YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Requirements
torch
torchvision
pillow
kornia
transformers
Usage
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
# load model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AutoModelForImageSegmentation.from_pretrained('briaai/VRMBG-2.0', trust_remote_code=True).eval().half().to(device)
model = torch.compile(model, dynamic=False, backend="inductor")
# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# load inputs
image_prev_frame_path = "" # fill path
image_current_frame_path = "" # fill path
image_prev_frame = Image.open(image_prev_frame_path)
image_current_frame = Image.open(image_current_frame_path)
input_frames = torch.cat([transform_image(image_prev_frame), transform_image(image_current_frame)], dim=0)
input_frames = input_frames.unsqueeze(0).to(device).half()
# Prediction
with torch.no_grad():
preds = model(input_frames).cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_current_frame.size)
# save result
image_current_frame.putalpha(mask)
image_current_frame.save("image_current_frame_no_background.png")
- Downloads last month
- 259
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support