wavlm-base-ug-combined

This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/UGANDAN-ENGLISH - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1281
  • Wer: 0.1548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500.0
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5871 0.8042 1000 0.4082 0.4143
0.3352 1.6080 2000 0.2659 0.2979
0.2262 2.4117 3000 0.2189 0.2459
0.1922 3.2155 4000 0.1928 0.2205
0.1527 4.0193 5000 0.1667 0.2024
0.1152 4.8235 6000 0.1525 0.1893
0.0932 5.6273 7000 0.1435 0.1775
0.0721 6.4310 8000 0.1365 0.1672
0.0559 7.2348 9000 0.1335 0.1582
0.0483 8.0386 10000 0.1281 0.1545

Framework versions

  • Transformers 5.0.0.dev0
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
92
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ajikadev/wavlm-base-ug-combined

Finetuned
(22)
this model

Evaluation results