|
--- |
|
language: |
|
- en |
|
- vi |
|
tags: |
|
- esg |
|
- classification |
|
- hierarchical |
|
- multi-task-learning |
|
- sustainability |
|
datasets: |
|
- custom |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# ESG Hierarchical Multi-Task Learning Model |
|
|
|
This model performs hierarchical ESG (Environmental, Social, Governance) classification using a multi-task learning approach. |
|
|
|
## Model Description |
|
|
|
- **Model Type**: Hierarchical Multi-Task Classifier |
|
- **Backbone**: Alibaba-NLP/gte-multilingual-base |
|
- **Language**: English, Vietnamese |
|
- **Task**: ESG Factor and Sub-factor Classification |
|
|
|
## Architecture |
|
|
|
The model uses a hierarchical approach: |
|
1. **Main ESG Classification**: Predicts E, S, G, or Others_ESG |
|
2. **Sub-factor Classification**: Based on main category, predicts specific sub-factors: |
|
- **E (Environmental)**: Emission, Resource Use, Product Innovation |
|
- **S (Social)**: Community, Diversity, Employment, HS, HR, PR, Training |
|
- **G (Governance)**: BFunction, BStructure, Compensation, Shareholder, Vision |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
# Load model and tokenizer |
|
model = AutoModelForSequenceClassification.from_pretrained("chungpt2123/esg-subfactor-classifier", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base") |
|
|
|
# Example usage |
|
text = "The company has implemented renewable energy solutions to reduce carbon emissions." |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=4096) |
|
|
|
# Get predictions |
|
esg_factor, sub_factor = model.predict(inputs.input_ids, inputs.attention_mask) |
|
print(f"ESG Factor: {esg_factor}, Sub-factor: {sub_factor}") |
|
``` |
|
|
|
## Training Details |
|
|
|
- **Training Data**: Custom ESG dataset |
|
- **Training Approach**: Two-phase training (freeze backbone → fine-tune entire model) |
|
- **Loss Function**: Weighted multi-task loss |
|
- **Optimization**: AdamW with learning rate scheduling |
|
|
|
## Model Performance |
|
|
|
The model achieves strong performance on ESG classification tasks with hierarchical prediction accuracy. |
|
|
|
## Limitations |
|
|
|
- Trained primarily on English and Vietnamese text |
|
- Performance may vary on domain-specific or technical ESG content |
|
- Best performance on texts similar to training data distribution |
|
|
|
```bibtex |
|
@misc{esg_hierarchical_model, |
|
title={ESG Hierarchical Multi-Task Learning Model}, |
|
author={Chung}, |
|
year={2024}, |
|
publisher={Hugging Face}, |
|
url={https://huggingface.co/chungpt2123/test1} |
|
} |
|
``` |
|
|