newfa_e5base2 / README.md
codersan's picture
Add new SentenceTransformer model
0795ea4 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:142964
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-base
widget:
- source_sentence: نمونه هایی از تئوری های توطئه ها که به نظر می رسد درست است؟
sentences:
- آیا نظریه های توطئه ای وجود دارد که احتمالاً صادق است؟نظریه های توطئه ای که معلوم
شد درست است؟
- بازیگران پانتومیم در حال اجرا بر روی صحنه هستند.
- چرا میل الکترون فلورین کمتر از کلر است ، در حالی که فلورین الکترونگاتیو ترین عنصر
است؟
- source_sentence: بهترین و بدون درد برای کشتن خودم چیست؟
sentences:
- بهترین استراتژی ها برای آماده سازی برای GMAT چیست؟
- آیا ارزش دارد دو سال برای NIT کاهش یابد؟
- بدون درد ترین روش برای خودکشی چیست؟
- source_sentence: چه کاری باید انجام دهم در حالی که B-Tech را در مهندسی مکانیک برای
چشم انداز بهتر شغلی دنبال می کنم؟
sentences:
- چگونه می توانیم مشاوره کسب و کار را شروع کنیم؟
- فرصت های شغلی در شرکت ها پس از M.Tech در مهندسی هوافضا با B.Tech در مهندسی مکانیک
چیست؟
- آیا روانپزشکی یک شبه علوم است؟
- source_sentence: چرا گربه ها وقتی خیار را در مقابل آن قرار می دهید می ترسند؟
sentences:
- چرا گربه ها از خیار ترسیده اند؟
- هک در زندگی روزمره چیست؟
- چگونه می توانم به سرعت وزن خود را افزایش دهم؟
- source_sentence: مرزهای صفحه چیست؟برخی از انواع چیست؟
sentences:
- مرزهای صفحه چیست؟
- اتانول چند ایزومر دارد؟
- چه سؤالاتی در مورد Quora پرسیده نشده است؟
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on intfloat/multilingual-e5-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision 835193815a3936a24a0ee7dc9e3d48c1fbb19c55 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/newfa_e5base2")
# Run inference
sentences = [
'مرزهای صفحه چیست؟برخی از انواع چیست؟',
'مرزهای صفحه چیست؟',
'اتانول چند ایزومر دارد؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 142,964 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.39 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 57 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------|
| <code>گاو یونجه می خورد</code> | <code>گاو در حال چریدن است</code> |
| <code>ماشینی به شکلی خطرناک از روی دختری می‌پرد.</code> | <code>دختر با بی‌احتیاطی روی ماشین می‌پرد.</code> |
| <code>چگونه می توانم کارتهای هدیه iTunes رایگان را در هند دریافت کنم؟</code> | <code>چگونه می توانم کارتهای هدیه iTunes رایگان دریافت کنم؟</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0224 | 100 | 0.0821 |
| 0.0448 | 200 | 0.0455 |
| 0.0671 | 300 | 0.0408 |
| 0.0895 | 400 | 0.0461 |
| 0.1119 | 500 | 0.0418 |
| 0.1343 | 600 | 0.0449 |
| 0.1567 | 700 | 0.0314 |
| 0.1791 | 800 | 0.0252 |
| 0.2014 | 900 | 0.0254 |
| 0.2238 | 1000 | 0.0341 |
| 0.2462 | 1100 | 0.0239 |
| 0.2686 | 1200 | 0.0308 |
| 0.2910 | 1300 | 0.0415 |
| 0.3133 | 1400 | 0.0386 |
| 0.3357 | 1500 | 0.027 |
| 0.3581 | 1600 | 0.0369 |
| 0.3805 | 1700 | 0.0346 |
| 0.4029 | 1800 | 0.0301 |
| 0.4252 | 1900 | 0.03 |
| 0.4476 | 2000 | 0.0179 |
| 0.4700 | 2100 | 0.035 |
| 0.4924 | 2200 | 0.0327 |
| 0.5148 | 2300 | 0.033 |
| 0.5372 | 2400 | 0.0272 |
| 0.5595 | 2500 | 0.0318 |
| 0.5819 | 2600 | 0.025 |
| 0.6043 | 2700 | 0.023 |
| 0.6267 | 2800 | 0.0294 |
| 0.6491 | 2900 | 0.0337 |
| 0.6714 | 3000 | 0.0274 |
| 0.6938 | 3100 | 0.0223 |
| 0.7162 | 3200 | 0.0384 |
| 0.7386 | 3300 | 0.0217 |
| 0.7610 | 3400 | 0.032 |
| 0.7833 | 3500 | 0.0309 |
| 0.8057 | 3600 | 0.024 |
| 0.8281 | 3700 | 0.0273 |
| 0.8505 | 3800 | 0.0245 |
| 0.8729 | 3900 | 0.0268 |
| 0.8953 | 4000 | 0.0322 |
| 0.9176 | 4100 | 0.0271 |
| 0.9400 | 4200 | 0.0316 |
| 0.9624 | 4300 | 0.0179 |
| 0.9848 | 4400 | 0.0294 |
| 1.0072 | 4500 | 0.0283 |
| 1.0295 | 4600 | 0.0171 |
| 1.0519 | 4700 | 0.017 |
| 1.0743 | 4800 | 0.0197 |
| 1.0967 | 4900 | 0.0215 |
| 1.1191 | 5000 | 0.02 |
| 1.1415 | 5100 | 0.0144 |
| 1.1638 | 5200 | 0.015 |
| 1.1862 | 5300 | 0.0084 |
| 1.2086 | 5400 | 0.0115 |
| 1.2310 | 5500 | 0.0143 |
| 1.2534 | 5600 | 0.0129 |
| 1.2757 | 5700 | 0.0165 |
| 1.2981 | 5800 | 0.0168 |
| 1.3205 | 5900 | 0.0233 |
| 1.3429 | 6000 | 0.0156 |
| 1.3653 | 6100 | 0.0207 |
| 1.3876 | 6200 | 0.0149 |
| 1.4100 | 6300 | 0.0134 |
| 1.4324 | 6400 | 0.0108 |
| 1.4548 | 6500 | 0.0118 |
| 1.4772 | 6600 | 0.0173 |
| 1.4996 | 6700 | 0.0171 |
| 1.5219 | 6800 | 0.0168 |
| 1.5443 | 6900 | 0.0144 |
| 1.5667 | 7000 | 0.0111 |
| 1.5891 | 7100 | 0.0117 |
| 1.6115 | 7200 | 0.0122 |
| 1.6338 | 7300 | 0.0143 |
| 1.6562 | 7400 | 0.0151 |
| 1.6786 | 7500 | 0.0152 |
| 1.7010 | 7600 | 0.012 |
| 1.7234 | 7700 | 0.0177 |
| 1.7457 | 7800 | 0.0172 |
| 1.7681 | 7900 | 0.016 |
| 1.7905 | 8000 | 0.0141 |
| 1.8129 | 8100 | 0.0112 |
| 1.8353 | 8200 | 0.011 |
| 1.8577 | 8300 | 0.0132 |
| 1.8800 | 8400 | 0.0127 |
| 1.9024 | 8500 | 0.0188 |
| 1.9248 | 8600 | 0.0196 |
| 1.9472 | 8700 | 0.0106 |
| 1.9696 | 8800 | 0.0108 |
| 1.9919 | 8900 | 0.0172 |
| 2.0143 | 9000 | 0.0116 |
| 2.0367 | 9100 | 0.0089 |
| 2.0591 | 9200 | 0.0096 |
| 2.0815 | 9300 | 0.0142 |
| 2.1038 | 9400 | 0.0112 |
| 2.1262 | 9500 | 0.0103 |
| 2.1486 | 9600 | 0.0077 |
| 2.1710 | 9700 | 0.0082 |
| 2.1934 | 9800 | 0.0066 |
| 2.2158 | 9900 | 0.0106 |
| 2.2381 | 10000 | 0.0072 |
| 2.2605 | 10100 | 0.0085 |
| 2.2829 | 10200 | 0.0085 |
| 2.3053 | 10300 | 0.015 |
| 2.3277 | 10400 | 0.0113 |
| 2.3500 | 10500 | 0.0118 |
| 2.3724 | 10600 | 0.0123 |
| 2.3948 | 10700 | 0.0071 |
| 2.4172 | 10800 | 0.0087 |
| 2.4396 | 10900 | 0.0056 |
| 2.4620 | 11000 | 0.0091 |
| 2.4843 | 11100 | 0.0116 |
| 2.5067 | 11200 | 0.0123 |
| 2.5291 | 11300 | 0.0108 |
| 2.5515 | 11400 | 0.0078 |
| 2.5739 | 11500 | 0.0072 |
| 2.5962 | 11600 | 0.0084 |
| 2.6186 | 11700 | 0.0066 |
| 2.6410 | 11800 | 0.0115 |
| 2.6634 | 11900 | 0.0088 |
| 2.6858 | 12000 | 0.008 |
| 2.7081 | 12100 | 0.0095 |
| 2.7305 | 12200 | 0.0108 |
| 2.7529 | 12300 | 0.0113 |
| 2.7753 | 12400 | 0.0086 |
| 2.7977 | 12500 | 0.0096 |
| 2.8201 | 12600 | 0.0093 |
| 2.8424 | 12700 | 0.0076 |
| 2.8648 | 12800 | 0.006 |
| 2.8872 | 12900 | 0.0124 |
| 2.9096 | 13000 | 0.0131 |
| 2.9320 | 13100 | 0.0103 |
| 2.9543 | 13200 | 0.0063 |
| 2.9767 | 13300 | 0.0067 |
| 2.9991 | 13400 | 0.0117 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 4.0.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->