barec-base-finetune-sent

This model is a fine-tuned version of bensapir/pixel-barec-pretrain on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.5546
  • Accuracy: 0.3538
  • Qwk: 0.6191
  • Mae: 1.9391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 50000

Training results

Training Loss Epoch Step Validation Loss Accuracy Qwk Mae
1.9165 1.17 1000 1.9485 0.3074 0.6338 1.9832
1.7575 2.33 2000 1.9038 0.3438 0.6283 1.8642
1.5789 3.5 3000 1.8731 0.3595 0.6409 1.9171
1.4313 4.67 4000 1.9007 0.3622 0.6230 1.8940
1.2578 5.83 5000 2.0439 0.3674 0.6296 1.9421
1.086 7.0 6000 2.2058 0.3584 0.6337 1.9475
0.7325 8.17 7000 2.6200 0.3566 0.6300 1.9146
0.5493 9.33 8000 2.8226 0.3495 0.6096 1.9665
0.4671 10.5 9000 3.1466 0.3368 0.6115 1.9643
0.3892 11.67 10000 3.3661 0.3446 0.6094 1.9643
0.3393 12.84 11000 3.4706 0.3183 0.5977 2.0435
0.297 14.0 12000 3.5575 0.3453 0.6022 1.9891
0.1983 15.17 13000 3.9345 0.3371 0.6095 2.0380
0.1615 16.34 14000 4.0767 0.3509 0.6155 1.9029
0.1622 17.5 15000 4.0375 0.3446 0.6190 1.9390
0.1366 18.67 16000 4.1847 0.3427 0.6183 1.9622
0.126 19.84 17000 4.2534 0.3487 0.6212 1.9285
0.1198 21.0 18000 4.4174 0.3413 0.6080 1.9911
0.0885 22.17 19000 4.6410 0.3339 0.6149 2.0514
0.0818 23.34 20000 4.6826 0.3409 0.6079 1.9544
0.0792 24.5 21000 4.8105 0.3477 0.6197 1.9428
0.0811 25.67 22000 4.8232 0.3438 0.6069 1.9865
0.0761 26.84 23000 4.8745 0.3389 0.6183 1.9248
0.0704 28.0 24000 4.8785 0.3518 0.5999 1.9681
0.0603 29.17 25000 5.2340 0.3394 0.6196 1.9793
0.0513 30.34 26000 5.3277 0.3383 0.6078 1.9665
0.0521 31.51 27000 5.3942 0.3360 0.6033 2.0167
0.0518 32.67 28000 5.4359 0.3356 0.6072 2.0219
0.0491 33.84 29000 5.5302 0.3398 0.6109 1.9944
0.0407 35.01 30000 5.6421 0.3408 0.6118 1.9773
0.033 36.17 31000 5.6559 0.3568 0.6133 1.9461
0.0355 37.34 32000 5.8496 0.3458 0.6159 1.9594
0.0381 38.51 33000 5.9810 0.3457 0.5981 2.0120
0.0335 39.67 34000 6.0368 0.3465 0.5942 2.0148
0.0282 40.84 35000 6.1605 0.3423 0.5993 2.0044
0.0262 42.01 36000 6.2392 0.3468 0.5993 1.9595
0.0177 43.17 37000 6.3454 0.3456 0.6096 1.9534
0.022 44.34 38000 6.2977 0.3492 0.6176 1.9588
0.02 45.51 39000 6.4121 0.3431 0.5953 1.9843
0.0178 46.67 40000 6.4294 0.3528 0.6129 1.9550
0.0219 47.84 41000 6.5038 0.3506 0.6039 1.9653
0.0172 49.01 42000 6.5427 0.3454 0.6152 1.9949
0.0169 50.18 43000 6.5222 0.3505 0.6076 1.9714
0.0132 51.34 44000 6.4575 0.3568 0.6194 1.9421
0.0127 52.51 45000 6.5038 0.3613 0.5985 1.9590
0.0131 53.68 46000 6.5518 0.3466 0.6074 1.9647
0.0113 54.84 47000 6.5016 0.3535 0.6187 1.9436
0.0131 56.01 48000 6.5359 0.3505 0.6172 1.9465
0.0112 57.18 49000 6.5665 0.3542 0.6195 1.9379
0.0116 58.34 50000 6.5546 0.3538 0.6191 1.9391

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.5.1
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support