a-yu7's picture
a-yu7/distilbert-base-uncased-lora-text-classification
23ba05a verified
metadata
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9980
  • Accuracy: {'accuracy': 0.884}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3876 {'accuracy': 0.88}
0.452 2.0 500 0.4465 {'accuracy': 0.864}
0.452 3.0 750 0.4792 {'accuracy': 0.882}
0.2137 4.0 1000 0.7374 {'accuracy': 0.883}
0.2137 5.0 1250 0.8041 {'accuracy': 0.886}
0.0584 6.0 1500 0.8809 {'accuracy': 0.89}
0.0584 7.0 1750 0.8800 {'accuracy': 0.887}
0.0275 8.0 2000 0.9635 {'accuracy': 0.885}
0.0275 9.0 2250 1.0078 {'accuracy': 0.882}
0.0142 10.0 2500 0.9980 {'accuracy': 0.884}

Framework versions

  • PEFT 0.15.1
  • Transformers 4.47.1
  • Pytorch 2.5.1+cpu
  • Datasets 3.5.0
  • Tokenizers 0.21.0