|
--- |
|
license: apache-2.0 |
|
--- |
|
### Important Links |
|
|
|
📖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) | |
|
🤖[ModelScope](https://modelscope.cn/collections/XiYanSQL-Models-4483337b614241) | |
|
🌐[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) | |
|
🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) | |
|
💻[ModelScope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B) |
|
|
|
|
|
## Introduction |
|
We are excited to update our new XiYanSQL-QwenCoder series model, demonstrating improvements over its predecessor in some key features. |
|
- The new XiYanSQL-QwenCoder model applies the merits of GRPO training strategy without thinking process, maintaining high efficiency and accuracy in SQL generation. |
|
- The new XiYanSQL-QwenCoder model keeps its great performance in various benchmarks, including BIRD, Spider and DW benchmarks which will be released in the future. |
|
- The new XiYanSQL-QwenCoder model demonstrates better generalization than its predecessor, especially in different dialects and out-of-domain datasets. |
|
|
|
|
|
## Model Downloads |
|
|
|
|
|
| **Model** | **Download Latest** | |
|
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
|XiYanSQL-QwenCoder-7B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) | |
|
|XiYanSQL-QwenCoder-32B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) | |
|
|
|
|
|
|
|
## Performance |
|
The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects. |
|
|
|
| Model name | Size | BIRD Dev@M-Schema | BIRD Dev@DDL | Spider Test@M-Schema | Spider Test@DDL | DW PostgreSQL@M-Schema | DW MySQL@M-Schema | |
|
|------------------------------|:------:|:-----------------:|:------------:|:--------------------:|:---------------:|:----------------------:|:-----------------:| |
|
| GPT-4o-0806 | UNK | 58.47% | 54.82% | 82.89% | 78.45% | 46.79% | 57.77% | |
|
| GPT-4.1-0414 | UNK | 59.39% | 54.11% | 84.45% | 79.86% | 54.29% | 63.18% | |
|
| Claude3.5-sonnet-1022 | UNK | 53.32% | 50.46% | 76.27% | 73.04% | 55.22% | 52.84% | |
|
| Claude3.7-sonnet | UNK | 54.82% | 49.22% | 78.04% | 74.66% | 53.23% | 54.61% | |
|
| Gemini-1.5-Pro | UNK | 61.34% | 57.89% | 85.11% | 84.00% | 52.78% | 62.78% | |
|
| Gemini-2.5-Pro | UNK | 67.21% | 63.43% | 88.29% | 86.27% | 63.16% | 65.37% | |
|
| DeepSeek-V2.5-1210 | 236B | 55.74% | 55.61% | 82.08% | 80.57% | 45.74% | 52.18% | |
|
| DeepSeek-V3 | 685B | 59.58% | 56.71% | 81.52% | 79.91% | 52.56% | 55.95% | |
|
| DeepSeek-R1 | 685B | 58.15% | 55.61% | 80.72% | 78.85% | 60.56% | xx% | |
|
| DeepSeek-R1-Distill-Qwen-32B | 32B | 50.65% | 48.31% | 78.65% | 77.33% | 37.22% | 44.72% | |
|
| Deepseek-Coder-33B-Instruct | 33B | 47.52% | 44.72% | 72.39% | xx% | 31.48% | 36.17% | |
|
| OmniSQL-32B | 32B | 60.37% | 55.87% | 85.16% | 83.19% | 38.19% | 42.34% | |
|
| XiYanSQL-QwenCoder-32B-2412 | 32B | 67.07% | 63.04% | 88.39% | 85.46% | 45.07% | 52.84% | |
|
| XiYanSQL-QwenCoder-32B-2504 | 32B | 67.14% | 62.26% | 89.20% | 86.17% | 53.52% | 57.74% | |
|
|
|
|
|
## Requirements |
|
|
|
transformers >= 4.37.0 |
|
vllm >= 0.7.2 |
|
|
|
## Quickstart with Transformers and vLLM |
|
|
|
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance. |
|
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL. |
|
|
|
### Prompt Template |
|
```python |
|
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。 |
|
【用户问题】 |
|
{question} |
|
|
|
【数据库schema】 |
|
{db_schema} |
|
|
|
【参考信息】 |
|
{evidence} |
|
|
|
【用户问题】 |
|
{question} |
|
|
|
```sql""" |
|
``` |
|
|
|
|
|
### Inference with Transformers |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] |
|
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") |
|
message = [{'role': 'user', 'content': prompt}] |
|
|
|
text = tokenizer.apply_chat_template( |
|
message, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=1024, |
|
temperature=0.1, |
|
top_p=0.8, |
|
do_sample=True, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
### Inference with vLLM |
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502" |
|
llm = LLM(model=model_path, tensor_parallel_size=8) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
sampling_params = SamplingParams( |
|
n=1, |
|
temperature=0.1, |
|
max_tokens=2048 |
|
) |
|
|
|
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] |
|
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") |
|
message = [{'role': 'user', 'content': prompt}] |
|
text = tokenizer.apply_chat_template( |
|
message, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
outputs = llm.generate([text], sampling_params=sampling_params) |
|
response = outputs[0].outputs[0].text |
|
``` |
|
|
|
|
|
## Acknowledgments |
|
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community! |