|
from sklearn.cluster import KMeans |
|
from collections import Counter |
|
import numpy as np |
|
import cv2 |
|
|
|
def get_image(pil_image): |
|
nimg = np.array(pil_image) |
|
image = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
return image |
|
|
|
def get_labels(rimg): |
|
clf = KMeans(n_clusters=5) |
|
labels = clf.fit_predict(rimg) |
|
return labels, clf |
|
|
|
def get_closest_color(colors): |
|
white = (255, 255, 255) |
|
closest_color = min(colors, key=lambda c: np.linalg.norm(np.array(c) - white)) |
|
return closest_color |
|
|
|
def RGB2HEX(color): |
|
return "#{:02x}{:02x}{:02x}".format(int(color[0]), int(color[1]), int(color[2])) |
|
|
|
def extract_colors_and_closest_to_white(image_path): |
|
img = cv2.imread(image_path) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
reshaped_img = img.reshape(img.shape[0] * img.shape[1], img.shape[2]) |
|
labels, clf = get_labels(reshaped_img) |
|
counts = Counter(labels) |
|
center_colors = clf.cluster_centers_ |
|
ordered_colors = [center_colors[i] for i in counts.keys()] |
|
hex_colors = [RGB2HEX(ordered_colors[i]) for i in counts.keys()] |
|
|
|
closest_color_to_white = get_closest_color(center_colors) |
|
hex_closest_color_to_white = RGB2HEX(closest_color_to_white) |
|
return hex_colors, hex_closest_color_to_white |
|
|