qwen-code-doc-ft / README.md
V7W3D's picture
Update README.md
3aa6639 verified
---
license: apache-2.0
language:
- en
tags:
- code
- cobol
- code-documentation
- qwen
- qwen2.5
- instruction-tuning
- llm
- generative-model
library_name: transformers
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-Coder-3B-Instruct
model_name: qwen-code-doc-ft
---
# Qwen2.5-Coder-3B-Instruct – Fine-tuned for COBOL Code Documentation
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct), optimized for generating natural language documentation from COBOL source code. The fine-tuning was done using **freeze fine-tuning** on the **last transformer layer only**, preserving the rest of the model's pretrained weights.
## 🔧 Model Description
- **Architecture**: Qwen2.5-Coder-3B (decoder-only transformer)
- **Base Model**: [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct)
- **Fine-tuning Method**: Freeze fine-tuning (only last transformer block's parameters were updated)
- **Training Objective**: Instruction-following text generation for COBOL code documentation
## 🧠 Use Cases
This model is specialized in generating descriptive documentation for legacy COBOL code, especially useful for:
- **Legacy system maintenance**
- **Automated codebase documentation**
- **Migration planning**
- **COBOL code understanding and onboarding**
## ✍️ Example Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_name = "V7W3D/qwen-code-doc-ft"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
doc_gen = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompt = "### Document this COBOL code:\n\n IDENTIFICATION DIVISION.\n PROGRAM-ID. HELLO-WORLD.\n PROCEDURE DIVISION.\n DISPLAY 'HELLO, WORLD!'\n STOP RUN.\n\n### Documentation:"
response = doc_gen(prompt, max_new_tokens=200, do_sample=False)
print(response[0]["generated_text"])