bagasshw's picture
End of training
bc03fc8 verified
metadata
library_name: transformers
language:
  - su
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - whisper
  - sundanese
  - asr
  - generated_from_trainer
datasets:
  - su_id_asr_split
metrics:
  - wer
model-index:
  - name: Whisper Tiny Sunda
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: su_id_asr_split
          type: su_id_asr_split
          config: su_id_asr_source
          split: validation
          args: su_id_asr_source
        metrics:
          - name: Wer
            type: wer
            value: 0.5419133964515518

Whisper Tiny Sunda

This model is a fine-tuned version of openai/whisper-tiny on the su_id_asr_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4974
  • Wer: 0.5419

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.8761 0.0219 30 1.2365 0.7810
0.9096 0.0438 60 0.7216 0.5673
0.6491 0.0657 90 0.5795 0.5316
0.5444 0.0876 120 0.5178 0.5609
0.4887 0.1095 150 0.4975 0.5418

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0