Mardiyyah's picture
Update README.md
4b3136e verified
metadata
base_model: facebook/wav2vec2-base
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: pidgin-wav2vec2-base-960h
    results: []

pidgin-wav2vec2-base-960h

This model is a fine-tuned version of facebook/wav2vec2-base on the Nigerian Pidgin dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0898
  • Wer: 0.3966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.3949 1.48 500 3.3325 0.9999
2.4656 2.95 1000 1.4727 0.8026
1.1896 4.43 1500 1.0925 0.6252
0.8558 5.91 2000 0.9467 0.5422
0.6427 7.39 2500 0.9856 0.5096
0.5371 8.86 3000 0.9794 0.5093
0.4553 10.34 3500 0.8719 0.4641
0.3921 11.82 4000 0.9344 0.4566
0.3406 13.29 4500 1.0211 0.4550
0.3046 14.77 5000 0.8668 0.4423
0.2651 16.25 5500 1.0384 0.4261
0.244 17.73 6000 1.0437 0.4296
0.2203 19.2 6500 0.9244 0.4228
0.1995 20.68 7000 0.9832 0.4165
0.1838 22.16 7500 1.1455 0.4112
0.1632 23.63 8000 1.1102 0.4102
0.1576 25.11 8500 1.0769 0.4044
0.1388 26.59 9000 1.1008 0.4013
0.1346 28.06 9500 1.0940 0.4000
0.1204 29.54 10000 1.0898 0.3966

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.15.2

Citation

@misc{rufai2025endtoendtrainingautomaticspeech, title={Towards End-to-End Training of Automatic Speech Recognition for Nigerian Pidgin}, author={Amina Mardiyyah Rufai and Afolabi Abeeb and Esther Oduntan and Tayo Arulogun and Oluwabukola Adegboro and Daniel Ajisafe}, year={2025}, eprint={2010.11123}, archivePrefix={arXiv}, primaryClass={eess.AS}, url={https://arxiv.org/abs/2010.11123}, }