SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/validadted_allMiniLM_withCosSimb")
# Run inference
sentences = [
'داشتن هزاران دنبال کننده در Quora چگونه است؟',
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 172,826 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 40.84 tokens
- max: 222 tokens
- min: 8 tokens
- mean: 41.92 tokens
- max: 144 tokens
- min: 0.76
- mean: 0.95
- max: 1.0
- Samples:
sentence1 sentence2 score تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟
تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟
0.982593297958374
خوردن چه چیزی باعث دل درد میشود؟
چه چیزی باعث رفع دل درد میشود؟
0.9582258462905884
بهترین نرم افزار ویرایش ویدیویی کدام است؟
بهترین نرم افزار برای ویرایش ویدیو چیست؟
0.9890836477279663
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 10warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: codersan/validadted_allMiniLM_withCosSimbeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: codersan/validadted_allMiniLM_withCosSimbhub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0 | 0 | - |
0.0069 | 100 | 0.0218 |
0.0139 | 200 | 0.0225 |
0.0208 | 300 | 0.0136 |
0.0278 | 400 | 0.0097 |
0.0347 | 500 | 0.0083 |
0.0417 | 600 | 0.0056 |
0.0486 | 700 | 0.0065 |
0.0555 | 800 | 0.0047 |
0.0625 | 900 | 0.005 |
0.0694 | 1000 | 0.0051 |
0.0764 | 1100 | 0.0074 |
0.0833 | 1200 | 0.0049 |
0.0903 | 1300 | 0.0051 |
0.0972 | 1400 | 0.0044 |
0.1041 | 1500 | 0.0055 |
0.1111 | 1600 | 0.005 |
0.1180 | 1700 | 0.005 |
0.1250 | 1800 | 0.0038 |
0.1319 | 1900 | 0.0033 |
0.1389 | 2000 | 0.0025 |
0.1458 | 2100 | 0.0034 |
0.1527 | 2200 | 0.0034 |
0.1597 | 2300 | 0.0027 |
0.1666 | 2400 | 0.0022 |
0.1736 | 2500 | 0.0028 |
0.1805 | 2600 | 0.0018 |
0.1875 | 2700 | 0.0018 |
0.1944 | 2800 | 0.0018 |
0.2013 | 2900 | 0.0015 |
0.2083 | 3000 | 0.0015 |
0.2152 | 3100 | 0.0017 |
0.2222 | 3200 | 0.0011 |
0.2291 | 3300 | 0.0012 |
0.2361 | 3400 | 0.0012 |
0.2430 | 3500 | 0.0011 |
0.2499 | 3600 | 0.001 |
0.2569 | 3700 | 0.0008 |
0.2638 | 3800 | 0.0008 |
0.2708 | 3900 | 0.0008 |
0.2777 | 4000 | 0.0009 |
0.2847 | 4100 | 0.0008 |
0.2916 | 4200 | 0.0008 |
0.2985 | 4300 | 0.0007 |
0.3055 | 4400 | 0.0008 |
0.3124 | 4500 | 0.0007 |
0.3194 | 4600 | 0.0007 |
0.3263 | 4700 | 0.0007 |
0.3333 | 4800 | 0.0007 |
0.3402 | 4900 | 0.0006 |
0.3471 | 5000 | 0.0006 |
0.3541 | 5100 | 0.0006 |
0.3610 | 5200 | 0.0006 |
0.3680 | 5300 | 0.0006 |
0.3749 | 5400 | 0.0006 |
0.3819 | 5500 | 0.0006 |
0.3888 | 5600 | 0.0006 |
0.3958 | 5700 | 0.0006 |
0.4027 | 5800 | 0.0006 |
0.4096 | 5900 | 0.0005 |
0.4166 | 6000 | 0.0006 |
0.4235 | 6100 | 0.0006 |
0.4305 | 6200 | 0.0007 |
0.4374 | 6300 | 0.0006 |
0.4444 | 6400 | 0.0006 |
0.4513 | 6500 | 0.0006 |
0.4582 | 6600 | 0.0005 |
0.4652 | 6700 | 0.0006 |
0.4721 | 6800 | 0.0005 |
0.4791 | 6900 | 0.0006 |
0.4860 | 7000 | 0.0006 |
0.4930 | 7100 | 0.0005 |
0.4999 | 7200 | 0.0005 |
0.5068 | 7300 | 0.0005 |
0.5138 | 7400 | 0.0005 |
0.5207 | 7500 | 0.0005 |
0.5277 | 7600 | 0.0006 |
0.5346 | 7700 | 0.0005 |
0.5416 | 7800 | 0.0005 |
0.5485 | 7900 | 0.0005 |
0.5554 | 8000 | 0.0006 |
0.5624 | 8100 | 0.0005 |
0.5693 | 8200 | 0.0005 |
0.5763 | 8300 | 0.0005 |
0.5832 | 8400 | 0.0005 |
0.5902 | 8500 | 0.0005 |
0.5971 | 8600 | 0.0005 |
0.6040 | 8700 | 0.0005 |
0.6110 | 8800 | 0.0005 |
0.6179 | 8900 | 0.0005 |
0.6249 | 9000 | 0.0005 |
0.6318 | 9100 | 0.0005 |
0.6388 | 9200 | 0.0005 |
0.6457 | 9300 | 0.0005 |
0.6526 | 9400 | 0.0005 |
0.6596 | 9500 | 0.0004 |
0.6665 | 9600 | 0.0005 |
0.6735 | 9700 | 0.0005 |
0.6804 | 9800 | 0.0005 |
0.6874 | 9900 | 0.0005 |
0.6943 | 10000 | 0.0005 |
0.7012 | 10100 | 0.0005 |
0.7082 | 10200 | 0.0005 |
0.7151 | 10300 | 0.0005 |
0.7221 | 10400 | 0.0005 |
0.7290 | 10500 | 0.0004 |
0.7360 | 10600 | 0.0004 |
0.7429 | 10700 | 0.0004 |
0.7498 | 10800 | 0.0005 |
0.7568 | 10900 | 0.0005 |
0.7637 | 11000 | 0.0004 |
0.7707 | 11100 | 0.0005 |
0.7776 | 11200 | 0.0005 |
0.7846 | 11300 | 0.0005 |
0.7915 | 11400 | 0.0005 |
0.7984 | 11500 | 0.0005 |
0.8054 | 11600 | 0.0005 |
0.8123 | 11700 | 0.0005 |
0.8193 | 11800 | 0.0004 |
0.8262 | 11900 | 0.0005 |
0.8332 | 12000 | 0.0004 |
0.8401 | 12100 | 0.0004 |
0.8470 | 12200 | 0.0004 |
0.8540 | 12300 | 0.0005 |
0.8609 | 12400 | 0.0004 |
0.8679 | 12500 | 0.0004 |
0.8748 | 12600 | 0.0004 |
0.8818 | 12700 | 0.0004 |
0.8887 | 12800 | 0.0005 |
0.8956 | 12900 | 0.0005 |
0.9026 | 13000 | 0.0005 |
0.9095 | 13100 | 0.0004 |
0.9165 | 13200 | 0.0005 |
0.9234 | 13300 | 0.0004 |
0.9304 | 13400 | 0.0004 |
0.9373 | 13500 | 0.0004 |
0.9442 | 13600 | 0.0004 |
0.9512 | 13700 | 0.0005 |
0.9581 | 13800 | 0.0005 |
0.9651 | 13900 | 0.0004 |
0.9720 | 14000 | 0.0004 |
0.9790 | 14100 | 0.0004 |
0.9859 | 14200 | 0.0004 |
0.9928 | 14300 | 0.0005 |
0.9998 | 14400 | 0.0004 |
1.0067 | 14500 | 0.0004 |
1.0137 | 14600 | 0.0004 |
1.0206 | 14700 | 0.0004 |
1.0276 | 14800 | 0.0004 |
1.0345 | 14900 | 0.0004 |
1.0414 | 15000 | 0.0005 |
1.0484 | 15100 | 0.0004 |
1.0553 | 15200 | 0.0004 |
1.0623 | 15300 | 0.0004 |
1.0692 | 15400 | 0.0004 |
1.0762 | 15500 | 0.0004 |
1.0831 | 15600 | 0.0004 |
1.0901 | 15700 | 0.0004 |
1.0970 | 15800 | 0.0004 |
1.1039 | 15900 | 0.0004 |
1.1109 | 16000 | 0.0004 |
1.1178 | 16100 | 0.0004 |
1.1248 | 16200 | 0.0004 |
1.1317 | 16300 | 0.0004 |
1.1387 | 16400 | 0.0004 |
1.1456 | 16500 | 0.0004 |
1.1525 | 16600 | 0.0004 |
1.1595 | 16700 | 0.0004 |
1.1664 | 16800 | 0.0004 |
1.1734 | 16900 | 0.0004 |
1.1803 | 17000 | 0.0004 |
1.1873 | 17100 | 0.0004 |
1.1942 | 17200 | 0.0004 |
1.2011 | 17300 | 0.0004 |
1.2081 | 17400 | 0.0004 |
1.2150 | 17500 | 0.0004 |
1.2220 | 17600 | 0.0004 |
1.2289 | 17700 | 0.0004 |
1.2359 | 17800 | 0.0004 |
1.2428 | 17900 | 0.0004 |
1.2497 | 18000 | 0.0004 |
1.2567 | 18100 | 0.0004 |
1.2636 | 18200 | 0.0004 |
1.2706 | 18300 | 0.0004 |
1.2775 | 18400 | 0.0004 |
1.2845 | 18500 | 0.0004 |
1.2914 | 18600 | 0.0004 |
1.2983 | 18700 | 0.0003 |
1.3053 | 18800 | 0.0004 |
1.3122 | 18900 | 0.0004 |
1.3192 | 19000 | 0.0004 |
1.3261 | 19100 | 0.0004 |
1.3331 | 19200 | 0.0004 |
1.3400 | 19300 | 0.0004 |
1.3469 | 19400 | 0.0004 |
1.3539 | 19500 | 0.0004 |
1.3608 | 19600 | 0.0004 |
1.3678 | 19700 | 0.0004 |
1.3747 | 19800 | 0.0004 |
1.3817 | 19900 | 0.0004 |
1.3886 | 20000 | 0.0003 |
1.3955 | 20100 | 0.0004 |
1.4025 | 20200 | 0.0004 |
1.4094 | 20300 | 0.0003 |
1.4164 | 20400 | 0.0004 |
1.4233 | 20500 | 0.0004 |
1.4303 | 20600 | 0.0004 |
1.4372 | 20700 | 0.0004 |
1.4441 | 20800 | 0.0004 |
1.4511 | 20900 | 0.0004 |
1.4580 | 21000 | 0.0004 |
1.4650 | 21100 | 0.0004 |
1.4719 | 21200 | 0.0004 |
1.4789 | 21300 | 0.0004 |
1.4858 | 21400 | 0.0004 |
1.4927 | 21500 | 0.0004 |
1.4997 | 21600 | 0.0004 |
1.5066 | 21700 | 0.0003 |
1.5136 | 21800 | 0.0003 |
1.5205 | 21900 | 0.0003 |
1.5275 | 22000 | 0.0004 |
1.5344 | 22100 | 0.0003 |
1.5413 | 22200 | 0.0003 |
1.5483 | 22300 | 0.0004 |
1.5552 | 22400 | 0.0004 |
1.5622 | 22500 | 0.0004 |
1.5691 | 22600 | 0.0004 |
1.5761 | 22700 | 0.0004 |
1.5830 | 22800 | 0.0003 |
1.5899 | 22900 | 0.0003 |
1.5969 | 23000 | 0.0004 |
1.6038 | 23100 | 0.0003 |
1.6108 | 23200 | 0.0003 |
1.6177 | 23300 | 0.0004 |
1.6247 | 23400 | 0.0003 |
1.6316 | 23500 | 0.0004 |
1.6385 | 23600 | 0.0003 |
1.6455 | 23700 | 0.0004 |
1.6524 | 23800 | 0.0003 |
1.6594 | 23900 | 0.0003 |
1.6663 | 24000 | 0.0003 |
1.6733 | 24100 | 0.0003 |
1.6802 | 24200 | 0.0004 |
1.6871 | 24300 | 0.0003 |
1.6941 | 24400 | 0.0003 |
1.7010 | 24500 | 0.0003 |
1.7080 | 24600 | 0.0003 |
1.7149 | 24700 | 0.0003 |
1.7219 | 24800 | 0.0003 |
1.7288 | 24900 | 0.0003 |
1.7357 | 25000 | 0.0003 |
1.7427 | 25100 | 0.0003 |
1.7496 | 25200 | 0.0003 |
1.7566 | 25300 | 0.0003 |
1.7635 | 25400 | 0.0003 |
1.7705 | 25500 | 0.0003 |
1.7774 | 25600 | 0.0003 |
1.7844 | 25700 | 0.0004 |
1.7913 | 25800 | 0.0004 |
1.7982 | 25900 | 0.0004 |
1.8052 | 26000 | 0.0003 |
1.8121 | 26100 | 0.0004 |
1.8191 | 26200 | 0.0003 |
1.8260 | 26300 | 0.0004 |
1.8330 | 26400 | 0.0003 |
1.8399 | 26500 | 0.0003 |
1.8468 | 26600 | 0.0003 |
1.8538 | 26700 | 0.0003 |
1.8607 | 26800 | 0.0003 |
1.8677 | 26900 | 0.0003 |
1.8746 | 27000 | 0.0003 |
1.8816 | 27100 | 0.0003 |
1.8885 | 27200 | 0.0003 |
1.8954 | 27300 | 0.0003 |
1.9024 | 27400 | 0.0004 |
1.9093 | 27500 | 0.0003 |
1.9163 | 27600 | 0.0003 |
1.9232 | 27700 | 0.0003 |
1.9302 | 27800 | 0.0003 |
1.9371 | 27900 | 0.0003 |
1.9440 | 28000 | 0.0003 |
1.9510 | 28100 | 0.0003 |
1.9579 | 28200 | 0.0004 |
1.9649 | 28300 | 0.0003 |
1.9718 | 28400 | 0.0003 |
1.9788 | 28500 | 0.0003 |
1.9857 | 28600 | 0.0003 |
1.9926 | 28700 | 0.0003 |
1.9996 | 28800 | 0.0003 |
2.0065 | 28900 | 0.0003 |
2.0135 | 29000 | 0.0003 |
2.0204 | 29100 | 0.0003 |
2.0274 | 29200 | 0.0003 |
2.0343 | 29300 | 0.0003 |
2.0412 | 29400 | 0.0003 |
2.0482 | 29500 | 0.0003 |
2.0551 | 29600 | 0.0003 |
2.0621 | 29700 | 0.0003 |
2.0690 | 29800 | 0.0003 |
2.0760 | 29900 | 0.0003 |
2.0829 | 30000 | 0.0003 |
2.0898 | 30100 | 0.0003 |
2.0968 | 30200 | 0.0003 |
2.1037 | 30300 | 0.0003 |
2.1107 | 30400 | 0.0003 |
2.1176 | 30500 | 0.0003 |
2.1246 | 30600 | 0.0003 |
2.1315 | 30700 | 0.0003 |
2.1384 | 30800 | 0.0003 |
2.1454 | 30900 | 0.0003 |
2.1523 | 31000 | 0.0003 |
2.1593 | 31100 | 0.0003 |
2.1662 | 31200 | 0.0003 |
2.1732 | 31300 | 0.0003 |
2.1801 | 31400 | 0.0003 |
2.1870 | 31500 | 0.0003 |
2.1940 | 31600 | 0.0003 |
2.2009 | 31700 | 0.0003 |
2.2079 | 31800 | 0.0003 |
2.2148 | 31900 | 0.0003 |
2.2218 | 32000 | 0.0003 |
2.2287 | 32100 | 0.0003 |
2.2356 | 32200 | 0.0003 |
2.2426 | 32300 | 0.0003 |
2.2495 | 32400 | 0.0003 |
2.2565 | 32500 | 0.0003 |
2.2634 | 32600 | 0.0003 |
2.2704 | 32700 | 0.0003 |
2.2773 | 32800 | 0.0003 |
2.2842 | 32900 | 0.0003 |
2.2912 | 33000 | 0.0003 |
2.2981 | 33100 | 0.0003 |
2.3051 | 33200 | 0.0003 |
2.3120 | 33300 | 0.0003 |
2.3190 | 33400 | 0.0003 |
2.3259 | 33500 | 0.0003 |
2.3328 | 33600 | 0.0003 |
2.3398 | 33700 | 0.0003 |
2.3467 | 33800 | 0.0003 |
2.3537 | 33900 | 0.0003 |
2.3606 | 34000 | 0.0003 |
2.3676 | 34100 | 0.0003 |
2.3745 | 34200 | 0.0003 |
2.3814 | 34300 | 0.0003 |
2.3884 | 34400 | 0.0003 |
2.3953 | 34500 | 0.0003 |
2.4023 | 34600 | 0.0003 |
2.4092 | 34700 | 0.0003 |
2.4162 | 34800 | 0.0003 |
2.4231 | 34900 | 0.0003 |
2.4300 | 35000 | 0.0003 |
2.4370 | 35100 | 0.0003 |
2.4439 | 35200 | 0.0003 |
2.4509 | 35300 | 0.0003 |
2.4578 | 35400 | 0.0003 |
2.4648 | 35500 | 0.0003 |
2.4717 | 35600 | 0.0003 |
2.4787 | 35700 | 0.0003 |
2.4856 | 35800 | 0.0003 |
2.4925 | 35900 | 0.0003 |
2.4995 | 36000 | 0.0003 |
2.5064 | 36100 | 0.0003 |
2.5134 | 36200 | 0.0003 |
2.5203 | 36300 | 0.0003 |
2.5273 | 36400 | 0.0003 |
2.5342 | 36500 | 0.0003 |
2.5411 | 36600 | 0.0003 |
2.5481 | 36700 | 0.0003 |
2.5550 | 36800 | 0.0003 |
2.5620 | 36900 | 0.0003 |
2.5689 | 37000 | 0.0003 |
2.5759 | 37100 | 0.0003 |
2.5828 | 37200 | 0.0003 |
2.5897 | 37300 | 0.0003 |
2.5967 | 37400 | 0.0003 |
2.6036 | 37500 | 0.0003 |
2.6106 | 37600 | 0.0003 |
2.6175 | 37700 | 0.0003 |
2.6245 | 37800 | 0.0003 |
2.6314 | 37900 | 0.0003 |
2.6383 | 38000 | 0.0003 |
2.6453 | 38100 | 0.0003 |
2.6522 | 38200 | 0.0003 |
2.6592 | 38300 | 0.0003 |
2.6661 | 38400 | 0.0003 |
2.6731 | 38500 | 0.0003 |
2.6800 | 38600 | 0.0003 |
2.6869 | 38700 | 0.0003 |
2.6939 | 38800 | 0.0003 |
2.7008 | 38900 | 0.0003 |
2.7078 | 39000 | 0.0003 |
2.7147 | 39100 | 0.0003 |
2.7217 | 39200 | 0.0003 |
2.7286 | 39300 | 0.0003 |
2.7355 | 39400 | 0.0003 |
2.7425 | 39500 | 0.0002 |
2.7494 | 39600 | 0.0003 |
2.7564 | 39700 | 0.0003 |
2.7633 | 39800 | 0.0003 |
2.7703 | 39900 | 0.0003 |
2.7772 | 40000 | 0.0003 |
2.7841 | 40100 | 0.0003 |
2.7911 | 40200 | 0.0003 |
2.7980 | 40300 | 0.0003 |
2.8050 | 40400 | 0.0003 |
2.8119 | 40500 | 0.0003 |
2.8189 | 40600 | 0.0003 |
2.8258 | 40700 | 0.0003 |
2.8327 | 40800 | 0.0003 |
2.8397 | 40900 | 0.0003 |
2.8466 | 41000 | 0.0003 |
2.8536 | 41100 | 0.0003 |
2.8605 | 41200 | 0.0003 |
2.8675 | 41300 | 0.0003 |
2.8744 | 41400 | 0.0003 |
2.8813 | 41500 | 0.0003 |
2.8883 | 41600 | 0.0003 |
2.8952 | 41700 | 0.0003 |
2.9022 | 41800 | 0.0003 |
2.9091 | 41900 | 0.0003 |
2.9161 | 42000 | 0.0003 |
2.9230 | 42100 | 0.0003 |
2.9299 | 42200 | 0.0003 |
2.9369 | 42300 | 0.0003 |
2.9438 | 42400 | 0.0003 |
2.9508 | 42500 | 0.0003 |
2.9577 | 42600 | 0.0003 |
2.9647 | 42700 | 0.0003 |
2.9716 | 42800 | 0.0002 |
2.9785 | 42900 | 0.0003 |
2.9855 | 43000 | 0.0003 |
2.9924 | 43100 | 0.0003 |
2.9994 | 43200 | 0.0003 |
3.0063 | 43300 | 0.0002 |
3.0133 | 43400 | 0.0003 |
3.0202 | 43500 | 0.0003 |
3.0271 | 43600 | 0.0003 |
3.0341 | 43700 | 0.0003 |
3.0410 | 43800 | 0.0003 |
3.0480 | 43900 | 0.0003 |
3.0549 | 44000 | 0.0003 |
3.0619 | 44100 | 0.0003 |
3.0688 | 44200 | 0.0002 |
3.0757 | 44300 | 0.0003 |
3.0827 | 44400 | 0.0003 |
3.0896 | 44500 | 0.0003 |
3.0966 | 44600 | 0.0003 |
3.1035 | 44700 | 0.0003 |
3.1105 | 44800 | 0.0003 |
3.1174 | 44900 | 0.0003 |
3.1243 | 45000 | 0.0003 |
3.1313 | 45100 | 0.0003 |
3.1382 | 45200 | 0.0003 |
3.1452 | 45300 | 0.0003 |
3.1521 | 45400 | 0.0003 |
3.1591 | 45500 | 0.0003 |
3.1660 | 45600 | 0.0003 |
3.1730 | 45700 | 0.0003 |
3.1799 | 45800 | 0.0003 |
3.1868 | 45900 | 0.0003 |
3.1938 | 46000 | 0.0003 |
3.2007 | 46100 | 0.0003 |
3.2077 | 46200 | 0.0002 |
3.2146 | 46300 | 0.0002 |
3.2216 | 46400 | 0.0003 |
3.2285 | 46500 | 0.0003 |
3.2354 | 46600 | 0.0003 |
3.2424 | 46700 | 0.0003 |
3.2493 | 46800 | 0.0003 |
3.2563 | 46900 | 0.0003 |
3.2632 | 47000 | 0.0003 |
3.2702 | 47100 | 0.0003 |
3.2771 | 47200 | 0.0003 |
3.2840 | 47300 | 0.0003 |
3.2910 | 47400 | 0.0003 |
3.2979 | 47500 | 0.0002 |
3.3049 | 47600 | 0.0003 |
3.3118 | 47700 | 0.0003 |
3.3188 | 47800 | 0.0003 |
3.3257 | 47900 | 0.0003 |
3.3326 | 48000 | 0.0003 |
3.3396 | 48100 | 0.0003 |
3.3465 | 48200 | 0.0003 |
3.3535 | 48300 | 0.0003 |
3.3604 | 48400 | 0.0003 |
3.3674 | 48500 | 0.0003 |
3.3743 | 48600 | 0.0003 |
3.3812 | 48700 | 0.0002 |
3.3882 | 48800 | 0.0003 |
3.3951 | 48900 | 0.0003 |
3.4021 | 49000 | 0.0003 |
3.4090 | 49100 | 0.0002 |
3.4160 | 49200 | 0.0003 |
3.4229 | 49300 | 0.0003 |
3.4298 | 49400 | 0.0003 |
3.4368 | 49500 | 0.0003 |
3.4437 | 49600 | 0.0003 |
3.4507 | 49700 | 0.0003 |
3.4576 | 49800 | 0.0003 |
3.4646 | 49900 | 0.0003 |
3.4715 | 50000 | 0.0003 |
3.4784 | 50100 | 0.0003 |
3.4854 | 50200 | 0.0003 |
3.4923 | 50300 | 0.0003 |
3.4993 | 50400 | 0.0002 |
3.5062 | 50500 | 0.0003 |
3.5132 | 50600 | 0.0003 |
3.5201 | 50700 | 0.0003 |
3.5270 | 50800 | 0.0003 |
3.5340 | 50900 | 0.0002 |
3.5409 | 51000 | 0.0002 |
3.5479 | 51100 | 0.0003 |
3.5548 | 51200 | 0.0003 |
3.5618 | 51300 | 0.0002 |
3.5687 | 51400 | 0.0003 |
3.5756 | 51500 | 0.0003 |
3.5826 | 51600 | 0.0002 |
3.5895 | 51700 | 0.0003 |
3.5965 | 51800 | 0.0003 |
3.6034 | 51900 | 0.0003 |
3.6104 | 52000 | 0.0002 |
3.6173 | 52100 | 0.0003 |
3.6242 | 52200 | 0.0002 |
3.6312 | 52300 | 0.0002 |
3.6381 | 52400 | 0.0003 |
3.6451 | 52500 | 0.0003 |
3.6520 | 52600 | 0.0002 |
3.6590 | 52700 | 0.0002 |
3.6659 | 52800 | 0.0002 |
3.6728 | 52900 | 0.0003 |
3.6798 | 53000 | 0.0002 |
3.6867 | 53100 | 0.0002 |
3.6937 | 53200 | 0.0002 |
3.7006 | 53300 | 0.0003 |
3.7076 | 53400 | 0.0003 |
3.7145 | 53500 | 0.0002 |
3.7214 | 53600 | 0.0002 |
3.7284 | 53700 | 0.0002 |
3.7353 | 53800 | 0.0002 |
3.7423 | 53900 | 0.0002 |
3.7492 | 54000 | 0.0002 |
3.7562 | 54100 | 0.0002 |
3.7631 | 54200 | 0.0002 |
3.7700 | 54300 | 0.0002 |
3.7770 | 54400 | 0.0003 |
3.7839 | 54500 | 0.0003 |
3.7909 | 54600 | 0.0003 |
3.7978 | 54700 | 0.0003 |
3.8048 | 54800 | 0.0002 |
3.8117 | 54900 | 0.0003 |
3.8186 | 55000 | 0.0002 |
3.8256 | 55100 | 0.0003 |
3.8325 | 55200 | 0.0002 |
3.8395 | 55300 | 0.0003 |
3.8464 | 55400 | 0.0003 |
3.8534 | 55500 | 0.0002 |
3.8603 | 55600 | 0.0002 |
3.8672 | 55700 | 0.0003 |
3.8742 | 55800 | 0.0003 |
3.8811 | 55900 | 0.0003 |
3.8881 | 56000 | 0.0003 |
3.8950 | 56100 | 0.0002 |
3.9020 | 56200 | 0.0003 |
3.9089 | 56300 | 0.0003 |
3.9159 | 56400 | 0.0003 |
3.9228 | 56500 | 0.0003 |
3.9297 | 56600 | 0.0002 |
3.9367 | 56700 | 0.0003 |
3.9436 | 56800 | 0.0003 |
3.9506 | 56900 | 0.0003 |
3.9575 | 57000 | 0.0003 |
3.9645 | 57100 | 0.0002 |
3.9714 | 57200 | 0.0002 |
3.9783 | 57300 | 0.0003 |
3.9853 | 57400 | 0.0002 |
3.9922 | 57500 | 0.0003 |
3.9992 | 57600 | 0.0002 |
4.0061 | 57700 | 0.0002 |
4.0131 | 57800 | 0.0002 |
4.0200 | 57900 | 0.0002 |
4.0269 | 58000 | 0.0002 |
4.0339 | 58100 | 0.0002 |
4.0408 | 58200 | 0.0003 |
4.0478 | 58300 | 0.0002 |
4.0547 | 58400 | 0.0002 |
4.0617 | 58500 | 0.0003 |
4.0686 | 58600 | 0.0002 |
4.0755 | 58700 | 0.0002 |
4.0825 | 58800 | 0.0002 |
4.0894 | 58900 | 0.0002 |
4.0964 | 59000 | 0.0002 |
4.1033 | 59100 | 0.0002 |
4.1103 | 59200 | 0.0002 |
4.1172 | 59300 | 0.0002 |
4.1241 | 59400 | 0.0002 |
4.1311 | 59500 | 0.0003 |
4.1380 | 59600 | 0.0003 |
4.1450 | 59700 | 0.0003 |
4.1519 | 59800 | 0.0003 |
4.1589 | 59900 | 0.0002 |
4.1658 | 60000 | 0.0003 |
4.1727 | 60100 | 0.0002 |
4.1797 | 60200 | 0.0002 |
4.1866 | 60300 | 0.0002 |
4.1936 | 60400 | 0.0002 |
4.2005 | 60500 | 0.0002 |
4.2075 | 60600 | 0.0002 |
4.2144 | 60700 | 0.0002 |
4.2213 | 60800 | 0.0002 |
4.2283 | 60900 | 0.0002 |
4.2352 | 61000 | 0.0002 |
4.2422 | 61100 | 0.0002 |
4.2491 | 61200 | 0.0003 |
4.2561 | 61300 | 0.0002 |
4.2630 | 61400 | 0.0003 |
4.2699 | 61500 | 0.0002 |
4.2769 | 61600 | 0.0002 |
4.2838 | 61700 | 0.0003 |
4.2908 | 61800 | 0.0002 |
4.2977 | 61900 | 0.0002 |
4.3047 | 62000 | 0.0003 |
4.3116 | 62100 | 0.0002 |
4.3185 | 62200 | 0.0002 |
4.3255 | 62300 | 0.0002 |
4.3324 | 62400 | 0.0002 |
4.3394 | 62500 | 0.0002 |
4.3463 | 62600 | 0.0002 |
4.3533 | 62700 | 0.0002 |
4.3602 | 62800 | 0.0003 |
4.3671 | 62900 | 0.0002 |
4.3741 | 63000 | 0.0002 |
4.3810 | 63100 | 0.0002 |
4.3880 | 63200 | 0.0002 |
4.3949 | 63300 | 0.0002 |
4.4019 | 63400 | 0.0002 |
4.4088 | 63500 | 0.0002 |
4.4157 | 63600 | 0.0002 |
4.4227 | 63700 | 0.0002 |
4.4296 | 63800 | 0.0003 |
4.4366 | 63900 | 0.0002 |
4.4435 | 64000 | 0.0002 |
4.4505 | 64100 | 0.0002 |
4.4574 | 64200 | 0.0002 |
4.4643 | 64300 | 0.0002 |
4.4713 | 64400 | 0.0002 |
4.4782 | 64500 | 0.0002 |
4.4852 | 64600 | 0.0003 |
4.4921 | 64700 | 0.0002 |
4.4991 | 64800 | 0.0002 |
4.5060 | 64900 | 0.0002 |
4.5129 | 65000 | 0.0002 |
4.5199 | 65100 | 0.0002 |
4.5268 | 65200 | 0.0002 |
4.5338 | 65300 | 0.0002 |
4.5407 | 65400 | 0.0002 |
4.5477 | 65500 | 0.0002 |
4.5546 | 65600 | 0.0002 |
4.5615 | 65700 | 0.0002 |
4.5685 | 65800 | 0.0002 |
4.5754 | 65900 | 0.0002 |
4.5824 | 66000 | 0.0002 |
4.5893 | 66100 | 0.0002 |
4.5963 | 66200 | 0.0002 |
4.6032 | 66300 | 0.0002 |
4.6102 | 66400 | 0.0002 |
4.6171 | 66500 | 0.0002 |
4.6240 | 66600 | 0.0002 |
4.6310 | 66700 | 0.0002 |
4.6379 | 66800 | 0.0002 |
4.6449 | 66900 | 0.0002 |
4.6518 | 67000 | 0.0002 |
4.6588 | 67100 | 0.0002 |
4.6657 | 67200 | 0.0002 |
4.6726 | 67300 | 0.0002 |
4.6796 | 67400 | 0.0002 |
4.6865 | 67500 | 0.0002 |
4.6935 | 67600 | 0.0002 |
4.7004 | 67700 | 0.0002 |
4.7074 | 67800 | 0.0002 |
4.7143 | 67900 | 0.0002 |
4.7212 | 68000 | 0.0002 |
4.7282 | 68100 | 0.0002 |
4.7351 | 68200 | 0.0002 |
4.7421 | 68300 | 0.0002 |
4.7490 | 68400 | 0.0002 |
4.7560 | 68500 | 0.0002 |
4.7629 | 68600 | 0.0002 |
4.7698 | 68700 | 0.0002 |
4.7768 | 68800 | 0.0002 |
4.7837 | 68900 | 0.0002 |
4.7907 | 69000 | 0.0003 |
4.7976 | 69100 | 0.0002 |
4.8046 | 69200 | 0.0002 |
4.8115 | 69300 | 0.0003 |
4.8184 | 69400 | 0.0002 |
4.8254 | 69500 | 0.0003 |
4.8323 | 69600 | 0.0002 |
4.8393 | 69700 | 0.0002 |
4.8462 | 69800 | 0.0002 |
4.8532 | 69900 | 0.0002 |
4.8601 | 70000 | 0.0002 |
4.8670 | 70100 | 0.0002 |
4.8740 | 70200 | 0.0002 |
4.8809 | 70300 | 0.0002 |
4.8879 | 70400 | 0.0002 |
4.8948 | 70500 | 0.0002 |
4.9018 | 70600 | 0.0002 |
4.9087 | 70700 | 0.0002 |
4.9156 | 70800 | 0.0002 |
4.9226 | 70900 | 0.0002 |
4.9295 | 71000 | 0.0002 |
4.9365 | 71100 | 0.0002 |
4.9434 | 71200 | 0.0002 |
4.9504 | 71300 | 0.0003 |
4.9573 | 71400 | 0.0002 |
4.9642 | 71500 | 0.0002 |
4.9712 | 71600 | 0.0002 |
4.9781 | 71700 | 0.0002 |
4.9851 | 71800 | 0.0002 |
4.9920 | 71900 | 0.0002 |
4.9990 | 72000 | 0.0002 |
5.0059 | 72100 | 0.0002 |
5.0128 | 72200 | 0.0002 |
5.0198 | 72300 | 0.0002 |
5.0267 | 72400 | 0.0002 |
5.0337 | 72500 | 0.0002 |
5.0406 | 72600 | 0.0002 |
5.0476 | 72700 | 0.0002 |
5.0545 | 72800 | 0.0002 |
5.0614 | 72900 | 0.0002 |
5.0684 | 73000 | 0.0002 |
5.0753 | 73100 | 0.0002 |
5.0823 | 73200 | 0.0002 |
5.0892 | 73300 | 0.0002 |
5.0962 | 73400 | 0.0002 |
5.1031 | 73500 | 0.0002 |
5.1100 | 73600 | 0.0002 |
5.1170 | 73700 | 0.0002 |
5.1239 | 73800 | 0.0002 |
5.1309 | 73900 | 0.0002 |
5.1378 | 74000 | 0.0002 |
5.1448 | 74100 | 0.0002 |
5.1517 | 74200 | 0.0002 |
5.1586 | 74300 | 0.0002 |
5.1656 | 74400 | 0.0002 |
5.1725 | 74500 | 0.0002 |
5.1795 | 74600 | 0.0002 |
5.1864 | 74700 | 0.0002 |
5.1934 | 74800 | 0.0002 |
5.2003 | 74900 | 0.0002 |
5.2072 | 75000 | 0.0002 |
5.2142 | 75100 | 0.0002 |
5.2211 | 75200 | 0.0002 |
5.2281 | 75300 | 0.0002 |
5.2350 | 75400 | 0.0002 |
5.2420 | 75500 | 0.0002 |
5.2489 | 75600 | 0.0002 |
5.2558 | 75700 | 0.0002 |
5.2628 | 75800 | 0.0002 |
5.2697 | 75900 | 0.0002 |
5.2767 | 76000 | 0.0002 |
5.2836 | 76100 | 0.0002 |
5.2906 | 76200 | 0.0002 |
5.2975 | 76300 | 0.0002 |
5.3045 | 76400 | 0.0002 |
5.3114 | 76500 | 0.0002 |
5.3183 | 76600 | 0.0002 |
5.3253 | 76700 | 0.0002 |
5.3322 | 76800 | 0.0002 |
5.3392 | 76900 | 0.0002 |
5.3461 | 77000 | 0.0002 |
5.3531 | 77100 | 0.0002 |
5.3600 | 77200 | 0.0002 |
5.3669 | 77300 | 0.0002 |
5.3739 | 77400 | 0.0002 |
5.3808 | 77500 | 0.0002 |
5.3878 | 77600 | 0.0002 |
5.3947 | 77700 | 0.0002 |
5.4017 | 77800 | 0.0002 |
5.4086 | 77900 | 0.0002 |
5.4155 | 78000 | 0.0002 |
5.4225 | 78100 | 0.0002 |
5.4294 | 78200 | 0.0002 |
5.4364 | 78300 | 0.0002 |
5.4433 | 78400 | 0.0002 |
5.4503 | 78500 | 0.0002 |
5.4572 | 78600 | 0.0002 |
5.4641 | 78700 | 0.0002 |
5.4711 | 78800 | 0.0002 |
5.4780 | 78900 | 0.0002 |
5.4850 | 79000 | 0.0002 |
5.4919 | 79100 | 0.0002 |
5.4989 | 79200 | 0.0002 |
5.5058 | 79300 | 0.0002 |
5.5127 | 79400 | 0.0002 |
5.5197 | 79500 | 0.0002 |
5.5266 | 79600 | 0.0002 |
5.5336 | 79700 | 0.0002 |
5.5405 | 79800 | 0.0002 |
5.5475 | 79900 | 0.0002 |
5.5544 | 80000 | 0.0002 |
5.5613 | 80100 | 0.0002 |
5.5683 | 80200 | 0.0002 |
5.5752 | 80300 | 0.0002 |
5.5822 | 80400 | 0.0002 |
5.5891 | 80500 | 0.0002 |
5.5961 | 80600 | 0.0002 |
5.6030 | 80700 | 0.0002 |
5.6099 | 80800 | 0.0002 |
5.6169 | 80900 | 0.0002 |
5.6238 | 81000 | 0.0002 |
5.6308 | 81100 | 0.0002 |
5.6377 | 81200 | 0.0002 |
5.6447 | 81300 | 0.0002 |
5.6516 | 81400 | 0.0002 |
5.6585 | 81500 | 0.0002 |
5.6655 | 81600 | 0.0002 |
5.6724 | 81700 | 0.0002 |
5.6794 | 81800 | 0.0002 |
5.6863 | 81900 | 0.0002 |
5.6933 | 82000 | 0.0002 |
5.7002 | 82100 | 0.0002 |
5.7071 | 82200 | 0.0002 |
5.7141 | 82300 | 0.0002 |
5.7210 | 82400 | 0.0002 |
5.7280 | 82500 | 0.0002 |
5.7349 | 82600 | 0.0002 |
5.7419 | 82700 | 0.0002 |
5.7488 | 82800 | 0.0002 |
5.7557 | 82900 | 0.0002 |
5.7627 | 83000 | 0.0002 |
5.7696 | 83100 | 0.0002 |
5.7766 | 83200 | 0.0002 |
5.7835 | 83300 | 0.0002 |
5.7905 | 83400 | 0.0002 |
5.7974 | 83500 | 0.0002 |
5.8043 | 83600 | 0.0002 |
5.8113 | 83700 | 0.0002 |
5.8182 | 83800 | 0.0002 |
5.8252 | 83900 | 0.0003 |
5.8321 | 84000 | 0.0002 |
5.8391 | 84100 | 0.0002 |
5.8460 | 84200 | 0.0002 |
5.8529 | 84300 | 0.0002 |
5.8599 | 84400 | 0.0002 |
5.8668 | 84500 | 0.0002 |
5.8738 | 84600 | 0.0002 |
5.8807 | 84700 | 0.0002 |
5.8877 | 84800 | 0.0002 |
5.8946 | 84900 | 0.0002 |
5.9015 | 85000 | 0.0002 |
5.9085 | 85100 | 0.0002 |
5.9154 | 85200 | 0.0002 |
5.9224 | 85300 | 0.0002 |
5.9293 | 85400 | 0.0002 |
5.9363 | 85500 | 0.0002 |
5.9432 | 85600 | 0.0002 |
5.9501 | 85700 | 0.0002 |
5.9571 | 85800 | 0.0002 |
5.9640 | 85900 | 0.0002 |
5.9710 | 86000 | 0.0002 |
5.9779 | 86100 | 0.0002 |
5.9849 | 86200 | 0.0002 |
5.9918 | 86300 | 0.0002 |
5.9988 | 86400 | 0.0002 |
6.0057 | 86500 | 0.0002 |
6.0126 | 86600 | 0.0002 |
6.0196 | 86700 | 0.0002 |
6.0265 | 86800 | 0.0002 |
6.0335 | 86900 | 0.0002 |
6.0404 | 87000 | 0.0002 |
6.0474 | 87100 | 0.0002 |
6.0543 | 87200 | 0.0002 |
6.0612 | 87300 | 0.0002 |
6.0682 | 87400 | 0.0002 |
6.0751 | 87500 | 0.0002 |
6.0821 | 87600 | 0.0002 |
6.0890 | 87700 | 0.0002 |
6.0960 | 87800 | 0.0002 |
6.1029 | 87900 | 0.0002 |
6.1098 | 88000 | 0.0002 |
6.1168 | 88100 | 0.0002 |
6.1237 | 88200 | 0.0002 |
6.1307 | 88300 | 0.0002 |
6.1376 | 88400 | 0.0002 |
6.1446 | 88500 | 0.0002 |
6.1515 | 88600 | 0.0002 |
6.1584 | 88700 | 0.0002 |
6.1654 | 88800 | 0.0002 |
6.1723 | 88900 | 0.0002 |
6.1793 | 89000 | 0.0002 |
6.1862 | 89100 | 0.0002 |
6.1932 | 89200 | 0.0002 |
6.2001 | 89300 | 0.0002 |
6.2070 | 89400 | 0.0002 |
6.2140 | 89500 | 0.0002 |
6.2209 | 89600 | 0.0002 |
6.2279 | 89700 | 0.0002 |
6.2348 | 89800 | 0.0002 |
6.2418 | 89900 | 0.0002 |
6.2487 | 90000 | 0.0002 |
6.2556 | 90100 | 0.0002 |
6.2626 | 90200 | 0.0002 |
6.2695 | 90300 | 0.0002 |
6.2765 | 90400 | 0.0002 |
6.2834 | 90500 | 0.0002 |
6.2904 | 90600 | 0.0002 |
6.2973 | 90700 | 0.0002 |
6.3042 | 90800 | 0.0002 |
6.3112 | 90900 | 0.0002 |
6.3181 | 91000 | 0.0002 |
6.3251 | 91100 | 0.0002 |
6.3320 | 91200 | 0.0002 |
6.3390 | 91300 | 0.0002 |
6.3459 | 91400 | 0.0002 |
6.3528 | 91500 | 0.0002 |
6.3598 | 91600 | 0.0002 |
6.3667 | 91700 | 0.0002 |
6.3737 | 91800 | 0.0002 |
6.3806 | 91900 | 0.0002 |
6.3876 | 92000 | 0.0002 |
6.3945 | 92100 | 0.0002 |
6.4014 | 92200 | 0.0002 |
6.4084 | 92300 | 0.0002 |
6.4153 | 92400 | 0.0002 |
6.4223 | 92500 | 0.0002 |
6.4292 | 92600 | 0.0002 |
6.4362 | 92700 | 0.0002 |
6.4431 | 92800 | 0.0002 |
6.4500 | 92900 | 0.0002 |
6.4570 | 93000 | 0.0002 |
6.4639 | 93100 | 0.0002 |
6.4709 | 93200 | 0.0002 |
6.4778 | 93300 | 0.0002 |
6.4848 | 93400 | 0.0002 |
6.4917 | 93500 | 0.0002 |
6.4986 | 93600 | 0.0002 |
6.5056 | 93700 | 0.0002 |
6.5125 | 93800 | 0.0002 |
6.5195 | 93900 | 0.0002 |
6.5264 | 94000 | 0.0002 |
6.5334 | 94100 | 0.0002 |
6.5403 | 94200 | 0.0002 |
6.5472 | 94300 | 0.0002 |
6.5542 | 94400 | 0.0002 |
6.5611 | 94500 | 0.0002 |
6.5681 | 94600 | 0.0002 |
6.5750 | 94700 | 0.0002 |
6.5820 | 94800 | 0.0002 |
6.5889 | 94900 | 0.0002 |
6.5958 | 95000 | 0.0002 |
6.6028 | 95100 | 0.0002 |
6.6097 | 95200 | 0.0002 |
6.6167 | 95300 | 0.0002 |
6.6236 | 95400 | 0.0002 |
6.6306 | 95500 | 0.0002 |
6.6375 | 95600 | 0.0002 |
6.6444 | 95700 | 0.0002 |
6.6514 | 95800 | 0.0002 |
6.6583 | 95900 | 0.0002 |
6.6653 | 96000 | 0.0002 |
6.6722 | 96100 | 0.0002 |
6.6792 | 96200 | 0.0002 |
6.6861 | 96300 | 0.0002 |
6.6931 | 96400 | 0.0002 |
6.7000 | 96500 | 0.0002 |
6.7069 | 96600 | 0.0002 |
6.7139 | 96700 | 0.0002 |
6.7208 | 96800 | 0.0002 |
6.7278 | 96900 | 0.0002 |
6.7347 | 97000 | 0.0002 |
6.7417 | 97100 | 0.0002 |
6.7486 | 97200 | 0.0002 |
6.7555 | 97300 | 0.0002 |
6.7625 | 97400 | 0.0002 |
6.7694 | 97500 | 0.0002 |
6.7764 | 97600 | 0.0002 |
6.7833 | 97700 | 0.0002 |
6.7903 | 97800 | 0.0002 |
6.7972 | 97900 | 0.0002 |
6.8041 | 98000 | 0.0002 |
6.8111 | 98100 | 0.0002 |
6.8180 | 98200 | 0.0002 |
6.8250 | 98300 | 0.0002 |
6.8319 | 98400 | 0.0002 |
6.8389 | 98500 | 0.0002 |
6.8458 | 98600 | 0.0002 |
6.8527 | 98700 | 0.0002 |
6.8597 | 98800 | 0.0002 |
6.8666 | 98900 | 0.0002 |
6.8736 | 99000 | 0.0002 |
6.8805 | 99100 | 0.0002 |
6.8875 | 99200 | 0.0002 |
6.8944 | 99300 | 0.0002 |
6.9013 | 99400 | 0.0002 |
6.9083 | 99500 | 0.0002 |
6.9152 | 99600 | 0.0002 |
6.9222 | 99700 | 0.0002 |
6.9291 | 99800 | 0.0002 |
6.9361 | 99900 | 0.0002 |
6.9430 | 100000 | 0.0002 |
6.9499 | 100100 | 0.0002 |
6.9569 | 100200 | 0.0002 |
6.9638 | 100300 | 0.0002 |
6.9708 | 100400 | 0.0002 |
6.9777 | 100500 | 0.0002 |
6.9847 | 100600 | 0.0002 |
6.9916 | 100700 | 0.0002 |
6.9985 | 100800 | 0.0002 |
7.0055 | 100900 | 0.0002 |
7.0124 | 101000 | 0.0002 |
7.0194 | 101100 | 0.0002 |
7.0263 | 101200 | 0.0002 |
7.0333 | 101300 | 0.0002 |
7.0402 | 101400 | 0.0002 |
7.0471 | 101500 | 0.0002 |
7.0541 | 101600 | 0.0002 |
7.0610 | 101700 | 0.0002 |
7.0680 | 101800 | 0.0002 |
7.0749 | 101900 | 0.0002 |
7.0819 | 102000 | 0.0002 |
7.0888 | 102100 | 0.0002 |
7.0957 | 102200 | 0.0002 |
7.1027 | 102300 | 0.0002 |
7.1096 | 102400 | 0.0002 |
7.1166 | 102500 | 0.0002 |
7.1235 | 102600 | 0.0002 |
7.1305 | 102700 | 0.0002 |
7.1374 | 102800 | 0.0002 |
7.1443 | 102900 | 0.0002 |
7.1513 | 103000 | 0.0002 |
7.1582 | 103100 | 0.0002 |
7.1652 | 103200 | 0.0002 |
7.1721 | 103300 | 0.0002 |
7.1791 | 103400 | 0.0002 |
7.1860 | 103500 | 0.0002 |
7.1929 | 103600 | 0.0002 |
7.1999 | 103700 | 0.0002 |
7.2068 | 103800 | 0.0002 |
7.2138 | 103900 | 0.0002 |
7.2207 | 104000 | 0.0002 |
7.2277 | 104100 | 0.0002 |
7.2346 | 104200 | 0.0002 |
7.2415 | 104300 | 0.0002 |
7.2485 | 104400 | 0.0002 |
7.2554 | 104500 | 0.0002 |
7.2624 | 104600 | 0.0002 |
7.2693 | 104700 | 0.0002 |
7.2763 | 104800 | 0.0002 |
7.2832 | 104900 | 0.0002 |
7.2901 | 105000 | 0.0002 |
7.2971 | 105100 | 0.0002 |
7.3040 | 105200 | 0.0002 |
7.3110 | 105300 | 0.0002 |
7.3179 | 105400 | 0.0002 |
7.3249 | 105500 | 0.0002 |
7.3318 | 105600 | 0.0002 |
7.3387 | 105700 | 0.0002 |
7.3457 | 105800 | 0.0002 |
7.3526 | 105900 | 0.0002 |
7.3596 | 106000 | 0.0002 |
7.3665 | 106100 | 0.0002 |
7.3735 | 106200 | 0.0002 |
7.3804 | 106300 | 0.0002 |
7.3873 | 106400 | 0.0002 |
7.3943 | 106500 | 0.0002 |
7.4012 | 106600 | 0.0002 |
7.4082 | 106700 | 0.0002 |
7.4151 | 106800 | 0.0002 |
7.4221 | 106900 | 0.0002 |
7.4290 | 107000 | 0.0002 |
7.4360 | 107100 | 0.0002 |
7.4429 | 107200 | 0.0002 |
7.4498 | 107300 | 0.0002 |
7.4568 | 107400 | 0.0002 |
7.4637 | 107500 | 0.0002 |
7.4707 | 107600 | 0.0002 |
7.4776 | 107700 | 0.0002 |
7.4846 | 107800 | 0.0002 |
7.4915 | 107900 | 0.0002 |
7.4984 | 108000 | 0.0002 |
7.5054 | 108100 | 0.0002 |
7.5123 | 108200 | 0.0002 |
7.5193 | 108300 | 0.0002 |
7.5262 | 108400 | 0.0002 |
7.5332 | 108500 | 0.0002 |
7.5401 | 108600 | 0.0002 |
7.5470 | 108700 | 0.0002 |
7.5540 | 108800 | 0.0002 |
7.5609 | 108900 | 0.0002 |
7.5679 | 109000 | 0.0002 |
7.5748 | 109100 | 0.0002 |
7.5818 | 109200 | 0.0002 |
7.5887 | 109300 | 0.0002 |
7.5956 | 109400 | 0.0002 |
7.6026 | 109500 | 0.0002 |
7.6095 | 109600 | 0.0002 |
7.6165 | 109700 | 0.0002 |
7.6234 | 109800 | 0.0002 |
7.6304 | 109900 | 0.0002 |
7.6373 | 110000 | 0.0002 |
7.6442 | 110100 | 0.0002 |
7.6512 | 110200 | 0.0002 |
7.6581 | 110300 | 0.0002 |
7.6651 | 110400 | 0.0002 |
7.6720 | 110500 | 0.0002 |
7.6790 | 110600 | 0.0002 |
7.6859 | 110700 | 0.0002 |
7.6928 | 110800 | 0.0002 |
7.6998 | 110900 | 0.0002 |
7.7067 | 111000 | 0.0002 |
7.7137 | 111100 | 0.0002 |
7.7206 | 111200 | 0.0002 |
7.7276 | 111300 | 0.0002 |
7.7345 | 111400 | 0.0002 |
7.7414 | 111500 | 0.0002 |
7.7484 | 111600 | 0.0002 |
7.7553 | 111700 | 0.0002 |
7.7623 | 111800 | 0.0002 |
7.7692 | 111900 | 0.0002 |
7.7762 | 112000 | 0.0002 |
7.7831 | 112100 | 0.0002 |
7.7900 | 112200 | 0.0002 |
7.7970 | 112300 | 0.0002 |
7.8039 | 112400 | 0.0002 |
7.8109 | 112500 | 0.0002 |
7.8178 | 112600 | 0.0002 |
7.8248 | 112700 | 0.0002 |
7.8317 | 112800 | 0.0002 |
7.8386 | 112900 | 0.0002 |
7.8456 | 113000 | 0.0002 |
7.8525 | 113100 | 0.0002 |
7.8595 | 113200 | 0.0002 |
7.8664 | 113300 | 0.0002 |
7.8734 | 113400 | 0.0002 |
7.8803 | 113500 | 0.0002 |
7.8872 | 113600 | 0.0002 |
7.8942 | 113700 | 0.0002 |
7.9011 | 113800 | 0.0002 |
7.9081 | 113900 | 0.0002 |
7.9150 | 114000 | 0.0002 |
7.9220 | 114100 | 0.0002 |
7.9289 | 114200 | 0.0002 |
7.9358 | 114300 | 0.0002 |
7.9428 | 114400 | 0.0002 |
7.9497 | 114500 | 0.0002 |
7.9567 | 114600 | 0.0002 |
7.9636 | 114700 | 0.0002 |
7.9706 | 114800 | 0.0002 |
7.9775 | 114900 | 0.0002 |
7.9844 | 115000 | 0.0002 |
7.9914 | 115100 | 0.0002 |
7.9983 | 115200 | 0.0002 |
8.0053 | 115300 | 0.0002 |
8.0122 | 115400 | 0.0002 |
8.0192 | 115500 | 0.0002 |
8.0261 | 115600 | 0.0002 |
8.0330 | 115700 | 0.0002 |
8.0400 | 115800 | 0.0002 |
8.0469 | 115900 | 0.0002 |
8.0539 | 116000 | 0.0002 |
8.0608 | 116100 | 0.0002 |
8.0678 | 116200 | 0.0002 |
8.0747 | 116300 | 0.0002 |
8.0816 | 116400 | 0.0002 |
8.0886 | 116500 | 0.0002 |
8.0955 | 116600 | 0.0002 |
8.1025 | 116700 | 0.0002 |
8.1094 | 116800 | 0.0002 |
8.1164 | 116900 | 0.0002 |
8.1233 | 117000 | 0.0002 |
8.1303 | 117100 | 0.0002 |
8.1372 | 117200 | 0.0002 |
8.1441 | 117300 | 0.0002 |
8.1511 | 117400 | 0.0002 |
8.1580 | 117500 | 0.0002 |
8.1650 | 117600 | 0.0002 |
8.1719 | 117700 | 0.0002 |
8.1789 | 117800 | 0.0002 |
8.1858 | 117900 | 0.0002 |
8.1927 | 118000 | 0.0002 |
8.1997 | 118100 | 0.0002 |
8.2066 | 118200 | 0.0002 |
8.2136 | 118300 | 0.0002 |
8.2205 | 118400 | 0.0002 |
8.2275 | 118500 | 0.0002 |
8.2344 | 118600 | 0.0002 |
8.2413 | 118700 | 0.0002 |
8.2483 | 118800 | 0.0002 |
8.2552 | 118900 | 0.0002 |
8.2622 | 119000 | 0.0002 |
8.2691 | 119100 | 0.0002 |
8.2761 | 119200 | 0.0002 |
8.2830 | 119300 | 0.0002 |
8.2899 | 119400 | 0.0002 |
8.2969 | 119500 | 0.0002 |
8.3038 | 119600 | 0.0002 |
8.3108 | 119700 | 0.0002 |
8.3177 | 119800 | 0.0002 |
8.3247 | 119900 | 0.0002 |
8.3316 | 120000 | 0.0002 |
8.3385 | 120100 | 0.0002 |
8.3455 | 120200 | 0.0002 |
8.3524 | 120300 | 0.0002 |
8.3594 | 120400 | 0.0002 |
8.3663 | 120500 | 0.0002 |
8.3733 | 120600 | 0.0002 |
8.3802 | 120700 | 0.0002 |
8.3871 | 120800 | 0.0002 |
8.3941 | 120900 | 0.0002 |
8.4010 | 121000 | 0.0002 |
8.4080 | 121100 | 0.0002 |
8.4149 | 121200 | 0.0002 |
8.4219 | 121300 | 0.0002 |
8.4288 | 121400 | 0.0002 |
8.4357 | 121500 | 0.0002 |
8.4427 | 121600 | 0.0002 |
8.4496 | 121700 | 0.0002 |
8.4566 | 121800 | 0.0002 |
8.4635 | 121900 | 0.0002 |
8.4705 | 122000 | 0.0002 |
8.4774 | 122100 | 0.0002 |
8.4843 | 122200 | 0.0002 |
8.4913 | 122300 | 0.0002 |
8.4982 | 122400 | 0.0002 |
8.5052 | 122500 | 0.0002 |
8.5121 | 122600 | 0.0002 |
8.5191 | 122700 | 0.0002 |
8.5260 | 122800 | 0.0002 |
8.5329 | 122900 | 0.0002 |
8.5399 | 123000 | 0.0002 |
8.5468 | 123100 | 0.0002 |
8.5538 | 123200 | 0.0002 |
8.5607 | 123300 | 0.0002 |
8.5677 | 123400 | 0.0002 |
8.5746 | 123500 | 0.0002 |
8.5815 | 123600 | 0.0002 |
8.5885 | 123700 | 0.0002 |
8.5954 | 123800 | 0.0002 |
8.6024 | 123900 | 0.0002 |
8.6093 | 124000 | 0.0002 |
8.6163 | 124100 | 0.0002 |
8.6232 | 124200 | 0.0002 |
8.6301 | 124300 | 0.0002 |
8.6371 | 124400 | 0.0002 |
8.6440 | 124500 | 0.0002 |
8.6510 | 124600 | 0.0002 |
8.6579 | 124700 | 0.0002 |
8.6649 | 124800 | 0.0002 |
8.6718 | 124900 | 0.0002 |
8.6787 | 125000 | 0.0002 |
8.6857 | 125100 | 0.0002 |
8.6926 | 125200 | 0.0002 |
8.6996 | 125300 | 0.0002 |
8.7065 | 125400 | 0.0002 |
8.7135 | 125500 | 0.0002 |
8.7204 | 125600 | 0.0002 |
8.7273 | 125700 | 0.0002 |
8.7343 | 125800 | 0.0002 |
8.7412 | 125900 | 0.0002 |
8.7482 | 126000 | 0.0002 |
8.7551 | 126100 | 0.0002 |
8.7621 | 126200 | 0.0002 |
8.7690 | 126300 | 0.0002 |
8.7759 | 126400 | 0.0002 |
8.7829 | 126500 | 0.0002 |
8.7898 | 126600 | 0.0002 |
8.7968 | 126700 | 0.0002 |
8.8037 | 126800 | 0.0002 |
8.8107 | 126900 | 0.0002 |
8.8176 | 127000 | 0.0002 |
8.8246 | 127100 | 0.0002 |
8.8315 | 127200 | 0.0002 |
8.8384 | 127300 | 0.0002 |
8.8454 | 127400 | 0.0002 |
8.8523 | 127500 | 0.0002 |
8.8593 | 127600 | 0.0002 |
8.8662 | 127700 | 0.0002 |
8.8732 | 127800 | 0.0002 |
8.8801 | 127900 | 0.0002 |
8.8870 | 128000 | 0.0002 |
8.8940 | 128100 | 0.0002 |
8.9009 | 128200 | 0.0002 |
8.9079 | 128300 | 0.0002 |
8.9148 | 128400 | 0.0002 |
8.9218 | 128500 | 0.0002 |
8.9287 | 128600 | 0.0002 |
8.9356 | 128700 | 0.0002 |
8.9426 | 128800 | 0.0002 |
8.9495 | 128900 | 0.0002 |
8.9565 | 129000 | 0.0002 |
8.9634 | 129100 | 0.0002 |
8.9704 | 129200 | 0.0002 |
8.9773 | 129300 | 0.0002 |
8.9842 | 129400 | 0.0002 |
8.9912 | 129500 | 0.0002 |
8.9981 | 129600 | 0.0002 |
9.0051 | 129700 | 0.0002 |
9.0120 | 129800 | 0.0002 |
9.0190 | 129900 | 0.0002 |
9.0259 | 130000 | 0.0002 |
9.0328 | 130100 | 0.0002 |
9.0398 | 130200 | 0.0002 |
9.0467 | 130300 | 0.0002 |
9.0537 | 130400 | 0.0002 |
9.0606 | 130500 | 0.0002 |
9.0676 | 130600 | 0.0002 |
9.0745 | 130700 | 0.0002 |
9.0814 | 130800 | 0.0002 |
9.0884 | 130900 | 0.0002 |
9.0953 | 131000 | 0.0002 |
9.1023 | 131100 | 0.0002 |
9.1092 | 131200 | 0.0002 |
9.1162 | 131300 | 0.0002 |
9.1231 | 131400 | 0.0002 |
9.1300 | 131500 | 0.0002 |
9.1370 | 131600 | 0.0002 |
9.1439 | 131700 | 0.0002 |
9.1509 | 131800 | 0.0002 |
9.1578 | 131900 | 0.0002 |
9.1648 | 132000 | 0.0002 |
9.1717 | 132100 | 0.0002 |
9.1786 | 132200 | 0.0002 |
9.1856 | 132300 | 0.0002 |
9.1925 | 132400 | 0.0002 |
9.1995 | 132500 | 0.0002 |
9.2064 | 132600 | 0.0002 |
9.2134 | 132700 | 0.0002 |
9.2203 | 132800 | 0.0002 |
9.2272 | 132900 | 0.0002 |
9.2342 | 133000 | 0.0002 |
9.2411 | 133100 | 0.0002 |
9.2481 | 133200 | 0.0002 |
9.2550 | 133300 | 0.0002 |
9.2620 | 133400 | 0.0002 |
9.2689 | 133500 | 0.0002 |
9.2758 | 133600 | 0.0002 |
9.2828 | 133700 | 0.0002 |
9.2897 | 133800 | 0.0002 |
9.2967 | 133900 | 0.0002 |
9.3036 | 134000 | 0.0002 |
9.3106 | 134100 | 0.0002 |
9.3175 | 134200 | 0.0002 |
9.3244 | 134300 | 0.0002 |
9.3314 | 134400 | 0.0002 |
9.3383 | 134500 | 0.0002 |
9.3453 | 134600 | 0.0002 |
9.3522 | 134700 | 0.0002 |
9.3592 | 134800 | 0.0002 |
9.3661 | 134900 | 0.0002 |
9.3730 | 135000 | 0.0002 |
9.3800 | 135100 | 0.0002 |
9.3869 | 135200 | 0.0002 |
9.3939 | 135300 | 0.0002 |
9.4008 | 135400 | 0.0002 |
9.4078 | 135500 | 0.0002 |
9.4147 | 135600 | 0.0002 |
9.4216 | 135700 | 0.0002 |
9.4286 | 135800 | 0.0002 |
9.4355 | 135900 | 0.0002 |
9.4425 | 136000 | 0.0002 |
9.4494 | 136100 | 0.0002 |
9.4564 | 136200 | 0.0002 |
9.4633 | 136300 | 0.0002 |
9.4702 | 136400 | 0.0002 |
9.4772 | 136500 | 0.0002 |
9.4841 | 136600 | 0.0002 |
9.4911 | 136700 | 0.0002 |
9.4980 | 136800 | 0.0002 |
9.5050 | 136900 | 0.0002 |
9.5119 | 137000 | 0.0002 |
9.5189 | 137100 | 0.0002 |
9.5258 | 137200 | 0.0002 |
9.5327 | 137300 | 0.0002 |
9.5397 | 137400 | 0.0002 |
9.5466 | 137500 | 0.0002 |
9.5536 | 137600 | 0.0002 |
9.5605 | 137700 | 0.0002 |
9.5675 | 137800 | 0.0002 |
9.5744 | 137900 | 0.0002 |
9.5813 | 138000 | 0.0002 |
9.5883 | 138100 | 0.0002 |
9.5952 | 138200 | 0.0002 |
9.6022 | 138300 | 0.0002 |
9.6091 | 138400 | 0.0002 |
9.6161 | 138500 | 0.0002 |
9.6230 | 138600 | 0.0002 |
9.6299 | 138700 | 0.0002 |
9.6369 | 138800 | 0.0002 |
9.6438 | 138900 | 0.0002 |
9.6508 | 139000 | 0.0002 |
9.6577 | 139100 | 0.0002 |
9.6647 | 139200 | 0.0002 |
9.6716 | 139300 | 0.0002 |
9.6785 | 139400 | 0.0002 |
9.6855 | 139500 | 0.0002 |
9.6924 | 139600 | 0.0002 |
9.6994 | 139700 | 0.0002 |
9.7063 | 139800 | 0.0002 |
9.7133 | 139900 | 0.0002 |
9.7202 | 140000 | 0.0002 |
9.7271 | 140100 | 0.0002 |
9.7341 | 140200 | 0.0002 |
9.7410 | 140300 | 0.0002 |
9.7480 | 140400 | 0.0002 |
9.7549 | 140500 | 0.0002 |
9.7619 | 140600 | 0.0002 |
9.7688 | 140700 | 0.0002 |
9.7757 | 140800 | 0.0002 |
9.7827 | 140900 | 0.0002 |
9.7896 | 141000 | 0.0002 |
9.7966 | 141100 | 0.0002 |
9.8035 | 141200 | 0.0002 |
9.8105 | 141300 | 0.0002 |
9.8174 | 141400 | 0.0002 |
9.8243 | 141500 | 0.0002 |
9.8313 | 141600 | 0.0002 |
9.8382 | 141700 | 0.0002 |
9.8452 | 141800 | 0.0002 |
9.8521 | 141900 | 0.0002 |
9.8591 | 142000 | 0.0002 |
9.8660 | 142100 | 0.0002 |
9.8729 | 142200 | 0.0002 |
9.8799 | 142300 | 0.0002 |
9.8868 | 142400 | 0.0002 |
9.8938 | 142500 | 0.0002 |
9.9007 | 142600 | 0.0002 |
9.9077 | 142700 | 0.0002 |
9.9146 | 142800 | 0.0002 |
9.9215 | 142900 | 0.0002 |
9.9285 | 143000 | 0.0002 |
9.9354 | 143100 | 0.0002 |
9.9424 | 143200 | 0.0002 |
9.9493 | 143300 | 0.0002 |
9.9563 | 143400 | 0.0002 |
9.9632 | 143500 | 0.0002 |
9.9701 | 143600 | 0.0002 |
9.9771 | 143700 | 0.0002 |
9.9840 | 143800 | 0.0002 |
9.9910 | 143900 | 0.0002 |
9.9979 | 144000 | 0.0002 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for codersan/validadted_allMiniLM_withCosSimb
Base model
sentence-transformers/all-MiniLM-L6-v2