BENDR: BErt-inspired Neural Data Representations
Pretrained BENDR model for EEG classification tasks. This is the official Braindecode implementation of BENDR from Kostas et al. (2021).
Model Details
- Model Type: Transformer-based EEG encoder
- Pretraining: Self-supervised learning on masked sequence reconstruction
- Architecture:
- Convolutional Encoder: 6 blocks with 512 hidden units
- Transformer Contextualizer: 8 layers, 8 attention heads
- Total Parameters: ~157M
- Input: Raw EEG signals (20 channels, variable length)
- Output: Contextualized representations or class predictions
Usage
from braindecode.models import BENDR
import torch
# Load pretrained model
model = BENDR(n_chans=20, n_outputs=2)
# Load pretrained weights from Hugging Face
from huggingface_hub import hf_hub_download
checkpoint_path = hf_hub_download(repo_id="braindecode/bendr-pretrained-v1", filename="pytorch_model.bin")
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
# Use for inference
model.eval()
with torch.no_grad():
eeg_data = torch.randn(1, 20, 600) # (batch, channels, time)
predictions = model(eeg_data)
Fine-tuning
import torch
from torch.optim import Adam
# Freeze encoder for transfer learning
for param in model.encoder.parameters():
param.requires_grad = False
# Fine-tune on downstream task
optimizer = Adam(model.parameters(), lr=0.0001)
Paper
Kostas, D., Aroca-Ouellette, S., & Rudzicz, F. (2021). Frontiers in Human Neuroscience, 15, 653659.
Citation
@article{kostas2021bendr,
title={BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data},
author={Kostas, Demetres and Aroca-Ouellette, St{\'e}phane and Rudzicz, Frank},
journal={Frontiers in Human Neuroscience},
volume={15},
pages={653659},
year={2021},
publisher={Frontiers}
}
Implementation Notes
- Start token is correctly extracted at index 0 (BERT [CLS] convention)
- Uses T-Fixup weight initialization for stability
- Includes LayerDrop for regularization
- All architectural improvements from original paper maintained
License
Apache 2.0
Authors
- Braindecode Team
- Original paper: Kostas et al. (2021)
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support