Yilin0601's picture
my-finetuned-wav2vec2-model-for-fluency-classification
b7c19f3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: wav2vec2-fluency-checkpoints
    results: []

wav2vec2-fluency-checkpoints

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6840
  • Accuracy: 0.24
  • F1: 0.0484
  • Qwk: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Qwk
1.9027 1.0 149 1.5752 0.3919 0.0804 0.0
1.5771 2.0 298 1.5067 0.3919 0.0804 0.0
1.8437 3.0 447 1.5069 0.3919 0.0804 0.0
1.5636 4.0 596 1.5043 0.3919 0.0804 0.0
1.7911 5.0 745 1.5095 0.3919 0.0804 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1