|
--- |
|
base_model: |
|
- TinyLlama/TinyLlama_v1.1 |
|
datasets: |
|
- benchang1110/Taiwan-pretrain-9B |
|
- benchang1110/Taiwan-book-1B |
|
language: |
|
- zh |
|
library_name: transformers |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
 |
|
This is a continue-pretrained version of [Tinyllama-v1.1](TinyLlama/TinyLlama_v1.1) tailored for traditional Chinese. The continue-pretraining dataset contains over 10B tokens. Using bfloat16, the VRAM required during inference is only around 3GB!!! |
|
|
|
# Usage |
|
**This is a causal language model not a chat model !** It is not designed to generate human-like responses. It is designed to generate text based on previous text. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig |
|
import torch |
|
from transformers import TextStreamer |
|
|
|
def generate_response(input): |
|
''' |
|
simple test for the model |
|
''' |
|
# tokenzize the input |
|
tokenized_input = tokenizer.encode_plus(input, return_tensors='pt').to(device) |
|
print(tokenized_input['input_ids']) |
|
# generate the response |
|
_ = model.generate( |
|
input_ids=tokenized_input['input_ids'], |
|
attention_mask=tokenized_input['attention_mask'], |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=True, |
|
repetition_penalty=1.0, |
|
max_length=2048, |
|
streamer=streamer, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = AutoModelForCausalLM.from_pretrained("benchang1110/Taiwan-tinyllama-v1.1-base",attn_implementation="flash_attention_2",device_map=device,torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained("benchang1110/Taiwan-tinyllama-v1.1-base",use_fast=True) |
|
streamer = TextStreamer(tokenizer) |
|
while(True): |
|
text = input("input a simple prompt:") |
|
generate_response(text) |
|
``` |
|
|
|
### Training Procedure |
|
|
|
The following training hyperparameters are used: |
|
|
|
| Data size | Global Batch Size | Learning Rate | Epochs | Max Length | Weight Decay | |
|
|--------------|-------------------|---------------|--------|------------|--------------| |
|
| 10B | 32 | 5e-5 | 1 | 2048 | 1e-4 | |
|
|
|
 |
|
### Compute Infrastructure |
|
1xA100(80GB), took approximately 200 GPU hours. |