wavlm-base-ug-combined
This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/UGANDAN-ENGLISH - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.1281
- Wer: 0.1548
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500.0
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.5871 | 0.8042 | 1000 | 0.4082 | 0.4143 |
| 0.3352 | 1.6080 | 2000 | 0.2659 | 0.2979 |
| 0.2262 | 2.4117 | 3000 | 0.2189 | 0.2459 |
| 0.1922 | 3.2155 | 4000 | 0.1928 | 0.2205 |
| 0.1527 | 4.0193 | 5000 | 0.1667 | 0.2024 |
| 0.1152 | 4.8235 | 6000 | 0.1525 | 0.1893 |
| 0.0932 | 5.6273 | 7000 | 0.1435 | 0.1775 |
| 0.0721 | 6.4310 | 8000 | 0.1365 | 0.1672 |
| 0.0559 | 7.2348 | 9000 | 0.1335 | 0.1582 |
| 0.0483 | 8.0386 | 10000 | 0.1281 | 0.1545 |
Framework versions
- Transformers 5.0.0.dev0
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 92
Model tree for ajikadev/wavlm-base-ug-combined
Base model
microsoft/wavlm-base