mac
Initial release: Docling CodeFormula ONNX models with JPQD quantization
41bd4f5
#!/usr/bin/env python3
"""
Example usage of CodeFormula ONNX model for code and formula recognition.
"""
import onnxruntime as ort
import numpy as np
import cv2
from typing import Dict, List, Union, Optional
import argparse
import os
from PIL import Image
import time
class CodeFormulaONNX:
"""ONNX wrapper for CodeFormula model"""
def __init__(self, model_path: str = "CodeFormula.onnx"):
"""
Initialize CodeFormula ONNX model
Args:
model_path: Path to ONNX model file
"""
print(f"Loading CodeFormula model: {model_path}")
self.session = ort.InferenceSession(model_path)
# Get model input/output information
self.input_name = self.session.get_inputs()[0].name
self.input_shape = self.session.get_inputs()[0].shape
self.input_type = self.session.get_inputs()[0].type
self.output_names = [output.name for output in self.session.get_outputs()]
self.output_shape = self.session.get_outputs()[0].shape
# Model vocabulary size (from output shape)
self.vocab_size = self.output_shape[-1] if len(self.output_shape) > 2 else 50827
self.sequence_length = self.output_shape[-2] if len(self.output_shape) > 2 else 10
print(f"โœ“ Model loaded successfully")
print(f" Input: {self.input_name} {self.input_shape} ({self.input_type})")
print(f" Output: {self.output_shape}")
print(f" Vocabulary size: {self.vocab_size}")
print(f" Sequence length: {self.sequence_length}")
def create_dummy_input(self) -> np.ndarray:
"""Create dummy input tensor for testing"""
if self.input_type == 'tensor(int64)':
# Create dummy token sequence
dummy_input = np.random.randint(0, min(self.vocab_size, 1000), self.input_shape).astype(np.int64)
else:
# Create dummy float input
dummy_input = np.random.randn(*self.input_shape).astype(np.float32)
return dummy_input
def preprocess_image(self, image: Union[str, np.ndarray], target_dpi: int = 120) -> np.ndarray:
"""
Preprocess image for CodeFormula inference
Note: This is a simplified preprocessing. The actual CodeFormula model
requires specific preprocessing that converts images to token sequences.
"""
if isinstance(image, str):
# Load image from path
pil_image = Image.open(image).convert('RGB')
image_array = np.array(pil_image)
else:
image_array = image.copy()
# CodeFormula expects 120 DPI images
print(f" Processing image at {target_dpi} DPI...")
# Resize image for better OCR (adjust based on DPI)
height, width = image_array.shape[:2]
# Scale to approximate 120 DPI resolution
# This is a simplified scaling - actual implementation would be more sophisticated
scale_factor = target_dpi / 72.0 # Assume base 72 DPI
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
if new_height != height or new_width != width:
image_array = cv2.resize(image_array, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
# Convert to grayscale for better text recognition
if len(image_array.shape) == 3:
gray = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY)
else:
gray = image_array
# Enhance contrast for better recognition
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
# Apply denoising
denoised = cv2.fastNlMeansDenoising(enhanced)
print(f" Image preprocessed: {image_array.shape} -> {denoised.shape}")
# For this example, we create dummy token input since we don't have the actual tokenizer
# In practice, you would use the CodeFormula tokenizer to convert the processed image to tokens
dummy_tokens = self.create_dummy_input()
return dummy_tokens
def predict(self, input_tokens: np.ndarray) -> np.ndarray:
"""Run CodeFormula prediction"""
# Validate input shape
expected_shape = tuple(self.input_shape)
if input_tokens.shape != expected_shape:
print(f"Warning: Input shape {input_tokens.shape} != expected {expected_shape}")
# Run inference
outputs = self.session.run(None, {self.input_name: input_tokens})
return outputs[0] # Return logits [batch, sequence, vocab]
def decode_output(self, logits: np.ndarray, top_k: int = 1) -> Dict:
"""
Decode model output logits
Args:
logits: Model output logits [batch, sequence, vocab]
top_k: Number of top predictions to return
Returns:
Dictionary with decoded results
"""
batch_size, seq_len, vocab_size = logits.shape
# Get top-k predictions for each position
top_k_indices = np.argsort(logits[0], axis=-1)[:, -top_k:] # [seq_len, top_k]
top_k_logits = np.take_along_axis(logits[0], top_k_indices, axis=-1) # [seq_len, top_k]
# Convert logits to probabilities
probabilities = self._softmax(top_k_logits)
# Get the most likely sequence (greedy decoding)
predicted_tokens = np.argmax(logits[0], axis=-1) # [seq_len]
max_probabilities = np.max(probabilities, axis=-1) # [seq_len]
result = {
"predicted_tokens": predicted_tokens.tolist(),
"probabilities": max_probabilities.tolist(),
"mean_confidence": float(np.mean(max_probabilities)),
"max_confidence": float(np.max(max_probabilities)),
"min_confidence": float(np.min(max_probabilities)),
"sequence_length": int(seq_len),
"top_k_predictions": {
"indices": top_k_indices.tolist(),
"probabilities": probabilities.tolist()
}
}
return result
def _softmax(self, x: np.ndarray) -> np.ndarray:
"""Apply softmax to convert logits to probabilities"""
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
def recognize(self, image: Union[str, np.ndarray]) -> Dict:
"""
Recognize code or formula from image
Args:
image: Image path or numpy array
Returns:
Dictionary with recognition results
"""
print("๐Ÿ” Processing image...")
# Preprocess image
input_tokens = self.preprocess_image(image)
print("๐Ÿš€ Running inference...")
# Run inference
logits = self.predict(input_tokens)
print("๐Ÿ“ Decoding results...")
# Decode output
decoded = self.decode_output(logits)
# Classify output type (simplified heuristic)
output_type = self._classify_content_type(decoded["predicted_tokens"])
# Add metadata
result = {
"recognition_type": output_type,
"model_output": decoded,
"processing_info": {
"input_shape": input_tokens.shape,
"output_shape": logits.shape,
"inference_successful": True
}
}
return result
def _classify_content_type(self, tokens: List[int]) -> str:
"""
Classify if the content is likely code or formula
This is a simplified heuristic. In practice, you would:
1. Decode tokens to actual text using the tokenizer
2. Analyze the text content for patterns
3. Look for programming language indicators or mathematical notation
"""
# Simplified classification based on token patterns
unique_tokens = len(set(tokens))
token_variance = np.var(tokens) if len(tokens) > 1 else 0
if unique_tokens > len(tokens) * 0.7:
return "code" # High diversity suggests code
elif token_variance < 100:
return "formula" # Low variance might suggest mathematical notation
else:
return "unknown" # Cannot determine
def benchmark(self, num_iterations: int = 100) -> Dict[str, float]:
"""Benchmark model performance"""
print(f"๐Ÿƒ Running benchmark with {num_iterations} iterations...")
# Create dummy input
dummy_input = self.create_dummy_input()
# Warmup
for _ in range(5):
_ = self.predict(dummy_input)
# Benchmark
times = []
for i in range(num_iterations):
start_time = time.time()
_ = self.predict(dummy_input)
end_time = time.time()
times.append(end_time - start_time)
if (i + 1) % 10 == 0:
print(f" Progress: {i + 1}/{num_iterations}")
# Calculate statistics
times = np.array(times)
stats = {
"mean_time_ms": float(np.mean(times) * 1000),
"std_time_ms": float(np.std(times) * 1000),
"min_time_ms": float(np.min(times) * 1000),
"max_time_ms": float(np.max(times) * 1000),
"median_time_ms": float(np.median(times) * 1000),
"throughput_fps": float(1.0 / np.mean(times)),
"total_iterations": num_iterations
}
return stats
def main():
parser = argparse.ArgumentParser(description="CodeFormula ONNX Example")
parser.add_argument("--model", type=str, default="CodeFormula.onnx",
help="Path to CodeFormula ONNX model")
parser.add_argument("--image", type=str,
help="Path to image file (code snippet or formula)")
parser.add_argument("--benchmark", action="store_true",
help="Run performance benchmark")
parser.add_argument("--iterations", type=int, default=100,
help="Number of benchmark iterations")
args = parser.parse_args()
# Check if model file exists
if not os.path.exists(args.model):
print(f"โŒ Error: Model file not found: {args.model}")
print("Please ensure the ONNX model file is in the current directory.")
return
# Initialize model
print("=" * 60)
print("CodeFormula ONNX Example")
print("=" * 60)
try:
codeformula = CodeFormulaONNX(args.model)
except Exception as e:
print(f"โŒ Error loading model: {e}")
return
# Run benchmark if requested
if args.benchmark:
print(f"\n๐Ÿ“Š Running performance benchmark...")
try:
stats = codeformula.benchmark(args.iterations)
print(f"\n๐Ÿ“ˆ Benchmark Results:")
print(f" Mean inference time: {stats['mean_time_ms']:.2f} ยฑ {stats['std_time_ms']:.2f} ms")
print(f" Median inference time: {stats['median_time_ms']:.2f} ms")
print(f" Min/Max: {stats['min_time_ms']:.2f} / {stats['max_time_ms']:.2f} ms")
print(f" Throughput: {stats['throughput_fps']:.1f} FPS")
except Exception as e:
print(f"โŒ Benchmark failed: {e}")
# Process image if provided
if args.image:
if not os.path.exists(args.image):
print(f"โŒ Error: Image file not found: {args.image}")
return
print(f"\n๐Ÿ–ผ๏ธ Processing image: {args.image}")
try:
# Process image
result = codeformula.recognize(args.image)
print(f"\nโœ… Recognition completed:")
print(f" Content type: {result['recognition_type']}")
print(f" Confidence: {result['model_output']['mean_confidence']:.3f}")
print(f" Sequence length: {result['model_output']['sequence_length']}")
print(f" Predicted tokens: {result['model_output']['predicted_tokens'][:10]}{'...' if len(result['model_output']['predicted_tokens']) > 10 else ''}")
# Note about tokenizer
print(f"\n๐Ÿ“ Note: This example uses dummy token decoding.")
print(f" For actual text output, integrate with CodeFormula tokenizer.")
except Exception as e:
print(f"โŒ Error processing image: {e}")
import traceback
traceback.print_exc()
# Demo with dummy data if no image provided
if not args.image and not args.benchmark:
print(f"\n๐Ÿ”ฌ Running demo with dummy data...")
try:
# Create dummy image
dummy_image = np.random.randint(0, 255, (400, 600, 3), dtype=np.uint8)
# Process dummy image
result = codeformula.recognize(dummy_image)
print(f"โœ… Demo completed:")
print(f" Content type: {result['recognition_type']}")
print(f" Mean confidence: {result['model_output']['mean_confidence']:.3f}")
print(f" Processing info: {result['processing_info']}")
print(f"\n๐Ÿ“ Note: This was a demonstration with random data.")
except Exception as e:
print(f"โŒ Demo failed: {e}")
print(f"\nโœ… Example completed successfully!")
print(f"\nUsage examples:")
print(f" Process image: python example.py --image code_snippet.jpg")
print(f" Run benchmark: python example.py --benchmark --iterations 50")
print(f" Both: python example.py --image formula.png --benchmark")
if __name__ == "__main__":
main()