|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- code |
|
- cobol |
|
- code-documentation |
|
- qwen |
|
- qwen2.5 |
|
- instruction-tuning |
|
- llm |
|
- generative-model |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
base_model: Qwen/Qwen2.5-Coder-3B-Instruct |
|
model_name: qwen-code-doc-ft |
|
--- |
|
|
|
# Qwen2.5-Coder-3B-Instruct – Fine-tuned for COBOL Code Documentation |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct), optimized for generating natural language documentation from COBOL source code. The fine-tuning was done using **freeze fine-tuning** on the **last transformer layer only**, preserving the rest of the model's pretrained weights. |
|
|
|
## 🔧 Model Description |
|
|
|
- **Architecture**: Qwen2.5-Coder-3B (decoder-only transformer) |
|
- **Base Model**: [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) |
|
- **Fine-tuning Method**: Freeze fine-tuning (only last transformer block's parameters were updated) |
|
- **Training Objective**: Instruction-following text generation for COBOL code documentation |
|
|
|
## 🧠 Use Cases |
|
|
|
This model is specialized in generating descriptive documentation for legacy COBOL code, especially useful for: |
|
|
|
- **Legacy system maintenance** |
|
- **Automated codebase documentation** |
|
- **Migration planning** |
|
- **COBOL code understanding and onboarding** |
|
|
|
## ✍️ Example Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
|
|
model_name = "V7W3D/qwen-code-doc-ft" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
doc_gen = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
prompt = "### Document this COBOL code:\n\n IDENTIFICATION DIVISION.\n PROGRAM-ID. HELLO-WORLD.\n PROCEDURE DIVISION.\n DISPLAY 'HELLO, WORLD!'\n STOP RUN.\n\n### Documentation:" |
|
response = doc_gen(prompt, max_new_tokens=200, do_sample=False) |
|
|
|
print(response[0]["generated_text"]) |