image/jpeg

ZYH-LLM-Qwen2.5-14B-V5

The ZYH-LLM-Qwen2.5-14B fifth-generation model was officially released!

It merges high-performance instruction, code, and reasoning models built on the Qwen2.5-14B.

Recently, many high-performance reasoning models have emerged, such as:

These lay a good foundation for further improving model performance.

First stage:

Step 1:

Create a code model

models:  
  - model: Qwen/Qwen2.5-Coder-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen/Qwen2.5-Coder-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-Coder-14B-della

Step 2:

Create five different instruction models

models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen/Qwen2.5-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-Base
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: arcee-ai/Virtuoso-Small-v2  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-V2
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: arcee-ai/SuperNova-Medius  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-Nova
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Azure99/Blossom-V6-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-V6
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-EVA

Step 3:

Use the arcee_fusion merging method to incorporate cogito-v1-preview-qwen-14B into five instruction models.

models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-Base
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-Base-cogito
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-V2
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-V2-cogito
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-V6
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-V6-cogito
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-Nova
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-Nova-cogito
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-EVA
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-EVA-cogito

Second stage:

Step 1:

Create three instruction models with a bias towards reasoning.

merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-Coder-14B-della  
  - model: agentica-org/DeepCoder-14B-Preview  
  - model: PKU-DS-LAB/FairyR1-14B-Preview  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-Coder
merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-14B-V6-cogito  
  - model: FractalAIResearch/Fathom-R1-14B  
  - model: qihoo360/Light-R1-14B-DS  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-V6
merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-14B-Nova-cogito  
  - model: FractalAIResearch/Fathom-R1-14B  
  - model: qihoo360/Light-R1-14B-DS  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-Nova

Step 2:

Create a pure instruction model to restore the generality of the final model.

merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-14B-V6-cogito  
  - model: Qwen2.5-14B-Nova-cogito
  - model: Qwen2.5-14B-EVA-cogito
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-it

Third stage:

Step 1:

Create a base model with a context of 1 million tokens.

merge_method: sce  
models:
  # Pivot model
  - model: Qwen/Qwen2.5-14B-Instruct-1M
  # Target models  
  - model: Qwen/Qwen2.5-14B  
base_model: Qwen/Qwen2.5-14B-Instruct-1M  
parameters:  
  select_topk: 1  
dtype: bfloat16  
tokenizer_source: base  
normalize: true  
int8_mask: true  
name: Qwen2.5-14B-1M
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen2.5-14B-1M  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-Base-1M

Step 2:

Use the arcee_fusion merging method to incorporate cogito-v1-preview-qwen-14B into a base model with a context of 1 million tokens.

models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-Base-1M
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-cogito-Base-1M

Final stage:

merge_method: model_stock  
base_model: Qwen2.5-14B-cogito-Base-1M  
models:  
  - model: Qwen2.5-14B-cogito-mst-Coder  
  - model: Qwen2.5-14B-cogito-mst-V6  
  - model: Qwen2.5-14B-cogito-mst-Nova  
  - model: Qwen2.5-14B-cogito-mst-it  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: ZYH-LLM-Qwen2.5-14B-V5
Downloads last month
0
Safetensors
Model size
14.8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for YOYO-AI/ZYH-LLM-Qwen2.5-14B-V5

Collection including YOYO-AI/ZYH-LLM-Qwen2.5-14B-V5