SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
neutral |
- 'Die Bundesregierung plant, bis 2024 ein sogenanntes Heizungsgesetz vorzulegen, das unter anderem eine flächendeckende Nutzung von Wärmepumpen als Teil eines umfassenden Plans zur Reduzierung der Treibhausgasemissionen im Gebäudesektor vorsehen soll.'
- '"Die Bundesregierung plant, die Einführung von Wärmepumpen für Neubauten und den Austausch alter Heizungsanlagen in Bestandsgebäuden durch ein Gesetz zu forcieren, während Kritiker warnen, dass die Maßnahmen die Belastung für private Haushalte und Unternehmen erhöhen könnten."'
- ' Die Diskussion über ein nationales Tempolimit auf Autobahnen spaltet die Gemüter, während Experten die potenziellen Vorteile und Nachteile abwägen.'
|
opposed |
- '"Millionen von Hausbesitzern sollen zu unfreiwilligen Versuchskaninchen für die teuren und unzuverlässlichen Wärmepumpen werden, ohne dass es auch nur einen Hauch von echter Wahlmöglichkeit gibt."'
- '"Die von den Grünen und Linken geträumte Tempodiktatur auf unseren Autobahnen ist nichts als ein weiterer Schritt in Richtung einer überbürokratisierten, unfreien Gesellschaft."'
- '"Die geplanten Vorschriften würden vielen Familien den Traum vom Eigenheim in weite Ferne rücken, da die Kosten für die Installation einer Wärmepumpe oft ein Vielfaches dessen betragen, was ein durchschnittlicher Haushalt in einem Jahr für Heizkosten ausgibt."'
|
supportive |
- 'Die Bundesregierung hat mit dem Heizungsgesetz einen wichtigen Schritt in Richtung Klimaneutralität gemacht, indem sie die Verpflichtung zur Nutzung erneuerbarer Wärmequellen bei Neubauten festlegt.'
- '"Ein Tempolimit auf Autobahnen könnte nicht nur die Umweltbelastung verringern, sondern auch die Zahl der Verkehrsunfälle reduzieren und somit Menschenleben retten."'
- ' Eine nationale Geschwindigkeitsbegrenzung auf Autobahnen könnte nicht nur die Unfallzahlen senken, sondern auch einen wichtigen Beitrag zum Klimaschutz leisten.'
|
Evaluation
Metrics
Label |
Accuracy |
all |
0.9534 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("cbpuschmann/paraphrase-multilingual-mpnet-klimacoder_v0.8")
preds = model(" \"Das Heizungsgesetz ist nichts weiter als ein weiterer Schritt in Richtung eines grünen Diktats, das die Bürger in die Kälte schickt.\"")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
10 |
25.6541 |
57 |
Label |
Training Sample Count |
neutral |
321 |
opposed |
391 |
supportive |
404 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0000 |
1 |
0.1985 |
- |
0.0019 |
50 |
0.2445 |
- |
0.0039 |
100 |
0.2321 |
- |
0.0058 |
150 |
0.2012 |
- |
0.0077 |
200 |
0.1614 |
- |
0.0097 |
250 |
0.1188 |
- |
0.0116 |
300 |
0.0849 |
- |
0.0136 |
350 |
0.0563 |
- |
0.0155 |
400 |
0.0374 |
- |
0.0174 |
450 |
0.0216 |
- |
0.0194 |
500 |
0.0144 |
- |
0.0213 |
550 |
0.0099 |
- |
0.0232 |
600 |
0.0061 |
- |
0.0252 |
650 |
0.007 |
- |
0.0271 |
700 |
0.0026 |
- |
0.0290 |
750 |
0.0017 |
- |
0.0310 |
800 |
0.0012 |
- |
0.0329 |
850 |
0.0014 |
- |
0.0349 |
900 |
0.002 |
- |
0.0368 |
950 |
0.0008 |
- |
0.0387 |
1000 |
0.0009 |
- |
0.0407 |
1050 |
0.0003 |
- |
0.0426 |
1100 |
0.0007 |
- |
0.0445 |
1150 |
0.0008 |
- |
0.0465 |
1200 |
0.0006 |
- |
0.0484 |
1250 |
0.0002 |
- |
0.0503 |
1300 |
0.0001 |
- |
0.0523 |
1350 |
0.0001 |
- |
0.0542 |
1400 |
0.0001 |
- |
0.0562 |
1450 |
0.0001 |
- |
0.0581 |
1500 |
0.0007 |
- |
0.0600 |
1550 |
0.0005 |
- |
0.0620 |
1600 |
0.0007 |
- |
0.0639 |
1650 |
0.0012 |
- |
0.0658 |
1700 |
0.0007 |
- |
0.0678 |
1750 |
0.0038 |
- |
0.0697 |
1800 |
0.0018 |
- |
0.0716 |
1850 |
0.0049 |
- |
0.0736 |
1900 |
0.0061 |
- |
0.0755 |
1950 |
0.0038 |
- |
0.0775 |
2000 |
0.0037 |
- |
0.0794 |
2050 |
0.0006 |
- |
0.0813 |
2100 |
0.0001 |
- |
0.0833 |
2150 |
0.0 |
- |
0.0852 |
2200 |
0.0 |
- |
0.0871 |
2250 |
0.0 |
- |
0.0891 |
2300 |
0.0 |
- |
0.0910 |
2350 |
0.0 |
- |
0.0929 |
2400 |
0.0 |
- |
0.0949 |
2450 |
0.0 |
- |
0.0968 |
2500 |
0.0 |
- |
0.0987 |
2550 |
0.0 |
- |
0.1007 |
2600 |
0.0 |
- |
0.1026 |
2650 |
0.0 |
- |
0.1046 |
2700 |
0.0 |
- |
0.1065 |
2750 |
0.0 |
- |
0.1084 |
2800 |
0.0 |
- |
0.1104 |
2850 |
0.0 |
- |
0.1123 |
2900 |
0.0 |
- |
0.1142 |
2950 |
0.0 |
- |
0.1162 |
3000 |
0.0 |
- |
0.1181 |
3050 |
0.0 |
- |
0.1200 |
3100 |
0.0 |
- |
0.1220 |
3150 |
0.0 |
- |
0.1239 |
3200 |
0.0 |
- |
0.1259 |
3250 |
0.0 |
- |
0.1278 |
3300 |
0.0 |
- |
0.1297 |
3350 |
0.0 |
- |
0.1317 |
3400 |
0.0 |
- |
0.1336 |
3450 |
0.0 |
- |
0.1355 |
3500 |
0.0 |
- |
0.1375 |
3550 |
0.0 |
- |
0.1394 |
3600 |
0.0 |
- |
0.1413 |
3650 |
0.0 |
- |
0.1433 |
3700 |
0.0 |
- |
0.1452 |
3750 |
0.0 |
- |
0.1472 |
3800 |
0.0 |
- |
0.1491 |
3850 |
0.0 |
- |
0.1510 |
3900 |
0.0 |
- |
0.1530 |
3950 |
0.0 |
- |
0.1549 |
4000 |
0.0 |
- |
0.1568 |
4050 |
0.0 |
- |
0.1588 |
4100 |
0.0 |
- |
0.1607 |
4150 |
0.0 |
- |
0.1626 |
4200 |
0.0 |
- |
0.1646 |
4250 |
0.0 |
- |
0.1665 |
4300 |
0.0 |
- |
0.1685 |
4350 |
0.0 |
- |
0.1704 |
4400 |
0.0 |
- |
0.1723 |
4450 |
0.0 |
- |
0.1743 |
4500 |
0.0 |
- |
0.1762 |
4550 |
0.0 |
- |
0.1781 |
4600 |
0.0 |
- |
0.1801 |
4650 |
0.0 |
- |
0.1820 |
4700 |
0.0 |
- |
0.1839 |
4750 |
0.0 |
- |
0.1859 |
4800 |
0.0 |
- |
0.1878 |
4850 |
0.0 |
- |
0.1898 |
4900 |
0.0 |
- |
0.1917 |
4950 |
0.0 |
- |
0.1936 |
5000 |
0.0 |
- |
0.1956 |
5050 |
0.0 |
- |
0.1975 |
5100 |
0.0 |
- |
0.1994 |
5150 |
0.0 |
- |
0.2014 |
5200 |
0.0 |
- |
0.2033 |
5250 |
0.0 |
- |
0.2052 |
5300 |
0.0 |
- |
0.2072 |
5350 |
0.0 |
- |
0.2091 |
5400 |
0.0 |
- |
0.2111 |
5450 |
0.0 |
- |
0.2130 |
5500 |
0.0 |
- |
0.2149 |
5550 |
0.0 |
- |
0.2169 |
5600 |
0.0 |
- |
0.2188 |
5650 |
0.0 |
- |
0.2207 |
5700 |
0.0 |
- |
0.2227 |
5750 |
0.0 |
- |
0.2246 |
5800 |
0.0 |
- |
0.2265 |
5850 |
0.0 |
- |
0.2285 |
5900 |
0.0 |
- |
0.2304 |
5950 |
0.0 |
- |
0.2324 |
6000 |
0.0 |
- |
0.2343 |
6050 |
0.0 |
- |
0.2362 |
6100 |
0.0 |
- |
0.2382 |
6150 |
0.0 |
- |
0.2401 |
6200 |
0.0 |
- |
0.2420 |
6250 |
0.0 |
- |
0.2440 |
6300 |
0.0 |
- |
0.2459 |
6350 |
0.0 |
- |
0.2478 |
6400 |
0.0 |
- |
0.2498 |
6450 |
0.0 |
- |
0.2517 |
6500 |
0.0 |
- |
0.2536 |
6550 |
0.0 |
- |
0.2556 |
6600 |
0.0 |
- |
0.2575 |
6650 |
0.0 |
- |
0.2595 |
6700 |
0.0 |
- |
0.2614 |
6750 |
0.0 |
- |
0.2633 |
6800 |
0.0 |
- |
0.2653 |
6850 |
0.0 |
- |
0.2672 |
6900 |
0.0 |
- |
0.2691 |
6950 |
0.0 |
- |
0.2711 |
7000 |
0.0 |
- |
0.2730 |
7050 |
0.0 |
- |
0.2749 |
7100 |
0.0 |
- |
0.2769 |
7150 |
0.0 |
- |
0.2788 |
7200 |
0.0 |
- |
0.2808 |
7250 |
0.0 |
- |
0.2827 |
7300 |
0.0 |
- |
0.2846 |
7350 |
0.0 |
- |
0.2866 |
7400 |
0.0 |
- |
0.2885 |
7450 |
0.0 |
- |
0.2904 |
7500 |
0.0 |
- |
0.2924 |
7550 |
0.0 |
- |
0.2943 |
7600 |
0.0 |
- |
0.2962 |
7650 |
0.0 |
- |
0.2982 |
7700 |
0.0 |
- |
0.3001 |
7750 |
0.0 |
- |
0.3021 |
7800 |
0.0 |
- |
0.3040 |
7850 |
0.0 |
- |
0.3059 |
7900 |
0.0 |
- |
0.3079 |
7950 |
0.0 |
- |
0.3098 |
8000 |
0.0 |
- |
0.3117 |
8050 |
0.0 |
- |
0.3137 |
8100 |
0.0 |
- |
0.3156 |
8150 |
0.0 |
- |
0.3175 |
8200 |
0.0 |
- |
0.3195 |
8250 |
0.0 |
- |
0.3214 |
8300 |
0.0 |
- |
0.3234 |
8350 |
0.0 |
- |
0.3253 |
8400 |
0.0 |
- |
0.3272 |
8450 |
0.0 |
- |
0.3292 |
8500 |
0.0 |
- |
0.3311 |
8550 |
0.0 |
- |
0.3330 |
8600 |
0.0 |
- |
0.3350 |
8650 |
0.0 |
- |
0.3369 |
8700 |
0.0 |
- |
0.3388 |
8750 |
0.0 |
- |
0.3408 |
8800 |
0.0 |
- |
0.3427 |
8850 |
0.0 |
- |
0.3447 |
8900 |
0.0 |
- |
0.3466 |
8950 |
0.0 |
- |
0.3485 |
9000 |
0.0 |
- |
0.3505 |
9050 |
0.0 |
- |
0.3524 |
9100 |
0.0 |
- |
0.3543 |
9150 |
0.0 |
- |
0.3563 |
9200 |
0.0 |
- |
0.3582 |
9250 |
0.0 |
- |
0.3601 |
9300 |
0.0 |
- |
0.3621 |
9350 |
0.0 |
- |
0.3640 |
9400 |
0.0 |
- |
0.3660 |
9450 |
0.0 |
- |
0.3679 |
9500 |
0.0 |
- |
0.3698 |
9550 |
0.0 |
- |
0.3718 |
9600 |
0.0 |
- |
0.3737 |
9650 |
0.0 |
- |
0.3756 |
9700 |
0.0 |
- |
0.3776 |
9750 |
0.0 |
- |
0.3795 |
9800 |
0.0 |
- |
0.3814 |
9850 |
0.0 |
- |
0.3834 |
9900 |
0.0 |
- |
0.3853 |
9950 |
0.0 |
- |
0.3873 |
10000 |
0.0 |
- |
0.3892 |
10050 |
0.0 |
- |
0.3911 |
10100 |
0.0 |
- |
0.3931 |
10150 |
0.0 |
- |
0.3950 |
10200 |
0.0 |
- |
0.3969 |
10250 |
0.0 |
- |
0.3989 |
10300 |
0.0 |
- |
0.4008 |
10350 |
0.0 |
- |
0.4027 |
10400 |
0.0 |
- |
0.4047 |
10450 |
0.0 |
- |
0.4066 |
10500 |
0.0 |
- |
0.4086 |
10550 |
0.0 |
- |
0.4105 |
10600 |
0.0 |
- |
0.4124 |
10650 |
0.0 |
- |
0.4144 |
10700 |
0.0 |
- |
0.4163 |
10750 |
0.0 |
- |
0.4182 |
10800 |
0.0 |
- |
0.4202 |
10850 |
0.0 |
- |
0.4221 |
10900 |
0.0 |
- |
0.4240 |
10950 |
0.0 |
- |
0.4260 |
11000 |
0.0 |
- |
0.4279 |
11050 |
0.0 |
- |
0.4298 |
11100 |
0.0 |
- |
0.4318 |
11150 |
0.0 |
- |
0.4337 |
11200 |
0.0 |
- |
0.4357 |
11250 |
0.0 |
- |
0.4376 |
11300 |
0.0 |
- |
0.4395 |
11350 |
0.0 |
- |
0.4415 |
11400 |
0.0 |
- |
0.4434 |
11450 |
0.0 |
- |
0.4453 |
11500 |
0.0 |
- |
0.4473 |
11550 |
0.0 |
- |
0.4492 |
11600 |
0.0 |
- |
0.4511 |
11650 |
0.0 |
- |
0.4531 |
11700 |
0.0 |
- |
0.4550 |
11750 |
0.0 |
- |
0.4570 |
11800 |
0.0 |
- |
0.4589 |
11850 |
0.0109 |
- |
0.4608 |
11900 |
0.0218 |
- |
0.4628 |
11950 |
0.0073 |
- |
0.4647 |
12000 |
0.0056 |
- |
0.4666 |
12050 |
0.0037 |
- |
0.4686 |
12100 |
0.0011 |
- |
0.4705 |
12150 |
0.0002 |
- |
0.4724 |
12200 |
0.0014 |
- |
0.4744 |
12250 |
0.0031 |
- |
0.4763 |
12300 |
0.0013 |
- |
0.4783 |
12350 |
0.0012 |
- |
0.4802 |
12400 |
0.0022 |
- |
0.4821 |
12450 |
0.0003 |
- |
0.4841 |
12500 |
0.0 |
- |
0.4860 |
12550 |
0.0 |
- |
0.4879 |
12600 |
0.0 |
- |
0.4899 |
12650 |
0.0 |
- |
0.4918 |
12700 |
0.0 |
- |
0.4937 |
12750 |
0.0 |
- |
0.4957 |
12800 |
0.0 |
- |
0.4976 |
12850 |
0.0 |
- |
0.4996 |
12900 |
0.0 |
- |
0.5015 |
12950 |
0.0 |
- |
0.5034 |
13000 |
0.0 |
- |
0.5054 |
13050 |
0.0 |
- |
0.5073 |
13100 |
0.0 |
- |
0.5092 |
13150 |
0.0 |
- |
0.5112 |
13200 |
0.0 |
- |
0.5131 |
13250 |
0.0 |
- |
0.5150 |
13300 |
0.0 |
- |
0.5170 |
13350 |
0.0 |
- |
0.5189 |
13400 |
0.0 |
- |
0.5209 |
13450 |
0.0 |
- |
0.5228 |
13500 |
0.0 |
- |
0.5247 |
13550 |
0.0 |
- |
0.5267 |
13600 |
0.0 |
- |
0.5286 |
13650 |
0.0 |
- |
0.5305 |
13700 |
0.0 |
- |
0.5325 |
13750 |
0.0 |
- |
0.5344 |
13800 |
0.0 |
- |
0.5363 |
13850 |
0.0 |
- |
0.5383 |
13900 |
0.0 |
- |
0.5402 |
13950 |
0.0 |
- |
0.5422 |
14000 |
0.0 |
- |
0.5441 |
14050 |
0.0 |
- |
0.5460 |
14100 |
0.0 |
- |
0.5480 |
14150 |
0.0 |
- |
0.5499 |
14200 |
0.0 |
- |
0.5518 |
14250 |
0.0 |
- |
0.5538 |
14300 |
0.0 |
- |
0.5557 |
14350 |
0.0 |
- |
0.5576 |
14400 |
0.0 |
- |
0.5596 |
14450 |
0.0 |
- |
0.5615 |
14500 |
0.0 |
- |
0.5635 |
14550 |
0.0 |
- |
0.5654 |
14600 |
0.0 |
- |
0.5673 |
14650 |
0.0 |
- |
0.5693 |
14700 |
0.0 |
- |
0.5712 |
14750 |
0.0 |
- |
0.5731 |
14800 |
0.0 |
- |
0.5751 |
14850 |
0.0 |
- |
0.5770 |
14900 |
0.0 |
- |
0.5789 |
14950 |
0.0 |
- |
0.5809 |
15000 |
0.0 |
- |
0.5828 |
15050 |
0.0 |
- |
0.5848 |
15100 |
0.0 |
- |
0.5867 |
15150 |
0.0 |
- |
0.5886 |
15200 |
0.0 |
- |
0.5906 |
15250 |
0.0 |
- |
0.5925 |
15300 |
0.0 |
- |
0.5944 |
15350 |
0.0 |
- |
0.5964 |
15400 |
0.0 |
- |
0.5983 |
15450 |
0.0 |
- |
0.6002 |
15500 |
0.0 |
- |
0.6022 |
15550 |
0.0 |
- |
0.6041 |
15600 |
0.0 |
- |
0.6060 |
15650 |
0.0 |
- |
0.6080 |
15700 |
0.0 |
- |
0.6099 |
15750 |
0.0 |
- |
0.6119 |
15800 |
0.0 |
- |
0.6138 |
15850 |
0.0 |
- |
0.6157 |
15900 |
0.0 |
- |
0.6177 |
15950 |
0.0 |
- |
0.6196 |
16000 |
0.0 |
- |
0.6215 |
16050 |
0.0 |
- |
0.6235 |
16100 |
0.0 |
- |
0.6254 |
16150 |
0.0002 |
- |
0.6273 |
16200 |
0.0 |
- |
0.6293 |
16250 |
0.0002 |
- |
0.6312 |
16300 |
0.0034 |
- |
0.6332 |
16350 |
0.0062 |
- |
0.6351 |
16400 |
0.0034 |
- |
0.6370 |
16450 |
0.0001 |
- |
0.6390 |
16500 |
0.0004 |
- |
0.6409 |
16550 |
0.0 |
- |
0.6428 |
16600 |
0.0 |
- |
0.6448 |
16650 |
0.0 |
- |
0.6467 |
16700 |
0.0 |
- |
0.6486 |
16750 |
0.0 |
- |
0.6506 |
16800 |
0.0 |
- |
0.6525 |
16850 |
0.0 |
- |
0.6545 |
16900 |
0.0 |
- |
0.6564 |
16950 |
0.0 |
- |
0.6583 |
17000 |
0.0 |
- |
0.6603 |
17050 |
0.0 |
- |
0.6622 |
17100 |
0.0 |
- |
0.6641 |
17150 |
0.0 |
- |
0.6661 |
17200 |
0.0 |
- |
0.6680 |
17250 |
0.0 |
- |
0.6699 |
17300 |
0.0 |
- |
0.6719 |
17350 |
0.0 |
- |
0.6738 |
17400 |
0.0 |
- |
0.6758 |
17450 |
0.0 |
- |
0.6777 |
17500 |
0.0 |
- |
0.6796 |
17550 |
0.0 |
- |
0.6816 |
17600 |
0.0 |
- |
0.6835 |
17650 |
0.0 |
- |
0.6854 |
17700 |
0.0 |
- |
0.6874 |
17750 |
0.0 |
- |
0.6893 |
17800 |
0.0 |
- |
0.6912 |
17850 |
0.0 |
- |
0.6932 |
17900 |
0.0 |
- |
0.6951 |
17950 |
0.0 |
- |
0.6971 |
18000 |
0.0 |
- |
0.6990 |
18050 |
0.0 |
- |
0.7009 |
18100 |
0.0 |
- |
0.7029 |
18150 |
0.0 |
- |
0.7048 |
18200 |
0.0 |
- |
0.7067 |
18250 |
0.0 |
- |
0.7087 |
18300 |
0.0 |
- |
0.7106 |
18350 |
0.0 |
- |
0.7125 |
18400 |
0.0 |
- |
0.7145 |
18450 |
0.0 |
- |
0.7164 |
18500 |
0.0 |
- |
0.7184 |
18550 |
0.0 |
- |
0.7203 |
18600 |
0.0 |
- |
0.7222 |
18650 |
0.0 |
- |
0.7242 |
18700 |
0.0 |
- |
0.7261 |
18750 |
0.0 |
- |
0.7280 |
18800 |
0.0 |
- |
0.7300 |
18850 |
0.0 |
- |
0.7319 |
18900 |
0.0 |
- |
0.7338 |
18950 |
0.0 |
- |
0.7358 |
19000 |
0.0 |
- |
0.7377 |
19050 |
0.0 |
- |
0.7397 |
19100 |
0.0 |
- |
0.7416 |
19150 |
0.0 |
- |
0.7435 |
19200 |
0.0 |
- |
0.7455 |
19250 |
0.0 |
- |
0.7474 |
19300 |
0.0 |
- |
0.7493 |
19350 |
0.0 |
- |
0.7513 |
19400 |
0.0 |
- |
0.7532 |
19450 |
0.0 |
- |
0.7551 |
19500 |
0.0 |
- |
0.7571 |
19550 |
0.0 |
- |
0.7590 |
19600 |
0.0 |
- |
0.7609 |
19650 |
0.0 |
- |
0.7629 |
19700 |
0.0 |
- |
0.7648 |
19750 |
0.0 |
- |
0.7668 |
19800 |
0.0 |
- |
0.7687 |
19850 |
0.0 |
- |
0.7706 |
19900 |
0.0 |
- |
0.7726 |
19950 |
0.0 |
- |
0.7745 |
20000 |
0.0 |
- |
0.7764 |
20050 |
0.0 |
- |
0.7784 |
20100 |
0.0 |
- |
0.7803 |
20150 |
0.0 |
- |
0.7822 |
20200 |
0.0 |
- |
0.7842 |
20250 |
0.0 |
- |
0.7861 |
20300 |
0.0 |
- |
0.7881 |
20350 |
0.0 |
- |
0.7900 |
20400 |
0.0 |
- |
0.7919 |
20450 |
0.0 |
- |
0.7939 |
20500 |
0.0 |
- |
0.7958 |
20550 |
0.0 |
- |
0.7977 |
20600 |
0.0 |
- |
0.7997 |
20650 |
0.0 |
- |
0.8016 |
20700 |
0.0 |
- |
0.8035 |
20750 |
0.0 |
- |
0.8055 |
20800 |
0.0 |
- |
0.8074 |
20850 |
0.0 |
- |
0.8094 |
20900 |
0.0 |
- |
0.8113 |
20950 |
0.0 |
- |
0.8132 |
21000 |
0.0 |
- |
0.8152 |
21050 |
0.0 |
- |
0.8171 |
21100 |
0.0 |
- |
0.8190 |
21150 |
0.0 |
- |
0.8210 |
21200 |
0.0 |
- |
0.8229 |
21250 |
0.0 |
- |
0.8248 |
21300 |
0.0 |
- |
0.8268 |
21350 |
0.0 |
- |
0.8287 |
21400 |
0.0 |
- |
0.8307 |
21450 |
0.0 |
- |
0.8326 |
21500 |
0.0 |
- |
0.8345 |
21550 |
0.0 |
- |
0.8365 |
21600 |
0.0 |
- |
0.8384 |
21650 |
0.0 |
- |
0.8403 |
21700 |
0.0 |
- |
0.8423 |
21750 |
0.0 |
- |
0.8442 |
21800 |
0.0 |
- |
0.8461 |
21850 |
0.0 |
- |
0.8481 |
21900 |
0.0 |
- |
0.8500 |
21950 |
0.0 |
- |
0.8520 |
22000 |
0.0 |
- |
0.8539 |
22050 |
0.0 |
- |
0.8558 |
22100 |
0.0 |
- |
0.8578 |
22150 |
0.0 |
- |
0.8597 |
22200 |
0.0 |
- |
0.8616 |
22250 |
0.0 |
- |
0.8636 |
22300 |
0.0 |
- |
0.8655 |
22350 |
0.0 |
- |
0.8674 |
22400 |
0.0 |
- |
0.8694 |
22450 |
0.0 |
- |
0.8713 |
22500 |
0.0 |
- |
0.8733 |
22550 |
0.0 |
- |
0.8752 |
22600 |
0.0 |
- |
0.8771 |
22650 |
0.0 |
- |
0.8791 |
22700 |
0.0 |
- |
0.8810 |
22750 |
0.0 |
- |
0.8829 |
22800 |
0.0 |
- |
0.8849 |
22850 |
0.0 |
- |
0.8868 |
22900 |
0.0 |
- |
0.8887 |
22950 |
0.0 |
- |
0.8907 |
23000 |
0.0 |
- |
0.8926 |
23050 |
0.0 |
- |
0.8946 |
23100 |
0.0 |
- |
0.8965 |
23150 |
0.0 |
- |
0.8984 |
23200 |
0.0 |
- |
0.9004 |
23250 |
0.0 |
- |
0.9023 |
23300 |
0.0 |
- |
0.9042 |
23350 |
0.0 |
- |
0.9062 |
23400 |
0.0 |
- |
0.9081 |
23450 |
0.0 |
- |
0.9100 |
23500 |
0.0 |
- |
0.9120 |
23550 |
0.0 |
- |
0.9139 |
23600 |
0.0 |
- |
0.9159 |
23650 |
0.0 |
- |
0.9178 |
23700 |
0.0 |
- |
0.9197 |
23750 |
0.0 |
- |
0.9217 |
23800 |
0.0 |
- |
0.9236 |
23850 |
0.0 |
- |
0.9255 |
23900 |
0.0 |
- |
0.9275 |
23950 |
0.0 |
- |
0.9294 |
24000 |
0.0 |
- |
0.9313 |
24050 |
0.0 |
- |
0.9333 |
24100 |
0.0 |
- |
0.9352 |
24150 |
0.0 |
- |
0.9371 |
24200 |
0.0 |
- |
0.9391 |
24250 |
0.0 |
- |
0.9410 |
24300 |
0.0 |
- |
0.9430 |
24350 |
0.0 |
- |
0.9449 |
24400 |
0.0 |
- |
0.9468 |
24450 |
0.0 |
- |
0.9488 |
24500 |
0.0 |
- |
0.9507 |
24550 |
0.0 |
- |
0.9526 |
24600 |
0.0 |
- |
0.9546 |
24650 |
0.0 |
- |
0.9565 |
24700 |
0.0 |
- |
0.9584 |
24750 |
0.0 |
- |
0.9604 |
24800 |
0.0 |
- |
0.9623 |
24850 |
0.0 |
- |
0.9643 |
24900 |
0.0 |
- |
0.9662 |
24950 |
0.0 |
- |
0.9681 |
25000 |
0.0 |
- |
0.9701 |
25050 |
0.0 |
- |
0.9720 |
25100 |
0.0 |
- |
0.9739 |
25150 |
0.0 |
- |
0.9759 |
25200 |
0.0 |
- |
0.9778 |
25250 |
0.0 |
- |
0.9797 |
25300 |
0.0 |
- |
0.9817 |
25350 |
0.0 |
- |
0.9836 |
25400 |
0.0 |
- |
0.9856 |
25450 |
0.0 |
- |
0.9875 |
25500 |
0.0 |
- |
0.9894 |
25550 |
0.0 |
- |
0.9914 |
25600 |
0.0 |
- |
0.9933 |
25650 |
0.0 |
- |
0.9952 |
25700 |
0.0 |
- |
0.9972 |
25750 |
0.0 |
- |
0.9991 |
25800 |
0.0 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}