|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: GraphCodebert-gpt2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# GraphCodebert-gpt2 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.6964 |
|
- Rouge2 Precision: 0.1809 |
|
- Rouge2 Recall: 0.1775 |
|
- Rouge2 Fmeasure: 0.1747 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| No log | 0.29 | 500 | 5.0350 | 0.0889 | 0.0797 | 0.0819 | |
|
| 6.0048 | 0.58 | 1000 | 4.4849 | 0.1159 | 0.116 | 0.1138 | |
|
| 6.0048 | 0.87 | 1500 | 4.1607 | 0.151 | 0.1474 | 0.1452 | |
|
| 4.2848 | 1.15 | 2000 | 4.0174 | 0.1558 | 0.1465 | 0.1471 | |
|
| 4.2848 | 1.44 | 2500 | 3.8264 | 0.1786 | 0.1683 | 0.1685 | |
|
| 3.8448 | 1.73 | 3000 | 3.6964 | 0.1809 | 0.1775 | 0.1747 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|