SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
neutral |
- 'Die Aktionen von Klima-Aktivisten, die in mehreren Städten zu Verkehrsbehinderungen geführt haben, haben in der Öffentlichkeit sowohl Unterstützung als auch Kritik ausgelöst.'
- ' Die Diskussion über ein nationales Tempolimit auf Autobahnen spaltet weiterhin die Gemüter, während Experten die potenziellen Vorteile und Nachteile abwägen.'
- ' Der Bundestag wird in den kommenden Wochen über das geplante Heizungsgesetz debattieren.'
|
supportive |
- ' "Die Aktionen von Gruppen wie Fridays for Future und der Letzten Generation zeigen, dass die junge Generation bereit ist, für eine lebenswerte Zukunft zu kämpfen."'
- ' Die Einführung eines nationalen Tempolimits auf Autobahnen könnte die Verkehrssicherheit erheblich verbessern und die Zahl der Verkehrstoten reduzieren.'
- '"Die jungen Aktivisten von Fridays for Future und die Letzte Generation haben mit ihren unkonventionellen Aktionen ein wichtiges Gespräch über die Dringlichkeit des Klimaschutzes angestoßen."'
|
opposed |
- '„Die Polizei musste am Freitag wiederholt mit harten Bandagen gegen die Klima-Rebellen vorgehen, die Straßen und Plätze in der Innenstadt blockierten, um für ihre Forderungen zu demonstrieren.“'
- ' "Ein Tempolimit auf deutschen Autobahnen würde den freiheitsliebenden Autofahrern das Herz brechen."'
- 'Die ständigen Straßenblockaden und Farbbeanspritzungen auf Kunstwerke haben viele Menschen in Deutschland mehr als nur gereizt - sie haben sie in ihrem täglichen Leben massiv behindert und zu einer wachsenden Ablehnung gegenüber den Klima-Aktivisten geführt.'
|
Evaluation
Metrics
Label |
Accuracy |
all |
0.9570 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.6")
preds = model(" \"Ein nationales Tempolimit auf Autobahnen wäre ein weiterer Schritt in Richtung eines überregulierten Staates, der den Bürgern ihre Freiheit stückweise entreißt.\"")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
10 |
25.7025 |
53 |
Label |
Training Sample Count |
neutral |
318 |
opposed |
388 |
supportive |
410 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0000 |
1 |
0.2339 |
- |
0.0019 |
50 |
0.2439 |
- |
0.0039 |
100 |
0.2407 |
- |
0.0058 |
150 |
0.2295 |
- |
0.0078 |
200 |
0.2123 |
- |
0.0097 |
250 |
0.1903 |
- |
0.0116 |
300 |
0.153 |
- |
0.0136 |
350 |
0.1322 |
- |
0.0155 |
400 |
0.116 |
- |
0.0174 |
450 |
0.0937 |
- |
0.0194 |
500 |
0.0721 |
- |
0.0213 |
550 |
0.0525 |
- |
0.0233 |
600 |
0.0388 |
- |
0.0252 |
650 |
0.0338 |
- |
0.0271 |
700 |
0.026 |
- |
0.0291 |
750 |
0.0224 |
- |
0.0310 |
800 |
0.0122 |
- |
0.0329 |
850 |
0.0088 |
- |
0.0349 |
900 |
0.0079 |
- |
0.0368 |
950 |
0.0055 |
- |
0.0388 |
1000 |
0.004 |
- |
0.0407 |
1050 |
0.0027 |
- |
0.0426 |
1100 |
0.0025 |
- |
0.0446 |
1150 |
0.0019 |
- |
0.0465 |
1200 |
0.0014 |
- |
0.0484 |
1250 |
0.0013 |
- |
0.0504 |
1300 |
0.0006 |
- |
0.0523 |
1350 |
0.0012 |
- |
0.0543 |
1400 |
0.0006 |
- |
0.0562 |
1450 |
0.0004 |
- |
0.0581 |
1500 |
0.0003 |
- |
0.0601 |
1550 |
0.0003 |
- |
0.0620 |
1600 |
0.0003 |
- |
0.0639 |
1650 |
0.0002 |
- |
0.0659 |
1700 |
0.0007 |
- |
0.0678 |
1750 |
0.0002 |
- |
0.0698 |
1800 |
0.0002 |
- |
0.0717 |
1850 |
0.0002 |
- |
0.0736 |
1900 |
0.0003 |
- |
0.0756 |
1950 |
0.0002 |
- |
0.0775 |
2000 |
0.0001 |
- |
0.0794 |
2050 |
0.0001 |
- |
0.0814 |
2100 |
0.0001 |
- |
0.0833 |
2150 |
0.0001 |
- |
0.0853 |
2200 |
0.0008 |
- |
0.0872 |
2250 |
0.0007 |
- |
0.0891 |
2300 |
0.0007 |
- |
0.0911 |
2350 |
0.0002 |
- |
0.0930 |
2400 |
0.0001 |
- |
0.0950 |
2450 |
0.0001 |
- |
0.0969 |
2500 |
0.0014 |
- |
0.0988 |
2550 |
0.0008 |
- |
0.1008 |
2600 |
0.0009 |
- |
0.1027 |
2650 |
0.0006 |
- |
0.1046 |
2700 |
0.0008 |
- |
0.1066 |
2750 |
0.0001 |
- |
0.1085 |
2800 |
0.0 |
- |
0.1105 |
2850 |
0.0 |
- |
0.1124 |
2900 |
0.0 |
- |
0.1143 |
2950 |
0.0 |
- |
0.1163 |
3000 |
0.0 |
- |
0.1182 |
3050 |
0.0 |
- |
0.1201 |
3100 |
0.0 |
- |
0.1221 |
3150 |
0.0 |
- |
0.1240 |
3200 |
0.0 |
- |
0.1260 |
3250 |
0.0 |
- |
0.1279 |
3300 |
0.0 |
- |
0.1298 |
3350 |
0.0 |
- |
0.1318 |
3400 |
0.0 |
- |
0.1337 |
3450 |
0.0 |
- |
0.1356 |
3500 |
0.0 |
- |
0.1376 |
3550 |
0.0 |
- |
0.1395 |
3600 |
0.0 |
- |
0.1415 |
3650 |
0.0 |
- |
0.1434 |
3700 |
0.0 |
- |
0.1453 |
3750 |
0.0 |
- |
0.1473 |
3800 |
0.0 |
- |
0.1492 |
3850 |
0.0 |
- |
0.1511 |
3900 |
0.0 |
- |
0.1531 |
3950 |
0.0 |
- |
0.1550 |
4000 |
0.001 |
- |
0.1570 |
4050 |
0.0012 |
- |
0.1589 |
4100 |
0.0042 |
- |
0.1608 |
4150 |
0.0023 |
- |
0.1628 |
4200 |
0.001 |
- |
0.1647 |
4250 |
0.001 |
- |
0.1666 |
4300 |
0.0001 |
- |
0.1686 |
4350 |
0.0 |
- |
0.1705 |
4400 |
0.0 |
- |
0.1725 |
4450 |
0.0 |
- |
0.1744 |
4500 |
0.0 |
- |
0.1763 |
4550 |
0.0003 |
- |
0.1783 |
4600 |
0.0 |
- |
0.1802 |
4650 |
0.0 |
- |
0.1821 |
4700 |
0.0005 |
- |
0.1841 |
4750 |
0.0009 |
- |
0.1860 |
4800 |
0.0001 |
- |
0.1880 |
4850 |
0.0 |
- |
0.1899 |
4900 |
0.0 |
- |
0.1918 |
4950 |
0.0 |
- |
0.1938 |
5000 |
0.0 |
- |
0.1957 |
5050 |
0.0 |
- |
0.1977 |
5100 |
0.0 |
- |
0.1996 |
5150 |
0.0 |
- |
0.2015 |
5200 |
0.0 |
- |
0.2035 |
5250 |
0.0 |
- |
0.2054 |
5300 |
0.0 |
- |
0.2073 |
5350 |
0.0 |
- |
0.2093 |
5400 |
0.0 |
- |
0.2112 |
5450 |
0.0 |
- |
0.2132 |
5500 |
0.0 |
- |
0.2151 |
5550 |
0.0 |
- |
0.2170 |
5600 |
0.0 |
- |
0.2190 |
5650 |
0.0 |
- |
0.2209 |
5700 |
0.0 |
- |
0.2228 |
5750 |
0.0 |
- |
0.2248 |
5800 |
0.0 |
- |
0.2267 |
5850 |
0.0 |
- |
0.2287 |
5900 |
0.0 |
- |
0.2306 |
5950 |
0.0 |
- |
0.2325 |
6000 |
0.0 |
- |
0.2345 |
6050 |
0.0 |
- |
0.2364 |
6100 |
0.0 |
- |
0.2383 |
6150 |
0.0 |
- |
0.2403 |
6200 |
0.0 |
- |
0.2422 |
6250 |
0.0 |
- |
0.2442 |
6300 |
0.0 |
- |
0.2461 |
6350 |
0.0 |
- |
0.2480 |
6400 |
0.0 |
- |
0.2500 |
6450 |
0.0 |
- |
0.2519 |
6500 |
0.0 |
- |
0.2538 |
6550 |
0.0 |
- |
0.2558 |
6600 |
0.0 |
- |
0.2577 |
6650 |
0.0 |
- |
0.2597 |
6700 |
0.0 |
- |
0.2616 |
6750 |
0.0 |
- |
0.2635 |
6800 |
0.0 |
- |
0.2655 |
6850 |
0.0 |
- |
0.2674 |
6900 |
0.0 |
- |
0.2693 |
6950 |
0.0 |
- |
0.2713 |
7000 |
0.0 |
- |
0.2732 |
7050 |
0.0 |
- |
0.2752 |
7100 |
0.0 |
- |
0.2771 |
7150 |
0.0 |
- |
0.2790 |
7200 |
0.0 |
- |
0.2810 |
7250 |
0.0 |
- |
0.2829 |
7300 |
0.0 |
- |
0.2849 |
7350 |
0.0 |
- |
0.2868 |
7400 |
0.0 |
- |
0.2887 |
7450 |
0.0 |
- |
0.2907 |
7500 |
0.0 |
- |
0.2926 |
7550 |
0.0 |
- |
0.2945 |
7600 |
0.0 |
- |
0.2965 |
7650 |
0.0 |
- |
0.2984 |
7700 |
0.0 |
- |
0.3004 |
7750 |
0.0 |
- |
0.3023 |
7800 |
0.0 |
- |
0.3042 |
7850 |
0.0 |
- |
0.3062 |
7900 |
0.0 |
- |
0.3081 |
7950 |
0.0 |
- |
0.3100 |
8000 |
0.0 |
- |
0.3120 |
8050 |
0.0 |
- |
0.3139 |
8100 |
0.0 |
- |
0.3159 |
8150 |
0.0 |
- |
0.3178 |
8200 |
0.0 |
- |
0.3197 |
8250 |
0.0 |
- |
0.3217 |
8300 |
0.0 |
- |
0.3236 |
8350 |
0.0 |
- |
0.3255 |
8400 |
0.0 |
- |
0.3275 |
8450 |
0.0 |
- |
0.3294 |
8500 |
0.0 |
- |
0.3314 |
8550 |
0.0 |
- |
0.3333 |
8600 |
0.0 |
- |
0.3352 |
8650 |
0.0 |
- |
0.3372 |
8700 |
0.0 |
- |
0.3391 |
8750 |
0.0 |
- |
0.3410 |
8800 |
0.0 |
- |
0.3430 |
8850 |
0.0 |
- |
0.3449 |
8900 |
0.0 |
- |
0.3469 |
8950 |
0.0 |
- |
0.3488 |
9000 |
0.0 |
- |
0.3507 |
9050 |
0.0 |
- |
0.3527 |
9100 |
0.0 |
- |
0.3546 |
9150 |
0.0 |
- |
0.3565 |
9200 |
0.0042 |
- |
0.3585 |
9250 |
0.0083 |
- |
0.3604 |
9300 |
0.0071 |
- |
0.3624 |
9350 |
0.0011 |
- |
0.3643 |
9400 |
0.0008 |
- |
0.3662 |
9450 |
0.001 |
- |
0.3682 |
9500 |
0.0006 |
- |
0.3701 |
9550 |
0.0 |
- |
0.3720 |
9600 |
0.0 |
- |
0.3740 |
9650 |
0.0004 |
- |
0.3759 |
9700 |
0.0 |
- |
0.3779 |
9750 |
0.0 |
- |
0.3798 |
9800 |
0.0 |
- |
0.3817 |
9850 |
0.0 |
- |
0.3837 |
9900 |
0.0 |
- |
0.3856 |
9950 |
0.0 |
- |
0.3876 |
10000 |
0.0 |
- |
0.3895 |
10050 |
0.0 |
- |
0.3914 |
10100 |
0.0 |
- |
0.3934 |
10150 |
0.0 |
- |
0.3953 |
10200 |
0.0 |
- |
0.3972 |
10250 |
0.0 |
- |
0.3992 |
10300 |
0.0 |
- |
0.4011 |
10350 |
0.0 |
- |
0.4031 |
10400 |
0.0 |
- |
0.4050 |
10450 |
0.0 |
- |
0.4069 |
10500 |
0.0 |
- |
0.4089 |
10550 |
0.0 |
- |
0.4108 |
10600 |
0.0 |
- |
0.4127 |
10650 |
0.0 |
- |
0.4147 |
10700 |
0.0 |
- |
0.4166 |
10750 |
0.0 |
- |
0.4186 |
10800 |
0.0 |
- |
0.4205 |
10850 |
0.0 |
- |
0.4224 |
10900 |
0.0 |
- |
0.4244 |
10950 |
0.0 |
- |
0.4263 |
11000 |
0.0 |
- |
0.4282 |
11050 |
0.0 |
- |
0.4302 |
11100 |
0.0 |
- |
0.4321 |
11150 |
0.0 |
- |
0.4341 |
11200 |
0.0 |
- |
0.4360 |
11250 |
0.0 |
- |
0.4379 |
11300 |
0.0 |
- |
0.4399 |
11350 |
0.0 |
- |
0.4418 |
11400 |
0.0 |
- |
0.4437 |
11450 |
0.0 |
- |
0.4457 |
11500 |
0.0 |
- |
0.4476 |
11550 |
0.0 |
- |
0.4496 |
11600 |
0.0 |
- |
0.4515 |
11650 |
0.0 |
- |
0.4534 |
11700 |
0.0 |
- |
0.4554 |
11750 |
0.0 |
- |
0.4573 |
11800 |
0.0 |
- |
0.4592 |
11850 |
0.0 |
- |
0.4612 |
11900 |
0.0 |
- |
0.4631 |
11950 |
0.0 |
- |
0.4651 |
12000 |
0.0 |
- |
0.4670 |
12050 |
0.0 |
- |
0.4689 |
12100 |
0.0 |
- |
0.4709 |
12150 |
0.0 |
- |
0.4728 |
12200 |
0.0 |
- |
0.4748 |
12250 |
0.0 |
- |
0.4767 |
12300 |
0.0 |
- |
0.4786 |
12350 |
0.0 |
- |
0.4806 |
12400 |
0.0 |
- |
0.4825 |
12450 |
0.0 |
- |
0.4844 |
12500 |
0.0 |
- |
0.4864 |
12550 |
0.0 |
- |
0.4883 |
12600 |
0.0 |
- |
0.4903 |
12650 |
0.0 |
- |
0.4922 |
12700 |
0.0 |
- |
0.4941 |
12750 |
0.0 |
- |
0.4961 |
12800 |
0.0 |
- |
0.4980 |
12850 |
0.0 |
- |
0.4999 |
12900 |
0.0 |
- |
0.5019 |
12950 |
0.0 |
- |
0.5038 |
13000 |
0.0 |
- |
0.5058 |
13050 |
0.0 |
- |
0.5077 |
13100 |
0.0 |
- |
0.5096 |
13150 |
0.0 |
- |
0.5116 |
13200 |
0.0 |
- |
0.5135 |
13250 |
0.0 |
- |
0.5154 |
13300 |
0.0 |
- |
0.5174 |
13350 |
0.0 |
- |
0.5193 |
13400 |
0.0 |
- |
0.5213 |
13450 |
0.0 |
- |
0.5232 |
13500 |
0.0 |
- |
0.5251 |
13550 |
0.0 |
- |
0.5271 |
13600 |
0.0 |
- |
0.5290 |
13650 |
0.0 |
- |
0.5309 |
13700 |
0.0 |
- |
0.5329 |
13750 |
0.0 |
- |
0.5348 |
13800 |
0.0 |
- |
0.5368 |
13850 |
0.0 |
- |
0.5387 |
13900 |
0.0 |
- |
0.5406 |
13950 |
0.0 |
- |
0.5426 |
14000 |
0.0 |
- |
0.5445 |
14050 |
0.0 |
- |
0.5464 |
14100 |
0.0 |
- |
0.5484 |
14150 |
0.0 |
- |
0.5503 |
14200 |
0.0 |
- |
0.5523 |
14250 |
0.0 |
- |
0.5542 |
14300 |
0.0 |
- |
0.5561 |
14350 |
0.0 |
- |
0.5581 |
14400 |
0.0 |
- |
0.5600 |
14450 |
0.0 |
- |
0.5620 |
14500 |
0.0 |
- |
0.5639 |
14550 |
0.0 |
- |
0.5658 |
14600 |
0.0 |
- |
0.5678 |
14650 |
0.0 |
- |
0.5697 |
14700 |
0.0 |
- |
0.5716 |
14750 |
0.0 |
- |
0.5736 |
14800 |
0.0 |
- |
0.5755 |
14850 |
0.0 |
- |
0.5775 |
14900 |
0.0 |
- |
0.5794 |
14950 |
0.0 |
- |
0.5813 |
15000 |
0.0 |
- |
0.5833 |
15050 |
0.0 |
- |
0.5852 |
15100 |
0.0 |
- |
0.5871 |
15150 |
0.0 |
- |
0.5891 |
15200 |
0.0 |
- |
0.5910 |
15250 |
0.0 |
- |
0.5930 |
15300 |
0.0 |
- |
0.5949 |
15350 |
0.0 |
- |
0.5968 |
15400 |
0.0 |
- |
0.5988 |
15450 |
0.0 |
- |
0.6007 |
15500 |
0.0 |
- |
0.6026 |
15550 |
0.0 |
- |
0.6046 |
15600 |
0.0 |
- |
0.6065 |
15650 |
0.0 |
- |
0.6085 |
15700 |
0.0 |
- |
0.6104 |
15750 |
0.0 |
- |
0.6123 |
15800 |
0.0 |
- |
0.6143 |
15850 |
0.0 |
- |
0.6162 |
15900 |
0.0 |
- |
0.6181 |
15950 |
0.0 |
- |
0.6201 |
16000 |
0.0 |
- |
0.6220 |
16050 |
0.0 |
- |
0.6240 |
16100 |
0.0 |
- |
0.6259 |
16150 |
0.0 |
- |
0.6278 |
16200 |
0.0 |
- |
0.6298 |
16250 |
0.0 |
- |
0.6317 |
16300 |
0.0 |
- |
0.6336 |
16350 |
0.0 |
- |
0.6356 |
16400 |
0.0 |
- |
0.6375 |
16450 |
0.0 |
- |
0.6395 |
16500 |
0.0 |
- |
0.6414 |
16550 |
0.0 |
- |
0.6433 |
16600 |
0.0 |
- |
0.6453 |
16650 |
0.0 |
- |
0.6472 |
16700 |
0.0 |
- |
0.6491 |
16750 |
0.0 |
- |
0.6511 |
16800 |
0.0 |
- |
0.6530 |
16850 |
0.0 |
- |
0.6550 |
16900 |
0.0 |
- |
0.6569 |
16950 |
0.0 |
- |
0.6588 |
17000 |
0.0 |
- |
0.6608 |
17050 |
0.0 |
- |
0.6627 |
17100 |
0.0 |
- |
0.6647 |
17150 |
0.0 |
- |
0.6666 |
17200 |
0.0 |
- |
0.6685 |
17250 |
0.0 |
- |
0.6705 |
17300 |
0.0 |
- |
0.6724 |
17350 |
0.0 |
- |
0.6743 |
17400 |
0.0 |
- |
0.6763 |
17450 |
0.0 |
- |
0.6782 |
17500 |
0.0 |
- |
0.6802 |
17550 |
0.0 |
- |
0.6821 |
17600 |
0.0 |
- |
0.6840 |
17650 |
0.0 |
- |
0.6860 |
17700 |
0.0 |
- |
0.6879 |
17750 |
0.0 |
- |
0.6898 |
17800 |
0.0 |
- |
0.6918 |
17850 |
0.0 |
- |
0.6937 |
17900 |
0.0 |
- |
0.6957 |
17950 |
0.0 |
- |
0.6976 |
18000 |
0.0 |
- |
0.6995 |
18050 |
0.0 |
- |
0.7015 |
18100 |
0.0 |
- |
0.7034 |
18150 |
0.0 |
- |
0.7053 |
18200 |
0.0 |
- |
0.7073 |
18250 |
0.0 |
- |
0.7092 |
18300 |
0.0 |
- |
0.7112 |
18350 |
0.0 |
- |
0.7131 |
18400 |
0.0 |
- |
0.7150 |
18450 |
0.0 |
- |
0.7170 |
18500 |
0.0 |
- |
0.7189 |
18550 |
0.0 |
- |
0.7208 |
18600 |
0.0 |
- |
0.7228 |
18650 |
0.0 |
- |
0.7247 |
18700 |
0.0 |
- |
0.7267 |
18750 |
0.0 |
- |
0.7286 |
18800 |
0.0 |
- |
0.7305 |
18850 |
0.0 |
- |
0.7325 |
18900 |
0.0 |
- |
0.7344 |
18950 |
0.0 |
- |
0.7363 |
19000 |
0.0 |
- |
0.7383 |
19050 |
0.0 |
- |
0.7402 |
19100 |
0.0 |
- |
0.7422 |
19150 |
0.0 |
- |
0.7441 |
19200 |
0.0 |
- |
0.7460 |
19250 |
0.0 |
- |
0.7480 |
19300 |
0.0 |
- |
0.7499 |
19350 |
0.0 |
- |
0.7519 |
19400 |
0.0 |
- |
0.7538 |
19450 |
0.0 |
- |
0.7557 |
19500 |
0.0 |
- |
0.7577 |
19550 |
0.0 |
- |
0.7596 |
19600 |
0.0 |
- |
0.7615 |
19650 |
0.0 |
- |
0.7635 |
19700 |
0.0 |
- |
0.7654 |
19750 |
0.0 |
- |
0.7674 |
19800 |
0.0 |
- |
0.7693 |
19850 |
0.0 |
- |
0.7712 |
19900 |
0.0 |
- |
0.7732 |
19950 |
0.0 |
- |
0.7751 |
20000 |
0.0 |
- |
0.7770 |
20050 |
0.0 |
- |
0.7790 |
20100 |
0.0 |
- |
0.7809 |
20150 |
0.0 |
- |
0.7829 |
20200 |
0.0 |
- |
0.7848 |
20250 |
0.0 |
- |
0.7867 |
20300 |
0.0 |
- |
0.7887 |
20350 |
0.0 |
- |
0.7906 |
20400 |
0.0 |
- |
0.7925 |
20450 |
0.0 |
- |
0.7945 |
20500 |
0.0 |
- |
0.7964 |
20550 |
0.0 |
- |
0.7984 |
20600 |
0.0 |
- |
0.8003 |
20650 |
0.0 |
- |
0.8022 |
20700 |
0.0 |
- |
0.8042 |
20750 |
0.0 |
- |
0.8061 |
20800 |
0.0 |
- |
0.8080 |
20850 |
0.0 |
- |
0.8100 |
20900 |
0.0 |
- |
0.8119 |
20950 |
0.0 |
- |
0.8139 |
21000 |
0.0 |
- |
0.8158 |
21050 |
0.0 |
- |
0.8177 |
21100 |
0.0 |
- |
0.8197 |
21150 |
0.0 |
- |
0.8216 |
21200 |
0.0 |
- |
0.8235 |
21250 |
0.0 |
- |
0.8255 |
21300 |
0.0 |
- |
0.8274 |
21350 |
0.0 |
- |
0.8294 |
21400 |
0.0 |
- |
0.8313 |
21450 |
0.0 |
- |
0.8332 |
21500 |
0.0 |
- |
0.8352 |
21550 |
0.0 |
- |
0.8371 |
21600 |
0.0 |
- |
0.8390 |
21650 |
0.0 |
- |
0.8410 |
21700 |
0.0 |
- |
0.8429 |
21750 |
0.0 |
- |
0.8449 |
21800 |
0.0 |
- |
0.8468 |
21850 |
0.0 |
- |
0.8487 |
21900 |
0.0 |
- |
0.8507 |
21950 |
0.0 |
- |
0.8526 |
22000 |
0.0 |
- |
0.8546 |
22050 |
0.0 |
- |
0.8565 |
22100 |
0.0 |
- |
0.8584 |
22150 |
0.0 |
- |
0.8604 |
22200 |
0.0 |
- |
0.8623 |
22250 |
0.0 |
- |
0.8642 |
22300 |
0.0 |
- |
0.8662 |
22350 |
0.0 |
- |
0.8681 |
22400 |
0.0 |
- |
0.8701 |
22450 |
0.0 |
- |
0.8720 |
22500 |
0.0 |
- |
0.8739 |
22550 |
0.0 |
- |
0.8759 |
22600 |
0.0 |
- |
0.8778 |
22650 |
0.0 |
- |
0.8797 |
22700 |
0.0 |
- |
0.8817 |
22750 |
0.0 |
- |
0.8836 |
22800 |
0.0 |
- |
0.8856 |
22850 |
0.0 |
- |
0.8875 |
22900 |
0.0 |
- |
0.8894 |
22950 |
0.0 |
- |
0.8914 |
23000 |
0.0 |
- |
0.8933 |
23050 |
0.0 |
- |
0.8952 |
23100 |
0.0 |
- |
0.8972 |
23150 |
0.0 |
- |
0.8991 |
23200 |
0.0 |
- |
0.9011 |
23250 |
0.0 |
- |
0.9030 |
23300 |
0.0 |
- |
0.9049 |
23350 |
0.0 |
- |
0.9069 |
23400 |
0.0 |
- |
0.9088 |
23450 |
0.0 |
- |
0.9107 |
23500 |
0.0 |
- |
0.9127 |
23550 |
0.0 |
- |
0.9146 |
23600 |
0.0 |
- |
0.9166 |
23650 |
0.0 |
- |
0.9185 |
23700 |
0.0 |
- |
0.9204 |
23750 |
0.0 |
- |
0.9224 |
23800 |
0.0 |
- |
0.9243 |
23850 |
0.0 |
- |
0.9262 |
23900 |
0.0 |
- |
0.9282 |
23950 |
0.0 |
- |
0.9301 |
24000 |
0.0 |
- |
0.9321 |
24050 |
0.0 |
- |
0.9340 |
24100 |
0.0 |
- |
0.9359 |
24150 |
0.0 |
- |
0.9379 |
24200 |
0.0 |
- |
0.9398 |
24250 |
0.0 |
- |
0.9418 |
24300 |
0.0 |
- |
0.9437 |
24350 |
0.0 |
- |
0.9456 |
24400 |
0.0 |
- |
0.9476 |
24450 |
0.0 |
- |
0.9495 |
24500 |
0.0 |
- |
0.9514 |
24550 |
0.0 |
- |
0.9534 |
24600 |
0.0 |
- |
0.9553 |
24650 |
0.0 |
- |
0.9573 |
24700 |
0.0 |
- |
0.9592 |
24750 |
0.0 |
- |
0.9611 |
24800 |
0.0 |
- |
0.9631 |
24850 |
0.0 |
- |
0.9650 |
24900 |
0.0 |
- |
0.9669 |
24950 |
0.0 |
- |
0.9689 |
25000 |
0.0 |
- |
0.9708 |
25050 |
0.0 |
- |
0.9728 |
25100 |
0.0 |
- |
0.9747 |
25150 |
0.0 |
- |
0.9766 |
25200 |
0.0 |
- |
0.9786 |
25250 |
0.0 |
- |
0.9805 |
25300 |
0.0 |
- |
0.9824 |
25350 |
0.0 |
- |
0.9844 |
25400 |
0.0 |
- |
0.9863 |
25450 |
0.0 |
- |
0.9883 |
25500 |
0.0 |
- |
0.9902 |
25550 |
0.0 |
- |
0.9921 |
25600 |
0.0 |
- |
0.9941 |
25650 |
0.0 |
- |
0.9960 |
25700 |
0.0 |
- |
0.9979 |
25750 |
0.0 |
- |
0.9999 |
25800 |
0.0 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}