ElChat
Collection
Collection of models for "Adapting Chat Language Models Using Only Target Unlabeled Language Data" (TMLR 2025)
•
131 items
•
Updated
This model is built on top of Qwen3 14B Base adapted for Amharic using 500M target language tokens sampled from MADLAD-400. It has an additional target vocabulary of 10K.
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/Qwen3-14B-Base-am-madlad-mean-tuned"
)
tokenizer = AutoTokenizer.from_pretrained(
"atsuki-yamaguchi/Qwen3-14B-Base-am-madlad-mean-tuned"
)
@article{yamaguchi2025adapting,
title={Adapting Chat Language Models Using Only Target Unlabeled Language Data},
author={Atsuki Yamaguchi and Terufumi Morishita and Aline Villavicencio and Nikolaos Aletras},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2025},
url={https://openreview.net/forum?id=6IdoIKowfe},
note={}
}
Base model
Qwen/Qwen3-14B-Base