|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- value-guided-search |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
1.5B value model for guiding DeepSeek CoT: arxiv.org/abs/2505.17373. |
|
|
|
[Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373) |
|
|
|
Code: https://github.com/kaiwenw/value-guided-search |
|
|
|
This model is a `Qwen2ForClassifier` model, a modified version of the Qwen2 model for classification tasks, which is used to guide chain-of-thought reasoning. |
|
|
|
## Usage |
|
|
|
To load the model, you can use the following code snippet: |
|
|
|
```python |
|
import classifier_lib |
|
import torch |
|
|
|
model_loading_kwargs = dict(attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False) |
|
classifier = classifier_lib.Qwen2ForClassifier.from_pretrained("VGS-AI/DeepSeek-VM-1.5B", **model_loading_kwargs) |
|
``` |
|
|
|
To apply the model to `input_ids`, you can use the following code snippet: |
|
|
|
```python |
|
import torch |
|
|
|
device = torch.device("cuda") |
|
# your input_ids |
|
input_ids = torch.tensor([151646, 151644, 18, 13, 47238, ...], dtype=torch.long, device=device) |
|
attention_mask = torch.ones_like(input_ids) |
|
classifier_outputs = classifier(input_ids.unsqueeze(0), attention_mask=attention_mask.unsqueeze(0)) |
|
# use last index of the sequence |
|
scores = classifier_outputs.success_probs.squeeze(0)[-1].item() |
|
``` |