align:text-bottom;fill:currentColor;">
|
| 15 |
+
<path d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.013 8.013 0 0016 8c0-4.42-3.58-8-8-8Z"/>
|
| 16 |
+
</svg>
|
| 17 |
+
<span>GitHub</span>
|
| 18 |
+
</span>
|
| 19 |
+
</a>
|
| 20 |
+
<span style="margin:0 .75em;opacity:.6;">•</span>
|
| 21 |
+
<a href="https://arxiv.org/abs/2509.15279" aria-label="Paper">📑 Paper</a>
|
| 22 |
+
</p>
|
| 23 |
+
|
| 24 |
+
## Highlights
|
| 25 |
+
|
| 26 |
+
## 📖 Model Overview
|
| 27 |
+
|
| 28 |
+
Fleming-VL is a multimodal reasoning model for medical scenarios that can process and analyze various types of medical data including 2D images, 3D volumetric data, and video sequences. The model performs step-by-step analysis of complex multimodal medical problems and produces reliable answers. Building upon the GRPO reasoning paradigm, Fleming-VL extends the capabilities to handle diverse medical imaging modalities while maintaining strong reasoning performance.
|
| 29 |
+
|
| 30 |
+
**Model Features:**
|
| 31 |
+
|
| 32 |
+
* **Multimodal Processing** Supports various medical data types including 2D images (X-rays, pathology slides), 3D volumes (CT/MRI scans), and videos (ultrasound, endoscopy, surgical recordings);
|
| 33 |
+
* **Medical Reasoning** Performs step-by-step chain-of-thought reasoning to analyze complex medical problems, combining visual information with medical knowledge to provide reliable diagnostic insights.
|
| 34 |
+
## 📦 Releases
|
| 35 |
+
|
| 36 |
+
- **Fleming-VL-7B** —— Trained on InternVL3-8B
|
| 37 |
+
🤗 [`UbiquantAI/Fleming-VL-8B`](https://huggingface.co/UbiquantAI/Fleming-VL-8B)
|
| 38 |
+
- **Fleming-VL-38B** —— Trained on InternVL3-38B
|
| 39 |
+
🤗 [`UbiquantAI/Fleming-VL-8B`](https://huggingface.co/UbiquantAI/Fleming-VL-38B)
|
| 40 |
+
|
| 41 |
+
## 📊 Performance
|
| 42 |
+
|
| 43 |
+
### Main Benchmark Results
|
| 44 |
+
|
| 45 |
+
<div align="center">
|
| 46 |
+
<img src="images/exp_result.png" alt="Benchmark Results" width="60%">
|
| 47 |
+
</div>
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
## 🔧 Quick Start
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
"""
|
| 54 |
+
Fleming-VL-8B Multi-Modal Inference Script
|
| 55 |
+
|
| 56 |
+
This script demonstrates three inference modes:
|
| 57 |
+
1. Single image inference
|
| 58 |
+
2. Video inference (frame-by-frame)
|
| 59 |
+
3. 3D medical image (CT/MRI) inference from .npy files
|
| 60 |
+
|
| 61 |
+
Model: UbiquantAI/Fleming-VL-8B
|
| 62 |
+
Based on: InternVL_chat-1.2 template
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
|
| 66 |
+
from decord import VideoReader, cpu
|
| 67 |
+
from PIL import Image
|
| 68 |
+
import numpy as np
|
| 69 |
+
import shutil
|
| 70 |
+
import torch
|
| 71 |
+
import os
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# ============================================================================
|
| 75 |
+
# Configuration
|
| 76 |
+
# ============================================================================
|
| 77 |
+
|
| 78 |
+
MODEL_PATH = "UbiquantAI/Fleming-VL-8B"
|
| 79 |
+
REQUIRED_FILES_DIR = './required_files'
|
| 80 |
+
|
| 81 |
+
# Prompt template for reasoning-based responses
|
| 82 |
+
REASONING_PROMPT = (
|
| 83 |
+
"A conversation between User and Assistant. The user asks a question, "
|
| 84 |
+
"and the Assistant solves it. The assistant first thinks about the "
|
| 85 |
+
"reasoning process in the mind and then provides the user a concise "
|
| 86 |
+
"final answer in a short word or phrase. The reasoning process and "
|
| 87 |
+
"answer are enclosed within <think> </think> and <answer> </answer> "
|
| 88 |
+
"tags, respectively, i.e., <think> reasoning process here </think>"
|
| 89 |
+
"<answer> answer here </answer>"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# ============================================================================
|
| 94 |
+
# Utility Functions
|
| 95 |
+
# ============================================================================
|
| 96 |
+
|
| 97 |
+
def copy_necessary_files(target_path, source_path):
|
| 98 |
+
"""
|
| 99 |
+
Copy required model configuration files to the model directory.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
target_path: Destination directory (model path)
|
| 103 |
+
source_path: Source directory containing required files
|
| 104 |
+
"""
|
| 105 |
+
required_files = [
|
| 106 |
+
"modeling_internvl_chat.py",
|
| 107 |
+
"conversation.py",
|
| 108 |
+
"modeling_intern_vit.py",
|
| 109 |
+
"preprocessor_config.json",
|
| 110 |
+
"configuration_internvl_chat.py",
|
| 111 |
+
"configuration_intern_vit.py",
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
for filename in required_files:
|
| 115 |
+
target_file = os.path.join(target_path, filename)
|
| 116 |
+
source_file = os.path.join(source_path, filename)
|
| 117 |
+
|
| 118 |
+
if not os.path.exists(target_file):
|
| 119 |
+
print(f"File {filename} not found in target path, copying from source...")
|
| 120 |
+
|
| 121 |
+
if os.path.exists(source_file):
|
| 122 |
+
try:
|
| 123 |
+
shutil.copy2(source_file, target_file)
|
| 124 |
+
print(f"Successfully copied {filename}")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"Error copying {filename}: {str(e)}")
|
| 127 |
+
else:
|
| 128 |
+
print(f"Warning: Source file {filename} does not exist, cannot copy")
|
| 129 |
+
else:
|
| 130 |
+
print(f"File {filename} already exists")
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def load_model(model_path, use_flash_attn=True):
|
| 134 |
+
"""
|
| 135 |
+
Load the vision-language model and tokenizer.
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
model_path: Path to the pretrained model
|
| 139 |
+
use_flash_attn: Whether to use flash attention (default: True)
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
tuple: (model, tokenizer)
|
| 143 |
+
"""
|
| 144 |
+
model = AutoModel.from_pretrained(
|
| 145 |
+
model_path,
|
| 146 |
+
torch_dtype=torch.bfloat16,
|
| 147 |
+
low_cpu_mem_usage=True,
|
| 148 |
+
use_flash_attn=use_flash_attn,
|
| 149 |
+
trust_remote_code=True
|
| 150 |
+
).eval().cuda()
|
| 151 |
+
|
| 152 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 153 |
+
model_path,
|
| 154 |
+
trust_remote_code=True,
|
| 155 |
+
use_fast=False
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
return model, tokenizer
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# ============================================================================
|
| 162 |
+
# Image Inference
|
| 163 |
+
# ============================================================================
|
| 164 |
+
|
| 165 |
+
def inference_single_image(model, tokenizer, image_path, question, prompt=REASONING_PROMPT):
|
| 166 |
+
"""
|
| 167 |
+
Perform inference on a single image.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
model: Loaded vision-language model
|
| 171 |
+
tokenizer: Loaded tokenizer
|
| 172 |
+
image_path: Path to the input image
|
| 173 |
+
question: Question to ask about the image
|
| 174 |
+
prompt: System prompt template
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
str: Model response
|
| 178 |
+
"""
|
| 179 |
+
# Load and preprocess image
|
| 180 |
+
image_processor = CLIPImageProcessor.from_pretrained(MODEL_PATH)
|
| 181 |
+
image = Image.open(image_path).resize((448, 448))
|
| 182 |
+
pixel_values = image_processor(
|
| 183 |
+
images=image,
|
| 184 |
+
return_tensors='pt'
|
| 185 |
+
).pixel_values.to(torch.bfloat16).cuda()
|
| 186 |
+
|
| 187 |
+
# Prepare question with prompt and image token
|
| 188 |
+
full_question = f"{prompt}\n<image>\n{question}"
|
| 189 |
+
|
| 190 |
+
# Generate response
|
| 191 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False)
|
| 192 |
+
response = model.chat(tokenizer, pixel_values, full_question, generation_config)
|
| 193 |
+
|
| 194 |
+
return response
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# ============================================================================
|
| 198 |
+
# Video Inference
|
| 199 |
+
# ============================================================================
|
| 200 |
+
|
| 201 |
+
def get_frame_indices(bound, fps, max_frame, first_idx=0, num_segments=32):
|
| 202 |
+
"""
|
| 203 |
+
Calculate evenly distributed frame indices for video sampling.
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
bound: Tuple of (start_time, end_time) in seconds, or None for full video
|
| 207 |
+
fps: Frames per second of the video
|
| 208 |
+
max_frame: Maximum frame index
|
| 209 |
+
first_idx: First frame index to consider
|
| 210 |
+
num_segments: Number of frames to sample
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
np.array: Array of frame indices
|
| 214 |
+
"""
|
| 215 |
+
if bound:
|
| 216 |
+
start, end = bound[0], bound[1]
|
| 217 |
+
else:
|
| 218 |
+
start, end = -100000, 100000
|
| 219 |
+
|
| 220 |
+
start_idx = max(first_idx, round(start * fps))
|
| 221 |
+
end_idx = min(round(end * fps), max_frame)
|
| 222 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
| 223 |
+
|
| 224 |
+
frame_indices = np.array([
|
| 225 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
| 226 |
+
for idx in range(num_segments)
|
| 227 |
+
])
|
| 228 |
+
|
| 229 |
+
return frame_indices
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def load_video(video_path, model_path, bound=None, num_segments=32):
|
| 233 |
+
"""
|
| 234 |
+
Load and preprocess video frames.
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
video_path: Path to the video file
|
| 238 |
+
model_path: Path to the model (for image processor)
|
| 239 |
+
bound: Time boundary tuple (start, end) in seconds
|
| 240 |
+
num_segments: Number of frames to extract
|
| 241 |
+
|
| 242 |
+
Returns:
|
| 243 |
+
tuple: (pixel_values tensor, list of num_patches per frame)
|
| 244 |
+
"""
|
| 245 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 246 |
+
max_frame = len(vr) - 1
|
| 247 |
+
fps = float(vr.get_avg_fps())
|
| 248 |
+
|
| 249 |
+
pixel_values_list = []
|
| 250 |
+
num_patches_list = []
|
| 251 |
+
image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
| 252 |
+
|
| 253 |
+
frame_indices = get_frame_indices(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
| 254 |
+
|
| 255 |
+
for frame_index in frame_indices:
|
| 256 |
+
# Extract and preprocess frame
|
| 257 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
|
| 258 |
+
pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
|
| 259 |
+
num_patches_list.append(pixel_values.shape[0])
|
| 260 |
+
pixel_values_list.append(pixel_values)
|
| 261 |
+
|
| 262 |
+
pixel_values = torch.cat(pixel_values_list)
|
| 263 |
+
return pixel_values, num_patches_list
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def inference_video(model, tokenizer, video_path, video_duration, question, prompt=REASONING_PROMPT):
|
| 267 |
+
"""
|
| 268 |
+
Perform inference on a video by sampling frames.
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
model: Loaded vision-language model
|
| 272 |
+
tokenizer: Loaded tokenizer
|
| 273 |
+
video_path: Path to the video file
|
| 274 |
+
video_duration: Duration of video in seconds
|
| 275 |
+
question: Question to ask about the video
|
| 276 |
+
prompt: System prompt template
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
str: Model response
|
| 280 |
+
"""
|
| 281 |
+
# Sample frames from video (1 frame per second)
|
| 282 |
+
num_segments = int(video_duration)
|
| 283 |
+
pixel_values, num_patches_list = load_video(video_path, MODEL_PATH, num_segments=num_segments)
|
| 284 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 285 |
+
|
| 286 |
+
# Create image token prefix for all frames
|
| 287 |
+
video_prefix = ''.join([f'<image>\n' for _ in range(len(num_patches_list))])
|
| 288 |
+
|
| 289 |
+
# Prepare question with prompt and image tokens
|
| 290 |
+
full_question = f"{prompt}\n{video_prefix}{question}"
|
| 291 |
+
|
| 292 |
+
# Generate response
|
| 293 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False)
|
| 294 |
+
response, history = model.chat(
|
| 295 |
+
tokenizer,
|
| 296 |
+
pixel_values,
|
| 297 |
+
full_question,
|
| 298 |
+
generation_config,
|
| 299 |
+
num_patches_list=num_patches_list,
|
| 300 |
+
history=None,
|
| 301 |
+
return_history=True
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
return response
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# ============================================================================
|
| 308 |
+
# 3D Medical Image (NPY) Inference
|
| 309 |
+
# ============================================================================
|
| 310 |
+
|
| 311 |
+
def normalize_image(image):
|
| 312 |
+
"""
|
| 313 |
+
Normalize image array to 0-255 range.
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
image: NumPy array of image data
|
| 317 |
+
|
| 318 |
+
Returns:
|
| 319 |
+
np.array: Normalized image as uint8
|
| 320 |
+
"""
|
| 321 |
+
img_min = np.min(image)
|
| 322 |
+
img_max = np.max(image)
|
| 323 |
+
|
| 324 |
+
if img_max - img_min == 0:
|
| 325 |
+
return np.zeros_like(image, dtype=np.uint8)
|
| 326 |
+
|
| 327 |
+
return ((image - img_min) / (img_max - img_min) * 255).astype(np.uint8)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def convert_npy_to_images(npy_path, model_path, num_slices=11):
|
| 331 |
+
"""
|
| 332 |
+
Convert 3D medical image (.npy) to multiple 2D RGB images.
|
| 333 |
+
|
| 334 |
+
Expected input shape: (32, 256, 256) or (1, 32, 256, 256)
|
| 335 |
+
Extracts evenly distributed slices and converts to RGB format.
|
| 336 |
+
|
| 337 |
+
Args:
|
| 338 |
+
npy_path: Path to the .npy file
|
| 339 |
+
model_path: Path to the model (for image processor)
|
| 340 |
+
num_slices: Number of slices to extract (default: 11)
|
| 341 |
+
|
| 342 |
+
Returns:
|
| 343 |
+
tuple: (pixel_values tensor, list of num_patches per slice) or False if error
|
| 344 |
+
"""
|
| 345 |
+
try:
|
| 346 |
+
# Load .npy file
|
| 347 |
+
data = np.load(npy_path)
|
| 348 |
+
|
| 349 |
+
# Handle shape (1, 32, 256, 256) -> (32, 256, 256)
|
| 350 |
+
if data.ndim == 4 and data.shape[0] == 1:
|
| 351 |
+
data = data[0]
|
| 352 |
+
|
| 353 |
+
# Validate shape
|
| 354 |
+
if data.shape != (32, 256, 256):
|
| 355 |
+
print(f"Warning: {npy_path} has shape {data.shape}, expected (32, 256, 256), skipping")
|
| 356 |
+
return False
|
| 357 |
+
|
| 358 |
+
# Select evenly distributed slices from 32 slices
|
| 359 |
+
indices = np.linspace(0, 31, num_slices, dtype=int)
|
| 360 |
+
|
| 361 |
+
image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
| 362 |
+
pixel_values_list = []
|
| 363 |
+
num_patches_list = []
|
| 364 |
+
|
| 365 |
+
# Process each selected slice
|
| 366 |
+
for idx in indices:
|
| 367 |
+
# Get slice
|
| 368 |
+
slice_img = data[idx]
|
| 369 |
+
|
| 370 |
+
# Normalize to 0-255
|
| 371 |
+
normalized = normalize_image(slice_img)
|
| 372 |
+
|
| 373 |
+
# Convert grayscale to RGB by stacking
|
| 374 |
+
rgb_img = np.stack([normalized, normalized, normalized], axis=-1)
|
| 375 |
+
|
| 376 |
+
# Convert to PIL Image
|
| 377 |
+
img = Image.fromarray(rgb_img)
|
| 378 |
+
|
| 379 |
+
# Preprocess with CLIP processor
|
| 380 |
+
pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
|
| 381 |
+
num_patches_list.append(pixel_values.shape[0])
|
| 382 |
+
pixel_values_list.append(pixel_values)
|
| 383 |
+
|
| 384 |
+
pixel_values = torch.cat(pixel_values_list)
|
| 385 |
+
return pixel_values, num_patches_list
|
| 386 |
+
|
| 387 |
+
except Exception as e:
|
| 388 |
+
print(f"Error processing {npy_path}: {str(e)}")
|
| 389 |
+
return False
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def inference_3d_medical_image(model, tokenizer, npy_path, question, prompt=REASONING_PROMPT):
|
| 393 |
+
"""
|
| 394 |
+
Perform inference on 3D medical images stored as .npy files.
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
model: Loaded vision-language model
|
| 398 |
+
tokenizer: Loaded tokenizer
|
| 399 |
+
npy_path: Path to the .npy file (shape: 32x256x256)
|
| 400 |
+
question: Question to ask about the image
|
| 401 |
+
prompt: System prompt template
|
| 402 |
+
|
| 403 |
+
Returns:
|
| 404 |
+
str: Model response or None if error
|
| 405 |
+
"""
|
| 406 |
+
# Convert 3D volume to multiple 2D slices
|
| 407 |
+
result = convert_npy_to_images(npy_path, MODEL_PATH)
|
| 408 |
+
|
| 409 |
+
if result is False:
|
| 410 |
+
return None
|
| 411 |
+
|
| 412 |
+
pixel_values, num_patches_list = result
|
| 413 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 414 |
+
|
| 415 |
+
# Create image token prefix for all slices
|
| 416 |
+
image_prefix = ''.join([f'<image>\n' for _ in range(len(num_patches_list))])
|
| 417 |
+
|
| 418 |
+
# Prepare question with prompt and image tokens
|
| 419 |
+
full_question = f"{prompt}\n{image_prefix}{question}"
|
| 420 |
+
|
| 421 |
+
# Generate response
|
| 422 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False)
|
| 423 |
+
response, history = model.chat(
|
| 424 |
+
tokenizer,
|
| 425 |
+
pixel_values,
|
| 426 |
+
full_question,
|
| 427 |
+
generation_config,
|
| 428 |
+
num_patches_list=num_patches_list,
|
| 429 |
+
history=None,
|
| 430 |
+
return_history=True
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
return response
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
# ============================================================================
|
| 437 |
+
# Main Execution Examples
|
| 438 |
+
# ============================================================================
|
| 439 |
+
|
| 440 |
+
def main():
|
| 441 |
+
"""
|
| 442 |
+
Main function demonstrating all three inference modes.
|
| 443 |
+
"""
|
| 444 |
+
# Copy necessary files
|
| 445 |
+
copy_necessary_files(MODEL_PATH, REQUIRED_FILES_DIR)
|
| 446 |
+
|
| 447 |
+
# ========================================================================
|
| 448 |
+
# Example 1: Single Image Inference
|
| 449 |
+
# ========================================================================
|
| 450 |
+
print("\n" + "="*80)
|
| 451 |
+
print("EXAMPLE 1: Single Image Inference")
|
| 452 |
+
print("="*80)
|
| 453 |
+
|
| 454 |
+
image_path = "./test.png"
|
| 455 |
+
question = (
|
| 456 |
+
"What imaging technique was employed to obtain this picture?\n"
|
| 457 |
+
"A. PET scan. B. CT scan. C. Blood test. D. Fundus imaging."
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
model, tokenizer = load_model(MODEL_PATH, use_flash_attn=True)
|
| 461 |
+
response = inference_single_image(model, tokenizer, image_path, question)
|
| 462 |
+
|
| 463 |
+
print(f"\nUser: {question}")
|
| 464 |
+
print(f"Assistant: {response}")
|
| 465 |
+
|
| 466 |
+
# Clean up GPU memory
|
| 467 |
+
del model, tokenizer
|
| 468 |
+
torch.cuda.empty_cache()
|
| 469 |
+
|
| 470 |
+
# ========================================================================
|
| 471 |
+
# Example 2: Video Inference
|
| 472 |
+
# ========================================================================
|
| 473 |
+
print("\n" + "="*80)
|
| 474 |
+
print("EXAMPLE 2: Video Inference")
|
| 475 |
+
print("="*80)
|
| 476 |
+
|
| 477 |
+
video_path = "./test.mp4"
|
| 478 |
+
video_duration = 6 # seconds
|
| 479 |
+
question = "Please describe the video."
|
| 480 |
+
|
| 481 |
+
model, tokenizer = load_model(MODEL_PATH, use_flash_attn=False)
|
| 482 |
+
response = inference_video(model, tokenizer, video_path, video_duration, question)
|
| 483 |
+
|
| 484 |
+
print(f"\nUser: {question}")
|
| 485 |
+
print(f"Assistant: {response}")
|
| 486 |
+
|
| 487 |
+
# Clean up GPU memory
|
| 488 |
+
del model, tokenizer
|
| 489 |
+
torch.cuda.empty_cache()
|
| 490 |
+
|
| 491 |
+
# ========================================================================
|
| 492 |
+
# Example 3: 3D Medical Image Inference
|
| 493 |
+
# ========================================================================
|
| 494 |
+
print("\n" + "="*80)
|
| 495 |
+
print("EXAMPLE 3: 3D Medical Image Inference")
|
| 496 |
+
print("="*80)
|
| 497 |
+
|
| 498 |
+
npy_path = "./test.npy"
|
| 499 |
+
question = "What device is observed on the chest wall?"
|
| 500 |
+
|
| 501 |
+
# Example cases:
|
| 502 |
+
# Case 1: /path/to/test_1016_d_2.npy
|
| 503 |
+
# Question: "Where is the largest lymph node observed?"
|
| 504 |
+
# Answer: "Right hilar region."
|
| 505 |
+
#
|
| 506 |
+
# Case 2: /path/to/test_1031_a_2.npy
|
| 507 |
+
# Question: "What device is observed on the chest wall?"
|
| 508 |
+
# Answer: "Pacemaker."
|
| 509 |
+
|
| 510 |
+
model, tokenizer = load_model(MODEL_PATH, use_flash_attn=False)
|
| 511 |
+
response = inference_3d_medical_image(model, tokenizer, npy_path, question)
|
| 512 |
+
|
| 513 |
+
if response:
|
| 514 |
+
print(f"\nUser: {question}")
|
| 515 |
+
print(f"Assistant: {response}")
|
| 516 |
+
else:
|
| 517 |
+
print("\nError: Failed to process 3D medical image")
|
| 518 |
+
|
| 519 |
+
# Clean up GPU memory
|
| 520 |
+
del model, tokenizer
|
| 521 |
+
torch.cuda.empty_cache()
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
if __name__ == "__main__":
|
| 525 |
+
main()
|
| 526 |
+
|
| 527 |
+
```
|
| 528 |
+
|
| 529 |
+
## ⚠️ Safety Statement
|
| 530 |
+
|
| 531 |
+
This project is for research and non-clinical reference only; it must not be used for actual diagnosis or treatment decisions.
|
| 532 |
+
The generated reasoning traces are an auditable intermediate process and do not constitute medical advice.
|
| 533 |
+
In medical scenarios, results must be reviewed and approved by qualified professionals, and all applicable laws, regulations, and privacy compliance requirements in your region must be followed.
|
| 534 |
+
|
| 535 |
+
## 📚 Citation
|
| 536 |
+
|
| 537 |
+
```bibtex
|
| 538 |
+
@misc{flemingr1,
|
| 539 |
+
title={Fleming-R1: Toward Expert-Level Medical Reasoning via Reinforcement Learning},
|
| 540 |
+
author={Chi Liu and Derek Li and Yan Shu and Robin Chen and Derek Duan and Teng Fang and Bryan Dai},
|
| 541 |
+
year={2025},
|
| 542 |
+
eprint={2509.15279},
|
| 543 |
+
archivePrefix={arXiv},
|
| 544 |
+
primaryClass={cs.LG},
|
| 545 |
+
url={https://arxiv.org/abs/2509.15279},
|
| 546 |
+
}
|
| 547 |
+
```
|