metadata
license: mit
tags:
- text-to-image
- diffusion
- lora
- ai-art
- image-generation
library_name: diffusers
pipeline_tag: text-to-image
VERUMNNODE OS - Text-to-Image AI Model
A powerful Text-to-Image AI model based on diffusion technology with LoRA (Low-Rank Adaptation) for efficient fine-tuning and high-quality image generation.
π Official Deployment Links
Primary Deployment Options:
- π― Hugging Face Spaces: https://huggingface.co/spaces/VERUMNNODE/OS
- π Inference API: https://api-inference.huggingface.co/models/VERUMNNODE/OS
- π Model Hub: https://huggingface.co/VERUMNNODE/OS
π Model Description
VERUMNNODE OS is a state-of-the-art text-to-image generation model tha combines:
- Diffusion-based architecture for high-quality image synthesis
- LoRA adaptation for efficient training and customization
- Optimized inference for fast generation times
- Creative flexibility for diverse artistic styles
Key Feures:
- π¨ High-quality image generation from text prompts
- β‘ Fast inference with optimized pipeline
- π§ LoRA-based fine-tuning capablities
- π― Stable and consistent utputs
- π Multiple resolution support
π οΈ Installation
Quick Start with Hugging Face
from diffusers import DiffusionPipeline
import torch
# Load the model
pipe = DiffusionPipeline.from_pretrained(
"VERUMNNODE/OS",
torch_dtype=torch.float16,
use_safetensors=True
)
# Move to GPU ifailable
if torch.cuda.is_available():
pipe = pipe.to("cuda")
Using the Inference API
import requests
import json
from PIL import Image
import io
API_URL = "https://api-inference.huggingface.co/models/VERUMNNODE/OS"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
# Generate image
image_bytes = query({
"inputs": "A beautiful sunset over mountains, digital art style"
})
# Convert to PIL Image
image = Image.open(io.BytesIO(image_bytes))
image.show()
π» Usage Examples
asic Text-to-Image Generation
# Simple generation
prompt = "A majestic dragon flying over a medieval castle, fantasy art"
image = pipe(prompt, num_inference_steps=20, guidance_scale=7.5).images[0]
image.save("dragon_castle.png")
Advanced Generation with Parameters
# Advanced generation with custom parameters
prompt = "Cyberpunk cityscape at night, neon lights, futuristic architecture"
negative_prompt = "blurry, low quality, distorted"
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
guidance_scale=8.0,
width=768,
height=768,
num_images_per_prompt=1
).images[0]
image.save("cyberpunk_city.png")
Batch Generation
# Generate multiple images
prompts = [
"A serene lake reflection at dawn",
"Abstract geometric patterns in vibrant colors",
"A cozy coffee shop interior, warm lighting"
]
images = []
for prompt in prompts:
image = pipe(prompt, num_inference_steps=25).images[0]
images.append(image)
# Save all images
for i, img in enumerate(images):
img.save(f"generated_image_{i+1}.png")
π§ Model Configuration
Recommended Parameters:
- Inference Step: 20-50 (balance between quality and speed)
- Guidance Scale: 7.0-9.0 (higher values = more prompt adherence)
- Resolution: 512x512 to 1024x1024
- Scheduler: DPMSolverMultistepScheduler (default)
Performance Optimization:
# Enable memory efficient attention
pipe.enable_attention_slicing()
# Enable CPU offloading for low VRAM
pipe.enable_sequential_cpu_offload()
# Use half precision for faster inference
pipe = pipe.to(torch.float16)
π Model Card
Attribute | Value |
---|---|
Model Type | Text-to-Image Diffusion |
Architecture | Stable Diffusion + LoRA |
Training Data | Curated artistic datasets |
Resolution | Up to 1024x1024 |
Inference Time | ~2-5 seconds (GPU) |
Memory Uage | ~6-8GB VRAM |
License | MIT |
π Deployment Options
1. Hugging Face Spaces
Deploy directly on Hugging Face Spaces for instant webinterface:
# Visit: https://huggingface.co/spaces/VERUMNNODE/OS
# No setup required - ready to use!
2. Local Deployment
# Clone and run locally
git clone https://huggingface.co/VERUMNNODE/OS
cd OS
pip install -r requirements.txt
python app.py
3. API Integration
# Use in your applications
from transformers import pipeline
generator = pipeline("text-to-image", model="VERUMNNODE/OS")
result = generator("Your creative prompt here")
π― Use Cases
- Digital Art Creation: Generate unique artwork from text descriptions
- Content Creation: Create visuals for blogs, social media, presentations
- Game Development: Generate concept art and game assets
- Marketing: Create custom graphics and promotional materials
- Education: Visual aids and creative learning materials
- Research: AI art research and experimentation
β οΈ Important Notes
- GPU Recommended: For optimal performance, use CUDA-compatible GPU
- Memory Requirements: Minimum 6GB VRAM for high-resolution generation
- Rate Limits: Inference API has usage limits for free tier
- Content Policy: Please follow Hugging Face's content guidelines
π€ Community & Support
- Issues: Report bugs or request featus on the Model Hub
- Discussions: Join community discussions in the Community tab
- Examples: Check out generated examples in the Gallery section
π License
This model is released under the MIT License. See the LICENSE file for details.
MIT License - Free for commercial and personal use
Attribution required - Please credit VERUMNNODE/S
π Citation
If you use this model in your research or projects, please cite:
@misc{verumnnode_os_2024,
title={VERMNNODE OS: Text-to-Image Generation Model},
author={VERUMNNODE},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/VERUMNNODE/OS}
}
kaggle kernels output nina6923/notebook15ab497e3e -p /path/to/dest
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
linkcode
from diffusers import DiffusionPipeline
import torch
# Load the model
pipe = DiffusionPipeline.from_pretrained(
"VERUMNNODE/OS",
torch_dtype=torch.float16,
use_safetensors=True
)
# Move to GPU ifailable
if torch.cuda.is_available():
pipe = pipe.to("cuda")
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFace
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
hyperparameters = {
'model_name_or_path':'QuantFactory/diffullama-GGUF',
'output_dir':'/opt/ml/model'
# add your remaining hyperparameters
# more info here https://github.com/huggingface/transformers/tree/v4.49.0/path/to/script
}
# git configuration to download our fine-tuning script
git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.49.0'}
# creates Hugging Face estimator
huggingface_estimator = HuggingFace(
entry_point='train.py',
source_dir='./path/to/script',
instance_type='ml.p3.2xlarge',
instance_count=1,
role=role,
git_config=git_config,
transformers_version='4.49.0',
pytorch_version='2.5.1',
py_version='py311',
hyperparameters = hyperparameters
)
# starting the train job
huggingface_estimator.fit()
# Clone o repositΓ³rio (caso ainda nΓ£o tenha)
git clone https://huggingface.co/VERUMNNODE/OS
cd OS
# Crie uma nova branch para seu PR
git checkout -b readme-otimizado
# Edite o arquivo localmente
nano README.md # ou use VSCode, etc.
# FaΓ§a commit e envie
git add README.md
git commit -m "OtimizaΓ§Γ£o visual e estrutural do README.md"
git push origin readme-otimizado