DocumentClassifier ONNX
Optimized ONNX implementation of DS4SD DocumentClassifier for high-performance document type classification.
π― Overview
DocumentClassifier is a deep learning model designed for automatic document type classification. This ONNX version provides optimized inference for production environments with enhanced performance through JPQD (Joint Pruning, Quantization, and Distillation) optimization.
Key Features
- High Accuracy: Reliable document type classification across multiple categories
- Fast Inference: ~28ms per document on CPU (35+ FPS)
- Production Ready: ONNX format for cross-platform deployment
- Memory Efficient: Optimized model size with JPQD compression
- Easy Integration: Simple Python API with comprehensive examples
π Quick Start
Installation
pip install onnxruntime opencv-python pillow numpy
Basic Usage
from example import DocumentClassifierONNX
import cv2
# Initialize model
classifier = DocumentClassifierONNX("DocumentClassifier.onnx")
# Classify document from image file
result = classifier.classify("document.jpg")
print(f"Document type: {result['predicted_category']}")
print(f"Confidence: {result['confidence']:.3f}")
# Get top predictions
for pred in result['top_predictions']:
print(f"{pred['category']}: {pred['confidence']:.3f}")
Command Line Interface
# Classify a document image
python example.py --image document.jpg
# Run performance benchmark
python example.py --benchmark --iterations 100
# Demo with dummy data
python example.py
π Model Specifications
Specification | Value |
---|---|
Input Shape | [1, 3, 224, 224] |
Input Type | float32 |
Output Shape | [1, 1280, 7, 7] |
Output Type | float32 |
Model Size | ~8.2MB |
Parameters | ~2.1M |
Framework | ONNX Runtime |
π·οΈ Supported Document Categories
The model can classify documents into the following categories:
- Article - News articles, blog posts, web content
- Form - Application forms, surveys, questionnaires
- Letter - Business letters, correspondence
- Memo - Internal memos, notices
- News - Newspaper articles, press releases
- Presentation - Slides, presentation materials
- Resume - CVs, resumes, professional profiles
- Scientific - Research papers, academic documents
- Specification - Technical specs, manuals
- Table - Data tables, spreadsheet content
- Other - Miscellaneous document types
β‘ Performance Benchmarks
Inference Speed (CPU)
- Mean: 28.1ms Β± 0.5ms
- Throughput: ~35.6 FPS
- Hardware: Modern CPU (single thread)
- Batch Size: 1
Memory Usage
- Model Loading: ~50MB RAM
- Inference: ~100MB RAM
- Peak Usage: ~150MB RAM
π§ Advanced Usage
Batch Processing
import numpy as np
from example import DocumentClassifierONNX
classifier = DocumentClassifierONNX()
# Process multiple images
image_paths = ["doc1.jpg", "doc2.pdf", "doc3.png"]
results = []
for path in image_paths:
result = classifier.classify(path)
results.append({
'file': path,
'category': result['predicted_category'],
'confidence': result['confidence']
})
# Display results
for r in results:
print(f"{r['file']}: {r['category']} ({r['confidence']:.3f})")
Custom Preprocessing
import cv2
import numpy as np
# Load and preprocess image manually
image = cv2.imread("document.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize to model input size
resized = cv2.resize(image, (224, 224))
normalized = resized.astype(np.float32) / 255.0
# Convert to CHW format and add batch dimension
chw = np.transpose(normalized, (2, 0, 1))
batched = np.expand_dims(chw, axis=0)
# Run inference
classifier = DocumentClassifierONNX()
logits = classifier.predict(batched)
result = classifier.decode_output(logits)
π οΈ Integration Examples
Flask Web Service
from flask import Flask, request, jsonify
from example import DocumentClassifierONNX
app = Flask(__name__)
classifier = DocumentClassifierONNX()
@app.route('/classify', methods=['POST'])
def classify_document():
file = request.files['document']
# Save and process file
file.save('temp_document.jpg')
result = classifier.classify('temp_document.jpg')
return jsonify({
'category': result['predicted_category'],
'confidence': float(result['confidence']),
'top_predictions': result['top_predictions']
})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
Batch Processing Script
import os
import glob
from example import DocumentClassifierONNX
def classify_directory(input_dir, output_file):
classifier = DocumentClassifierONNX()
# Find all image files
extensions = ['*.jpg', '*.jpeg', '*.png', '*.pdf']
files = []
for ext in extensions:
files.extend(glob.glob(os.path.join(input_dir, ext)))
results = []
for file_path in files:
try:
result = classifier.classify(file_path)
results.append({
'file': os.path.basename(file_path),
'category': result['predicted_category'],
'confidence': result['confidence']
})
print(f"β {file_path}: {result['predicted_category']}")
except Exception as e:
print(f"β {file_path}: Error - {e}")
# Save results
import json
with open(output_file, 'w') as f:
json.dump(results, f, indent=2)
# Usage
classify_directory("./documents", "classification_results.json")
π Requirements
System Requirements
- Python: 3.8 or higher
- RAM: Minimum 2GB available
- CPU: x86_64 architecture recommended
- OS: Windows, Linux, macOS
Dependencies
onnxruntime>=1.15.0
opencv-python>=4.5.0
numpy>=1.21.0
Pillow>=8.0.0
π Troubleshooting
Common Issues
Model Loading Error
# Ensure model file exists
import os
if not os.path.exists("DocumentClassifier.onnx"):
print("Model file not found!")
Memory Issues
# For low-memory systems, process images individually
# and clear variables after use
import gc
result = classifier.classify(image)
del image # Free memory
gc.collect()
Image Format Issues
# Convert any image format to RGB
from PIL import Image
img = Image.open("document.pdf").convert("RGB")
result = classifier.classify(np.array(img))
π Technical Details
Architecture
- Base Model: Deep Convolutional Neural Network
- Input Processing: Standard ImageNet preprocessing
- Feature Extraction: CNN backbone with global pooling
- Classification Head: Dense layers with softmax activation
- Optimization: JPQD quantization for size and speed
Preprocessing Pipeline
- Image Loading: PIL/OpenCV image loading
- Resizing: Bilinear interpolation to 224Γ224
- Normalization: [0, 255] β [0, 1] range
- Format Conversion: HWC β CHW (channels first)
- Batch Addition: Single image β batch dimension
Output Processing
- Feature Extraction: CNN backbone outputs [1, 1280, 7, 7]
- Global Pooling: Spatial averaging to [1, 1280]
- Classification: Map features to category probabilities
- Top-K Selection: Return most likely categories
π Citation
If you use this model in your research, please cite:
@article{docling2024,
title={Docling Technical Report},
author={DS4SD Team},
journal={arXiv preprint arXiv:2408.09869},
year={2024}
}
π License
This project is licensed under the MIT License - see the LICENSE file for details.
π€ Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
π Support
- Issues: GitHub Issues
- Documentation: This README and inline code comments
- Examples: See
example.py
for comprehensive usage examples
π Changelog
v1.0.0
- Initial ONNX model release
- JPQD optimization applied
- Complete Python API
- CLI interface
- Comprehensive documentation
- Performance benchmarks
Made with β€οΈ by the DS4SD Community