metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:172826
- loss:CosineSimilarityLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: How do you make Yahoo your homepage?
sentences:
- چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟
- چگونه می توانم برای امتحان INS 21 آماده شوم؟
- How can I make Yahoo my homepage on my browser?
- source_sentence: کدام VPN رایگان در چین کار می کند؟
sentences:
- VPN های رایگان که در چین کار می کنند چیست؟
- How can I stop masturbations?
- آیا مدرسه خلاقیت را می کشد؟
- source_sentence: چند روش خوب برای کاهش وزن چیست؟
sentences:
- چگونه می توانم یک کتاب خوب بنویسم؟
- من اضافه وزن دارمچگونه می توانم وزن کم کنم؟
- آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟
- source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟
sentences:
- چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟
- مبدل چیست؟
- چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟
- source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟
sentences:
- >-
چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه
می شود؟
- چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟
- اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/validadted_faLabse_withCosSimb")
# Run inference
sentences = [
'داشتن هزاران دنبال کننده در Quora چگونه است؟',
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 172,826 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.2 tokens
- max: 80 tokens
- min: 5 tokens
- mean: 15.47 tokens
- max: 50 tokens
- min: 0.76
- mean: 0.95
- max: 1.0
- Samples:
sentence1 sentence2 score تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟
تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟
0.982593297958374
خوردن چه چیزی باعث دل درد میشود؟
چه چیزی باعث رفع دل درد میشود؟
0.9582258462905884
بهترین نرم افزار ویرایش ویدیویی کدام است؟
بهترین نرم افزار برای ویرایش ویدیو چیست؟
0.9890836477279663
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 5warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: codersan/validadted_faLabse_withCosSimbeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: codersan/validadted_faLabse_withCosSimbhub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0 | 0 | - |
0.0069 | 100 | 0.0313 |
0.0139 | 200 | 0.0264 |
0.0208 | 300 | 0.0163 |
0.0278 | 400 | 0.0092 |
0.0347 | 500 | 0.0044 |
0.0417 | 600 | 0.0018 |
0.0486 | 700 | 0.0011 |
0.0555 | 800 | 0.0007 |
0.0625 | 900 | 0.0006 |
0.0694 | 1000 | 0.0006 |
0.0764 | 1100 | 0.0006 |
0.0833 | 1200 | 0.0005 |
0.0903 | 1300 | 0.0005 |
0.0972 | 1400 | 0.0005 |
0.1041 | 1500 | 0.0005 |
0.1111 | 1600 | 0.0005 |
0.1180 | 1700 | 0.0004 |
0.1250 | 1800 | 0.0004 |
0.1319 | 1900 | 0.0004 |
0.1389 | 2000 | 0.0004 |
0.1458 | 2100 | 0.0004 |
0.1527 | 2200 | 0.0004 |
0.1597 | 2300 | 0.0004 |
0.1666 | 2400 | 0.0004 |
0.1736 | 2500 | 0.0003 |
0.1805 | 2600 | 0.0004 |
0.1875 | 2700 | 0.0003 |
0.1944 | 2800 | 0.0003 |
0.2013 | 2900 | 0.0003 |
0.2083 | 3000 | 0.0003 |
0.2152 | 3100 | 0.0003 |
0.2222 | 3200 | 0.0003 |
0.2291 | 3300 | 0.0003 |
0.2361 | 3400 | 0.0003 |
0.2430 | 3500 | 0.0003 |
0.2499 | 3600 | 0.0003 |
0.2569 | 3700 | 0.0003 |
0.2638 | 3800 | 0.0003 |
0.2708 | 3900 | 0.0003 |
0.2777 | 4000 | 0.0003 |
0.2847 | 4100 | 0.0003 |
0.2916 | 4200 | 0.0003 |
0.2985 | 4300 | 0.0003 |
0.3055 | 4400 | 0.0003 |
0.3124 | 4500 | 0.0002 |
0.3194 | 4600 | 0.0002 |
0.3263 | 4700 | 0.0002 |
0.3333 | 4800 | 0.0003 |
0.3402 | 4900 | 0.0002 |
0.3471 | 5000 | 0.0002 |
0.3541 | 5100 | 0.0002 |
0.3610 | 5200 | 0.0002 |
0.3680 | 5300 | 0.0002 |
0.3749 | 5400 | 0.0002 |
0.3819 | 5500 | 0.0002 |
0.3888 | 5600 | 0.0002 |
0.3958 | 5700 | 0.0002 |
0.4027 | 5800 | 0.0002 |
0.4096 | 5900 | 0.0002 |
0.4166 | 6000 | 0.0002 |
0.4235 | 6100 | 0.0002 |
0.4305 | 6200 | 0.0002 |
0.4374 | 6300 | 0.0002 |
0.4444 | 6400 | 0.0002 |
0.4513 | 6500 | 0.0002 |
0.4582 | 6600 | 0.0002 |
0.4652 | 6700 | 0.0002 |
0.4721 | 6800 | 0.0002 |
0.4791 | 6900 | 0.0002 |
0.4860 | 7000 | 0.0002 |
0.4930 | 7100 | 0.0002 |
0.4999 | 7200 | 0.0002 |
0.5068 | 7300 | 0.0002 |
0.5138 | 7400 | 0.0002 |
0.5207 | 7500 | 0.0002 |
0.5277 | 7600 | 0.0002 |
0.5346 | 7700 | 0.0002 |
0.5416 | 7800 | 0.0002 |
0.5485 | 7900 | 0.0002 |
0.5554 | 8000 | 0.0002 |
0.5624 | 8100 | 0.0002 |
0.5693 | 8200 | 0.0002 |
0.5763 | 8300 | 0.0002 |
0.5832 | 8400 | 0.0002 |
0.5902 | 8500 | 0.0002 |
0.5971 | 8600 | 0.0002 |
0.6040 | 8700 | 0.0002 |
0.6110 | 8800 | 0.0002 |
0.6179 | 8900 | 0.0002 |
0.6249 | 9000 | 0.0002 |
0.6318 | 9100 | 0.0002 |
0.6388 | 9200 | 0.0002 |
0.6457 | 9300 | 0.0002 |
0.6526 | 9400 | 0.0002 |
0.6596 | 9500 | 0.0002 |
0.6665 | 9600 | 0.0002 |
0.6735 | 9700 | 0.0002 |
0.6804 | 9800 | 0.0002 |
0.6874 | 9900 | 0.0002 |
0.6943 | 10000 | 0.0002 |
0.7012 | 10100 | 0.0002 |
0.7082 | 10200 | 0.0002 |
0.7151 | 10300 | 0.0002 |
0.7221 | 10400 | 0.0002 |
0.7290 | 10500 | 0.0002 |
0.7360 | 10600 | 0.0002 |
0.7429 | 10700 | 0.0002 |
0.7498 | 10800 | 0.0002 |
0.7568 | 10900 | 0.0002 |
0.7637 | 11000 | 0.0002 |
0.7707 | 11100 | 0.0002 |
0.7776 | 11200 | 0.0002 |
0.7846 | 11300 | 0.0002 |
0.7915 | 11400 | 0.0002 |
0.7984 | 11500 | 0.0002 |
0.8054 | 11600 | 0.0002 |
0.8123 | 11700 | 0.0002 |
0.8193 | 11800 | 0.0002 |
0.8262 | 11900 | 0.0002 |
0.8332 | 12000 | 0.0002 |
0.8401 | 12100 | 0.0002 |
0.8470 | 12200 | 0.0002 |
0.8540 | 12300 | 0.0002 |
0.8609 | 12400 | 0.0002 |
0.8679 | 12500 | 0.0002 |
0.8748 | 12600 | 0.0002 |
0.8818 | 12700 | 0.0001 |
0.8887 | 12800 | 0.0002 |
0.8956 | 12900 | 0.0002 |
0.9026 | 13000 | 0.0002 |
0.9095 | 13100 | 0.0001 |
0.9165 | 13200 | 0.0002 |
0.9234 | 13300 | 0.0002 |
0.9304 | 13400 | 0.0002 |
0.9373 | 13500 | 0.0001 |
0.9442 | 13600 | 0.0002 |
0.9512 | 13700 | 0.0002 |
0.9581 | 13800 | 0.0001 |
0.9651 | 13900 | 0.0001 |
0.9720 | 14000 | 0.0002 |
0.9790 | 14100 | 0.0002 |
0.9859 | 14200 | 0.0001 |
0.9928 | 14300 | 0.0001 |
0.9998 | 14400 | 0.0001 |
1.0067 | 14500 | 0.0001 |
1.0137 | 14600 | 0.0001 |
1.0206 | 14700 | 0.0001 |
1.0276 | 14800 | 0.0002 |
1.0345 | 14900 | 0.0001 |
1.0414 | 15000 | 0.0002 |
1.0484 | 15100 | 0.0002 |
1.0553 | 15200 | 0.0001 |
1.0623 | 15300 | 0.0002 |
1.0692 | 15400 | 0.0001 |
1.0762 | 15500 | 0.0001 |
1.0831 | 15600 | 0.0001 |
1.0901 | 15700 | 0.0001 |
1.0970 | 15800 | 0.0001 |
1.1039 | 15900 | 0.0001 |
1.1109 | 16000 | 0.0001 |
1.1178 | 16100 | 0.0002 |
1.1248 | 16200 | 0.0001 |
1.1317 | 16300 | 0.0002 |
1.1387 | 16400 | 0.0001 |
1.1456 | 16500 | 0.0001 |
1.1525 | 16600 | 0.0001 |
1.1595 | 16700 | 0.0001 |
1.1664 | 16800 | 0.0001 |
1.1734 | 16900 | 0.0001 |
1.1803 | 17000 | 0.0002 |
1.1873 | 17100 | 0.0001 |
1.1942 | 17200 | 0.0001 |
1.2011 | 17300 | 0.0001 |
1.2081 | 17400 | 0.0001 |
1.2150 | 17500 | 0.0001 |
1.2220 | 17600 | 0.0001 |
1.2289 | 17700 | 0.0001 |
1.2359 | 17800 | 0.0001 |
1.2428 | 17900 | 0.0001 |
1.2497 | 18000 | 0.0001 |
1.2567 | 18100 | 0.0001 |
1.2636 | 18200 | 0.0001 |
1.2706 | 18300 | 0.0001 |
1.2775 | 18400 | 0.0001 |
1.2845 | 18500 | 0.0001 |
1.2914 | 18600 | 0.0001 |
1.2983 | 18700 | 0.0001 |
1.3053 | 18800 | 0.0001 |
1.3122 | 18900 | 0.0001 |
1.3192 | 19000 | 0.0001 |
1.3261 | 19100 | 0.0001 |
1.3331 | 19200 | 0.0001 |
1.3400 | 19300 | 0.0001 |
1.3469 | 19400 | 0.0001 |
1.3539 | 19500 | 0.0001 |
1.3608 | 19600 | 0.0001 |
1.3678 | 19700 | 0.0001 |
1.3747 | 19800 | 0.0001 |
1.3817 | 19900 | 0.0001 |
1.3886 | 20000 | 0.0001 |
1.3955 | 20100 | 0.0001 |
1.4025 | 20200 | 0.0001 |
1.4094 | 20300 | 0.0001 |
1.4164 | 20400 | 0.0001 |
1.4233 | 20500 | 0.0001 |
1.4303 | 20600 | 0.0001 |
1.4372 | 20700 | 0.0001 |
1.4441 | 20800 | 0.0001 |
1.4511 | 20900 | 0.0001 |
1.4580 | 21000 | 0.0001 |
1.4650 | 21100 | 0.0001 |
1.4719 | 21200 | 0.0001 |
1.4789 | 21300 | 0.0001 |
1.4858 | 21400 | 0.0001 |
1.4927 | 21500 | 0.0001 |
1.4997 | 21600 | 0.0001 |
1.5066 | 21700 | 0.0001 |
1.5136 | 21800 | 0.0001 |
1.5205 | 21900 | 0.0001 |
1.5275 | 22000 | 0.0001 |
1.5344 | 22100 | 0.0001 |
1.5413 | 22200 | 0.0001 |
1.5483 | 22300 | 0.0001 |
1.5552 | 22400 | 0.0001 |
1.5622 | 22500 | 0.0001 |
1.5691 | 22600 | 0.0001 |
1.5761 | 22700 | 0.0001 |
1.5830 | 22800 | 0.0001 |
1.5899 | 22900 | 0.0001 |
1.5969 | 23000 | 0.0001 |
1.6038 | 23100 | 0.0001 |
1.6108 | 23200 | 0.0001 |
1.6177 | 23300 | 0.0001 |
1.6247 | 23400 | 0.0001 |
1.6316 | 23500 | 0.0001 |
1.6385 | 23600 | 0.0001 |
1.6455 | 23700 | 0.0001 |
1.6524 | 23800 | 0.0001 |
1.6594 | 23900 | 0.0001 |
1.6663 | 24000 | 0.0001 |
1.6733 | 24100 | 0.0001 |
1.6802 | 24200 | 0.0001 |
1.6871 | 24300 | 0.0001 |
1.6941 | 24400 | 0.0001 |
1.7010 | 24500 | 0.0001 |
1.7080 | 24600 | 0.0001 |
1.7149 | 24700 | 0.0001 |
1.7219 | 24800 | 0.0001 |
1.7288 | 24900 | 0.0001 |
1.7357 | 25000 | 0.0001 |
1.7427 | 25100 | 0.0001 |
1.7496 | 25200 | 0.0001 |
1.7566 | 25300 | 0.0001 |
1.7635 | 25400 | 0.0001 |
1.7705 | 25500 | 0.0001 |
1.7774 | 25600 | 0.0001 |
1.7844 | 25700 | 0.0001 |
1.7913 | 25800 | 0.0001 |
1.7982 | 25900 | 0.0001 |
1.8052 | 26000 | 0.0001 |
1.8121 | 26100 | 0.0001 |
1.8191 | 26200 | 0.0001 |
1.8260 | 26300 | 0.0001 |
1.8330 | 26400 | 0.0001 |
1.8399 | 26500 | 0.0001 |
1.8468 | 26600 | 0.0001 |
1.8538 | 26700 | 0.0001 |
1.8607 | 26800 | 0.0001 |
1.8677 | 26900 | 0.0001 |
1.8746 | 27000 | 0.0001 |
1.8816 | 27100 | 0.0001 |
1.8885 | 27200 | 0.0001 |
1.8954 | 27300 | 0.0001 |
1.9024 | 27400 | 0.0001 |
1.9093 | 27500 | 0.0001 |
1.9163 | 27600 | 0.0001 |
1.9232 | 27700 | 0.0001 |
1.9302 | 27800 | 0.0001 |
1.9371 | 27900 | 0.0001 |
1.9440 | 28000 | 0.0001 |
1.9510 | 28100 | 0.0001 |
1.9579 | 28200 | 0.0001 |
1.9649 | 28300 | 0.0001 |
1.9718 | 28400 | 0.0001 |
1.9788 | 28500 | 0.0001 |
1.9857 | 28600 | 0.0001 |
1.9926 | 28700 | 0.0001 |
1.9996 | 28800 | 0.0001 |
2.0065 | 28900 | 0.0001 |
2.0135 | 29000 | 0.0001 |
2.0204 | 29100 | 0.0001 |
2.0274 | 29200 | 0.0001 |
2.0343 | 29300 | 0.0001 |
2.0412 | 29400 | 0.0001 |
2.0482 | 29500 | 0.0001 |
2.0551 | 29600 | 0.0001 |
2.0621 | 29700 | 0.0001 |
2.0690 | 29800 | 0.0001 |
2.0760 | 29900 | 0.0001 |
2.0829 | 30000 | 0.0001 |
2.0898 | 30100 | 0.0001 |
2.0968 | 30200 | 0.0001 |
2.1037 | 30300 | 0.0001 |
2.1107 | 30400 | 0.0001 |
2.1176 | 30500 | 0.0001 |
2.1246 | 30600 | 0.0001 |
2.1315 | 30700 | 0.0001 |
2.1384 | 30800 | 0.0001 |
2.1454 | 30900 | 0.0001 |
2.1523 | 31000 | 0.0001 |
2.1593 | 31100 | 0.0001 |
2.1662 | 31200 | 0.0001 |
2.1732 | 31300 | 0.0001 |
2.1801 | 31400 | 0.0001 |
2.1870 | 31500 | 0.0001 |
2.1940 | 31600 | 0.0001 |
2.2009 | 31700 | 0.0001 |
2.2079 | 31800 | 0.0001 |
2.2148 | 31900 | 0.0001 |
2.2218 | 32000 | 0.0001 |
2.2287 | 32100 | 0.0001 |
2.2356 | 32200 | 0.0001 |
2.2426 | 32300 | 0.0001 |
2.2495 | 32400 | 0.0001 |
2.2565 | 32500 | 0.0001 |
2.2634 | 32600 | 0.0001 |
2.2704 | 32700 | 0.0001 |
2.2773 | 32800 | 0.0001 |
2.2842 | 32900 | 0.0001 |
2.2912 | 33000 | 0.0001 |
2.2981 | 33100 | 0.0001 |
2.3051 | 33200 | 0.0001 |
2.3120 | 33300 | 0.0001 |
2.3190 | 33400 | 0.0001 |
2.3259 | 33500 | 0.0001 |
2.3328 | 33600 | 0.0001 |
2.3398 | 33700 | 0.0001 |
2.3467 | 33800 | 0.0001 |
2.3537 | 33900 | 0.0001 |
2.3606 | 34000 | 0.0001 |
2.3676 | 34100 | 0.0001 |
2.3745 | 34200 | 0.0001 |
2.3814 | 34300 | 0.0001 |
2.3884 | 34400 | 0.0001 |
2.3953 | 34500 | 0.0001 |
2.4023 | 34600 | 0.0001 |
2.4092 | 34700 | 0.0001 |
2.4162 | 34800 | 0.0001 |
2.4231 | 34900 | 0.0001 |
2.4300 | 35000 | 0.0001 |
2.4370 | 35100 | 0.0001 |
2.4439 | 35200 | 0.0001 |
2.4509 | 35300 | 0.0001 |
2.4578 | 35400 | 0.0001 |
2.4648 | 35500 | 0.0001 |
2.4717 | 35600 | 0.0001 |
2.4787 | 35700 | 0.0001 |
2.4856 | 35800 | 0.0001 |
2.4925 | 35900 | 0.0001 |
2.4995 | 36000 | 0.0001 |
2.5064 | 36100 | 0.0001 |
2.5134 | 36200 | 0.0001 |
2.5203 | 36300 | 0.0001 |
2.5273 | 36400 | 0.0001 |
2.5342 | 36500 | 0.0001 |
2.5411 | 36600 | 0.0001 |
2.5481 | 36700 | 0.0001 |
2.5550 | 36800 | 0.0001 |
2.5620 | 36900 | 0.0001 |
2.5689 | 37000 | 0.0001 |
2.5759 | 37100 | 0.0001 |
2.5828 | 37200 | 0.0001 |
2.5897 | 37300 | 0.0001 |
2.5967 | 37400 | 0.0001 |
2.6036 | 37500 | 0.0001 |
2.6106 | 37600 | 0.0001 |
2.6175 | 37700 | 0.0001 |
2.6245 | 37800 | 0.0001 |
2.6314 | 37900 | 0.0001 |
2.6383 | 38000 | 0.0001 |
2.6453 | 38100 | 0.0001 |
2.6522 | 38200 | 0.0001 |
2.6592 | 38300 | 0.0001 |
2.6661 | 38400 | 0.0001 |
2.6731 | 38500 | 0.0001 |
2.6800 | 38600 | 0.0001 |
2.6869 | 38700 | 0.0001 |
2.6939 | 38800 | 0.0001 |
2.7008 | 38900 | 0.0001 |
2.7078 | 39000 | 0.0001 |
2.7147 | 39100 | 0.0001 |
2.7217 | 39200 | 0.0001 |
2.7286 | 39300 | 0.0001 |
2.7355 | 39400 | 0.0001 |
2.7425 | 39500 | 0.0001 |
2.7494 | 39600 | 0.0001 |
2.7564 | 39700 | 0.0001 |
2.7633 | 39800 | 0.0001 |
2.7703 | 39900 | 0.0001 |
2.7772 | 40000 | 0.0001 |
2.7841 | 40100 | 0.0001 |
2.7911 | 40200 | 0.0001 |
2.7980 | 40300 | 0.0001 |
2.8050 | 40400 | 0.0001 |
2.8119 | 40500 | 0.0001 |
2.8189 | 40600 | 0.0001 |
2.8258 | 40700 | 0.0001 |
2.8327 | 40800 | 0.0001 |
2.8397 | 40900 | 0.0001 |
2.8466 | 41000 | 0.0001 |
2.8536 | 41100 | 0.0001 |
2.8605 | 41200 | 0.0001 |
2.8675 | 41300 | 0.0001 |
2.8744 | 41400 | 0.0001 |
2.8813 | 41500 | 0.0001 |
2.8883 | 41600 | 0.0001 |
2.8952 | 41700 | 0.0001 |
2.9022 | 41800 | 0.0001 |
2.9091 | 41900 | 0.0001 |
2.9161 | 42000 | 0.0001 |
2.9230 | 42100 | 0.0001 |
2.9299 | 42200 | 0.0001 |
2.9369 | 42300 | 0.0001 |
2.9438 | 42400 | 0.0001 |
2.9508 | 42500 | 0.0001 |
2.9577 | 42600 | 0.0001 |
2.9647 | 42700 | 0.0001 |
2.9716 | 42800 | 0.0001 |
2.9785 | 42900 | 0.0001 |
2.9855 | 43000 | 0.0001 |
2.9924 | 43100 | 0.0001 |
2.9994 | 43200 | 0.0001 |
3.0063 | 43300 | 0.0001 |
3.0133 | 43400 | 0.0001 |
3.0202 | 43500 | 0.0001 |
3.0271 | 43600 | 0.0001 |
3.0341 | 43700 | 0.0001 |
3.0410 | 43800 | 0.0001 |
3.0480 | 43900 | 0.0001 |
3.0549 | 44000 | 0.0001 |
3.0619 | 44100 | 0.0001 |
3.0688 | 44200 | 0.0001 |
3.0757 | 44300 | 0.0001 |
3.0827 | 44400 | 0.0001 |
3.0896 | 44500 | 0.0001 |
3.0966 | 44600 | 0.0001 |
3.1035 | 44700 | 0.0001 |
3.1105 | 44800 | 0.0001 |
3.1174 | 44900 | 0.0001 |
3.1243 | 45000 | 0.0001 |
3.1313 | 45100 | 0.0001 |
3.1382 | 45200 | 0.0001 |
3.1452 | 45300 | 0.0001 |
3.1521 | 45400 | 0.0001 |
3.1591 | 45500 | 0.0001 |
3.1660 | 45600 | 0.0001 |
3.1730 | 45700 | 0.0001 |
3.1799 | 45800 | 0.0001 |
3.1868 | 45900 | 0.0001 |
3.1938 | 46000 | 0.0001 |
3.2007 | 46100 | 0.0001 |
3.2077 | 46200 | 0.0001 |
3.2146 | 46300 | 0.0001 |
3.2216 | 46400 | 0.0001 |
3.2285 | 46500 | 0.0001 |
3.2354 | 46600 | 0.0001 |
3.2424 | 46700 | 0.0001 |
3.2493 | 46800 | 0.0001 |
3.2563 | 46900 | 0.0001 |
3.2632 | 47000 | 0.0001 |
3.2702 | 47100 | 0.0001 |
3.2771 | 47200 | 0.0001 |
3.2840 | 47300 | 0.0001 |
3.2910 | 47400 | 0.0001 |
3.2979 | 47500 | 0.0001 |
3.3049 | 47600 | 0.0001 |
3.3118 | 47700 | 0.0001 |
3.3188 | 47800 | 0.0001 |
3.3257 | 47900 | 0.0001 |
3.3326 | 48000 | 0.0001 |
3.3396 | 48100 | 0.0001 |
3.3465 | 48200 | 0.0001 |
3.3535 | 48300 | 0.0001 |
3.3604 | 48400 | 0.0001 |
3.3674 | 48500 | 0.0001 |
3.3743 | 48600 | 0.0001 |
3.3812 | 48700 | 0.0001 |
3.3882 | 48800 | 0.0001 |
3.3951 | 48900 | 0.0001 |
3.4021 | 49000 | 0.0001 |
3.4090 | 49100 | 0.0001 |
3.4160 | 49200 | 0.0001 |
3.4229 | 49300 | 0.0001 |
3.4298 | 49400 | 0.0001 |
3.4368 | 49500 | 0.0001 |
3.4437 | 49600 | 0.0001 |
3.4507 | 49700 | 0.0001 |
3.4576 | 49800 | 0.0001 |
3.4646 | 49900 | 0.0001 |
3.4715 | 50000 | 0.0001 |
3.4784 | 50100 | 0.0001 |
3.4854 | 50200 | 0.0001 |
3.4923 | 50300 | 0.0001 |
3.4993 | 50400 | 0.0001 |
3.5062 | 50500 | 0.0001 |
3.5132 | 50600 | 0.0001 |
3.5201 | 50700 | 0.0001 |
3.5270 | 50800 | 0.0001 |
3.5340 | 50900 | 0.0001 |
3.5409 | 51000 | 0.0001 |
3.5479 | 51100 | 0.0001 |
3.5548 | 51200 | 0.0001 |
3.5618 | 51300 | 0.0001 |
3.5687 | 51400 | 0.0001 |
3.5756 | 51500 | 0.0001 |
3.5826 | 51600 | 0.0001 |
3.5895 | 51700 | 0.0001 |
3.5965 | 51800 | 0.0001 |
3.6034 | 51900 | 0.0001 |
3.6104 | 52000 | 0.0001 |
3.6173 | 52100 | 0.0001 |
3.6242 | 52200 | 0.0001 |
3.6312 | 52300 | 0.0001 |
3.6381 | 52400 | 0.0001 |
3.6451 | 52500 | 0.0001 |
3.6520 | 52600 | 0.0001 |
3.6590 | 52700 | 0.0001 |
3.6659 | 52800 | 0.0001 |
3.6728 | 52900 | 0.0001 |
3.6798 | 53000 | 0.0001 |
3.6867 | 53100 | 0.0001 |
3.6937 | 53200 | 0.0001 |
3.7006 | 53300 | 0.0001 |
3.7076 | 53400 | 0.0001 |
3.7145 | 53500 | 0.0001 |
3.7214 | 53600 | 0.0001 |
3.7284 | 53700 | 0.0001 |
3.7353 | 53800 | 0.0001 |
3.7423 | 53900 | 0.0001 |
3.7492 | 54000 | 0.0001 |
3.7562 | 54100 | 0.0001 |
3.7631 | 54200 | 0.0001 |
3.7700 | 54300 | 0.0001 |
3.7770 | 54400 | 0.0001 |
3.7839 | 54500 | 0.0001 |
3.7909 | 54600 | 0.0001 |
3.7978 | 54700 | 0.0001 |
3.8048 | 54800 | 0.0001 |
3.8117 | 54900 | 0.0001 |
3.8186 | 55000 | 0.0001 |
3.8256 | 55100 | 0.0001 |
3.8325 | 55200 | 0.0001 |
3.8395 | 55300 | 0.0001 |
3.8464 | 55400 | 0.0001 |
3.8534 | 55500 | 0.0001 |
3.8603 | 55600 | 0.0001 |
3.8672 | 55700 | 0.0001 |
3.8742 | 55800 | 0.0001 |
3.8811 | 55900 | 0.0001 |
3.8881 | 56000 | 0.0001 |
3.8950 | 56100 | 0.0001 |
3.9020 | 56200 | 0.0001 |
3.9089 | 56300 | 0.0001 |
3.9159 | 56400 | 0.0001 |
3.9228 | 56500 | 0.0001 |
3.9297 | 56600 | 0.0001 |
3.9367 | 56700 | 0.0001 |
3.9436 | 56800 | 0.0001 |
3.9506 | 56900 | 0.0001 |
3.9575 | 57000 | 0.0001 |
3.9645 | 57100 | 0.0001 |
3.9714 | 57200 | 0.0001 |
3.9783 | 57300 | 0.0001 |
3.9853 | 57400 | 0.0001 |
3.9922 | 57500 | 0.0001 |
3.9992 | 57600 | 0.0001 |
4.0061 | 57700 | 0.0001 |
4.0131 | 57800 | 0.0001 |
4.0200 | 57900 | 0.0001 |
4.0269 | 58000 | 0.0001 |
4.0339 | 58100 | 0.0001 |
4.0408 | 58200 | 0.0001 |
4.0478 | 58300 | 0.0001 |
4.0547 | 58400 | 0.0001 |
4.0617 | 58500 | 0.0001 |
4.0686 | 58600 | 0.0001 |
4.0755 | 58700 | 0.0001 |
4.0825 | 58800 | 0.0001 |
4.0894 | 58900 | 0.0001 |
4.0964 | 59000 | 0.0001 |
4.1033 | 59100 | 0.0001 |
4.1103 | 59200 | 0.0001 |
4.1172 | 59300 | 0.0001 |
4.1241 | 59400 | 0.0001 |
4.1311 | 59500 | 0.0001 |
4.1380 | 59600 | 0.0001 |
4.1450 | 59700 | 0.0001 |
4.1519 | 59800 | 0.0001 |
4.1589 | 59900 | 0.0001 |
4.1658 | 60000 | 0.0001 |
4.1727 | 60100 | 0.0001 |
4.1797 | 60200 | 0.0001 |
4.1866 | 60300 | 0.0001 |
4.1936 | 60400 | 0.0001 |
4.2005 | 60500 | 0.0001 |
4.2075 | 60600 | 0.0001 |
4.2144 | 60700 | 0.0001 |
4.2213 | 60800 | 0.0001 |
4.2283 | 60900 | 0.0001 |
4.2352 | 61000 | 0.0001 |
4.2422 | 61100 | 0.0001 |
4.2491 | 61200 | 0.0001 |
4.2561 | 61300 | 0.0001 |
4.2630 | 61400 | 0.0001 |
4.2699 | 61500 | 0.0001 |
4.2769 | 61600 | 0.0001 |
4.2838 | 61700 | 0.0001 |
4.2908 | 61800 | 0.0001 |
4.2977 | 61900 | 0.0001 |
4.3047 | 62000 | 0.0001 |
4.3116 | 62100 | 0.0001 |
4.3185 | 62200 | 0.0001 |
4.3255 | 62300 | 0.0001 |
4.3324 | 62400 | 0.0001 |
4.3394 | 62500 | 0.0001 |
4.3463 | 62600 | 0.0001 |
4.3533 | 62700 | 0.0001 |
4.3602 | 62800 | 0.0001 |
4.3671 | 62900 | 0.0001 |
4.3741 | 63000 | 0.0001 |
4.3810 | 63100 | 0.0001 |
4.3880 | 63200 | 0.0001 |
4.3949 | 63300 | 0.0001 |
4.4019 | 63400 | 0.0 |
4.4088 | 63500 | 0.0001 |
4.4157 | 63600 | 0.0001 |
4.4227 | 63700 | 0.0001 |
4.4296 | 63800 | 0.0001 |
4.4366 | 63900 | 0.0001 |
4.4435 | 64000 | 0.0001 |
4.4505 | 64100 | 0.0001 |
4.4574 | 64200 | 0.0001 |
4.4643 | 64300 | 0.0 |
4.4713 | 64400 | 0.0001 |
4.4782 | 64500 | 0.0001 |
4.4852 | 64600 | 0.0001 |
4.4921 | 64700 | 0.0001 |
4.4991 | 64800 | 0.0001 |
4.5060 | 64900 | 0.0001 |
4.5129 | 65000 | 0.0 |
4.5199 | 65100 | 0.0 |
4.5268 | 65200 | 0.0 |
4.5338 | 65300 | 0.0 |
4.5407 | 65400 | 0.0 |
4.5477 | 65500 | 0.0 |
4.5546 | 65600 | 0.0 |
4.5615 | 65700 | 0.0001 |
4.5685 | 65800 | 0.0 |
4.5754 | 65900 | 0.0001 |
4.5824 | 66000 | 0.0001 |
4.5893 | 66100 | 0.0 |
4.5963 | 66200 | 0.0001 |
4.6032 | 66300 | 0.0001 |
4.6102 | 66400 | 0.0 |
4.6171 | 66500 | 0.0001 |
4.6240 | 66600 | 0.0 |
4.6310 | 66700 | 0.0 |
4.6379 | 66800 | 0.0001 |
4.6449 | 66900 | 0.0 |
4.6518 | 67000 | 0.0 |
4.6588 | 67100 | 0.0 |
4.6657 | 67200 | 0.0001 |
4.6726 | 67300 | 0.0001 |
4.6796 | 67400 | 0.0001 |
4.6865 | 67500 | 0.0 |
4.6935 | 67600 | 0.0001 |
4.7004 | 67700 | 0.0001 |
4.7074 | 67800 | 0.0001 |
4.7143 | 67900 | 0.0001 |
4.7212 | 68000 | 0.0 |
4.7282 | 68100 | 0.0001 |
4.7351 | 68200 | 0.0 |
4.7421 | 68300 | 0.0 |
4.7490 | 68400 | 0.0 |
4.7560 | 68500 | 0.0001 |
4.7629 | 68600 | 0.0001 |
4.7698 | 68700 | 0.0 |
4.7768 | 68800 | 0.0 |
4.7837 | 68900 | 0.0001 |
4.7907 | 69000 | 0.0001 |
4.7976 | 69100 | 0.0 |
4.8046 | 69200 | 0.0 |
4.8115 | 69300 | 0.0001 |
4.8184 | 69400 | 0.0001 |
4.8254 | 69500 | 0.0001 |
4.8323 | 69600 | 0.0001 |
4.8393 | 69700 | 0.0 |
4.8462 | 69800 | 0.0001 |
4.8532 | 69900 | 0.0 |
4.8601 | 70000 | 0.0 |
4.8670 | 70100 | 0.0 |
4.8740 | 70200 | 0.0 |
4.8809 | 70300 | 0.0001 |
4.8879 | 70400 | 0.0 |
4.8948 | 70500 | 0.0 |
4.9018 | 70600 | 0.0001 |
4.9087 | 70700 | 0.0001 |
4.9156 | 70800 | 0.0001 |
4.9226 | 70900 | 0.0 |
4.9295 | 71000 | 0.0001 |
4.9365 | 71100 | 0.0001 |
4.9434 | 71200 | 0.0 |
4.9504 | 71300 | 0.0001 |
4.9573 | 71400 | 0.0 |
4.9642 | 71500 | 0.0 |
4.9712 | 71600 | 0.0 |
4.9781 | 71700 | 0.0001 |
4.9851 | 71800 | 0.0 |
4.9920 | 71900 | 0.0001 |
4.9990 | 72000 | 0.0 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}