Notes in "XGenerationLab/XiYanSQL-QwenCoder-7B-2502":
Requirements
transformers >= 4.37.0
Quickstart
Here is a simple code snippet for quickly using XiYanSQL-QwenCoder model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our M-Schema format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
【用户问题】
{question}
【数据库schema】
{db_schema}
【参考信息】
{evidence}
【用户问题】
{question}
```sql"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "beyoru/QwenCoderSQL_bnb_4bit"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=1024,
temperature=0.1,
top_p=0.8,
do_sample=True,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Acknowledgments
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!
- Downloads last month
- 2
Model tree for beyoru/QwenCoderSQL_bnb_4bit
Base model
XGenerationLab/XiYanSQL-QwenCoder-7B-2502