ckcl's picture
Update README.md
5ca393c verified
metadata
language: en
license: mit
library_name: transformers
tags:
  - computer-vision
  - drowsiness-detection
  - driver-safety
  - cnn
  - tensorflow
model_name: drowsiness_model.h5
datasets:
  - ckcl/drowsiness_dataset
  - custom
metrics:
  - accuracy
  - binary-crossentropy
widget:
  - text: Example input
pipeline_tag: image-classification
base_model:
  - google/mobilenet_v2_1.0_224

Driver Drowsiness Detection Model

This model is designed to detect driver drowsiness from facial images using a CNN architecture.

Model Details

  • Architecture: CNN
  • Input: Facial images (64x64x3)
  • Output: Binary classification (drowsy/not drowsy)

Usage

import tensorflow as tf
import cv2
import numpy as np

# Load model
model = tf.keras.models.load_model('drowsiness_model.h5')

# Preprocess image
img = cv2.imread('face.jpg')
img = cv2.resize(img, (64, 64))
img = img / 255.0
img = np.expand_dims(img, axis=0)

# Make prediction
prediction = model.predict(img)
is_drowsy = prediction[0][0] > 0.5

Training Details

  • Dataset: Custom driver drowsiness dataset
  • Training method: Binary cross-entropy loss with Adam optimizer
  • Validation split: 20%
  • Early stopping with patience=3

Model Architecture

  • Input Layer: 64x64x3 images
  • Convolutional Layers:
    • Conv2D(32, 3x3) + BatchNorm + ReLU
    • MaxPooling2D(2x2)
    • Conv2D(64, 3x3) + BatchNorm + ReLU
    • MaxPooling2D(2x2)
    • Conv2D(128, 3x3) + BatchNorm + ReLU
    • MaxPooling2D(2x2)
  • Dense Layers:
    • Dense(128) + BatchNorm + ReLU
    • Dropout(0.5)
    • Dense(1) + Sigmoid

Performance

  • Binary classification for drowsiness detection
  • Optimized for real-time inference
  • Suitable for embedded systems and edge devices

License

This model is released under the MIT License.