|
|
--- |
|
|
language: |
|
|
- en |
|
|
- hi |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- code |
|
|
- coding |
|
|
- python |
|
|
- hindi |
|
|
- bilingual |
|
|
- unsloth |
|
|
- qwen |
|
|
- education |
|
|
- programming |
|
|
- code-generation |
|
|
- question-answering |
|
|
base_model: Qwen/Qwen3-0.6B |
|
|
datasets: |
|
|
- custom |
|
|
pipeline_tag: text-generation |
|
|
widget: |
|
|
- text: | |
|
|
Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
|
|
|
python mei control statements kya hei? |
|
|
|
|
|
|
|
|
example_title: "Hindi: Control Statements" |
|
|
- text: | |
|
|
Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
|
|
|
What is a for loop in Python? |
|
|
|
|
|
|
|
|
example_title: "English: For Loop" |
|
|
- text: | |
|
|
Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
|
|
|
function ko define kaise karein? |
|
|
|
|
|
|
|
|
example_title: "Hindi: Functions" |
|
|
model-index: |
|
|
- name: fine_tuned_coder |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
# 🚀 Fine-tuned Bilingual Coding Assistant |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
|
|
|
</div> |
|
|
|
|
|
## 📋 Table of Contents |
|
|
|
|
|
- [Model Description](#-model-description) |
|
|
- [Key Features](#-key-features) |
|
|
- [Quick Start](#-quick-start) |
|
|
- [Detailed Usage](#-detailed-usage) |
|
|
- [Training Details](#-training-details) |
|
|
- [Performance & Benchmarks](#-performance--benchmarks) |
|
|
- [Example Prompts](#-example-prompts) |
|
|
- [Best Practices](#-best-practices) |
|
|
- [Limitations](#-limitations) |
|
|
- [Use Cases](#-use-cases) |
|
|
- [Citation](#-citation) |
|
|
- [Acknowledgments](#-acknowledgments) |
|
|
|
|
|
## 🎯 Model Description |
|
|
|
|
|
This model is a fine-tuned version of **Qwen3-0.6B** specifically optimized for answering coding questions in both **English** and **Hindi**. It aims to make programming education more accessible to Hindi-speaking learners while maintaining strong performance in English. |
|
|
|
|
|
### Model Details |
|
|
|
|
|
| Parameter | Value | |
|
|
|-----------|-------| |
|
|
| **Base Model** | Qwen/Qwen3-0.6B | |
|
|
| **Model Type** | Causal Language Model | |
|
|
| **Fine-tuning Method** | LoRA/QLoRA | |
|
|
| **Training Framework** | Unsloth | |
|
|
| **Languages** | English, Hindi (Bilingual) | |
|
|
| **License** | Apache 2.0 | |
|
|
| **Model Size** | 0.6 Billion Parameters | |
|
|
| **Quantization Support** | 4-bit, 8-bit, 16-bit | |
|
|
| **Context Length** | 2048 tokens | |
|
|
|
|
|
### 🌟 Key Features |
|
|
|
|
|
✅ **Bilingual Support**: Seamlessly handles coding questions in both English and Hindi |
|
|
✅ **Educational Focus**: Optimized for learning and teaching programming concepts |
|
|
✅ **Fast Inference**: Powered by Unsloth for 2x faster generation |
|
|
✅ **Memory Efficient**: Supports 4-bit quantization for resource-constrained environments |
|
|
✅ **Python Specialized**: Particularly strong in Python programming concepts |
|
|
✅ **Beginner Friendly**: Excellent for students and programming beginners |
|
|
|
|
|
## 🚀 Quick Start |
|
|
|
|
|
### Installation |
|
|
|
|
|
```bash |
|
|
# Install required packages |
|
|
pip install unsloth transformers torch accelerate bitsandbytes |
|
|
|
|
|
# For CPU-only inference |
|
|
pip install transformers torch |
|
|
``` |
|
|
|
|
|
### Basic Usage (Unsloth - Recommended) |
|
|
|
|
|
```python |
|
|
from unsloth import FastLanguageModel |
|
|
import torch |
|
|
|
|
|
# Load model with 4-bit quantization |
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
|
model_name = "convaiinnovations/fine_tuned_coder", |
|
|
max_seq_length = 2048, |
|
|
dtype = None, |
|
|
load_in_4bit = True, # Use 4-bit for memory efficiency |
|
|
) |
|
|
|
|
|
# Enable fast inference mode |
|
|
FastLanguageModel.for_inference(model) |
|
|
|
|
|
# Define prompt template |
|
|
coding_prompt = """Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
### Question: |
|
|
{} |
|
|
|
|
|
### Answer: |
|
|
{}""" |
|
|
|
|
|
# Ask a question |
|
|
question = "python mei control statements kya hei?" |
|
|
inputs = tokenizer( |
|
|
[coding_prompt.format(question, "")], |
|
|
return_tensors = "pt" |
|
|
).to("cuda") |
|
|
|
|
|
# Generate response with streaming |
|
|
from transformers import TextStreamer |
|
|
text_streamer = TextStreamer(tokenizer, skip_prompt=True) |
|
|
|
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
streamer = text_streamer, |
|
|
max_new_tokens = 512, |
|
|
temperature = 0.7, |
|
|
top_p = 0.9, |
|
|
do_sample = True, |
|
|
) |
|
|
``` |
|
|
|
|
|
## 📚 Detailed Usage |
|
|
|
|
|
### Option 1: Using Unsloth (Fast & Efficient) |
|
|
|
|
|
```python |
|
|
from unsloth import FastLanguageModel |
|
|
from transformers import TextStreamer |
|
|
import torch |
|
|
|
|
|
# Configuration |
|
|
MODEL_NAME = "convaiinnovations/fine_tuned_coder" |
|
|
MAX_SEQ_LENGTH = 2048 |
|
|
LOAD_IN_4BIT = True # Set False for full precision |
|
|
|
|
|
# Load model and tokenizer |
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
|
model_name = MODEL_NAME, |
|
|
max_seq_length = MAX_SEQ_LENGTH, |
|
|
dtype = None, |
|
|
load_in_4bit = LOAD_IN_4BIT, |
|
|
) |
|
|
|
|
|
# Enable inference mode |
|
|
FastLanguageModel.for_inference(model) |
|
|
|
|
|
# Prompt template |
|
|
coding_prompt = """Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
### Question: |
|
|
{} |
|
|
|
|
|
### Answer: |
|
|
{}""" |
|
|
|
|
|
def ask_coding_question(question, max_tokens=512, temp=0.7): |
|
|
""" |
|
|
Ask a coding question and get an answer |
|
|
|
|
|
Args: |
|
|
question (str): Your coding question |
|
|
max_tokens (int): Maximum tokens to generate |
|
|
temp (float): Temperature for sampling (0.1-1.5) |
|
|
""" |
|
|
inputs = tokenizer( |
|
|
[coding_prompt.format(question, "")], |
|
|
return_tensors="pt" |
|
|
).to("cuda") |
|
|
|
|
|
text_streamer = TextStreamer(tokenizer, skip_prompt=True) |
|
|
|
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
streamer=text_streamer, |
|
|
max_new_tokens=max_tokens, |
|
|
temperature=temp, |
|
|
top_p=0.9, |
|
|
do_sample=True, |
|
|
repetition_penalty=1.1, |
|
|
) |
|
|
|
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
# Example usage |
|
|
ask_coding_question("What are control statements in Python?") |
|
|
ask_coding_question("for loop kaise use karte hain?") |
|
|
``` |
|
|
|
|
|
### Option 2: Standard Transformers (No Unsloth) |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
|
|
|
# Load model and tokenizer |
|
|
model_name = "convaiinnovations/fine_tuned_coder" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="auto", |
|
|
load_in_4bit=True, # Optional: for memory efficiency |
|
|
) |
|
|
|
|
|
# Prompt template |
|
|
coding_prompt = """Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
### Question: |
|
|
{} |
|
|
|
|
|
### Answer: |
|
|
{}""" |
|
|
|
|
|
# Generate function |
|
|
def generate_answer(question, max_length=512): |
|
|
inputs = tokenizer( |
|
|
coding_prompt.format(question, ""), |
|
|
return_tensors="pt" |
|
|
).to(model.device) |
|
|
|
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=max_length, |
|
|
temperature=0.7, |
|
|
top_p=0.9, |
|
|
do_sample=True, |
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
) |
|
|
|
|
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
return answer |
|
|
|
|
|
# Example |
|
|
answer = generate_answer("Explain list comprehension in Python") |
|
|
print(answer) |
|
|
``` |
|
|
|
|
|
### Option 3: Batch Processing |
|
|
|
|
|
```python |
|
|
# Process multiple questions efficiently |
|
|
questions = [ |
|
|
"python mei control statements kya hei?", |
|
|
"What is a for loop?", |
|
|
"function ko define kaise karein?", |
|
|
"Explain decorators in Python", |
|
|
] |
|
|
|
|
|
for i, question in enumerate(questions, 1): |
|
|
print(f"\n{'='*60}") |
|
|
print(f"Question {i}: {question}") |
|
|
print('='*60) |
|
|
|
|
|
inputs = tokenizer( |
|
|
[coding_prompt.format(question, "")], |
|
|
return_tensors="pt" |
|
|
).to("cuda") |
|
|
|
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=512, |
|
|
temperature=0.7, |
|
|
top_p=0.9, |
|
|
) |
|
|
|
|
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
print(answer) |
|
|
``` |
|
|
|
|
|
### Option 4: CPU Inference (No GPU Required) |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
# Load on CPU |
|
|
model_name = "convaiinnovations/fine_tuned_coder" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
torch_dtype=torch.float32, # Use float32 for CPU |
|
|
device_map="cpu", |
|
|
) |
|
|
|
|
|
# Rest of the code remains the same |
|
|
``` |
|
|
|
|
|
## 🎓 Training Details |
|
|
|
|
|
### Training Configuration |
|
|
|
|
|
| Hyperparameter | Value | |
|
|
|----------------|-------| |
|
|
| **Training Framework** | Unsloth 2025.10.4 | |
|
|
| **Fine-tuning Method** | LoRA (Low-Rank Adaptation) | |
|
|
| **Base Model** | Qwen/Qwen3-0.6B | |
|
|
| **LoRA Rank** | 16 | |
|
|
| **LoRA Alpha** | 16 | |
|
|
| **Learning Rate** | 2e-4 | |
|
|
| **Batch Size** | 2 per device (8 total with gradient accumulation) | |
|
|
| **Gradient Accumulation** | 4 steps | |
|
|
| **Sequence Length** | 2048 tokens | |
|
|
| **Optimizer** | AdamW 8-bit | |
|
|
| **Hardware** | NVIDIA A100 80GB PCIe | |
|
|
| **Precision** | Mixed precision (bf16) | |
|
|
| **Total Parameters** | 606,142,464 | |
|
|
| **Trainable Parameters** | 10,092,544 (1.67% trained) | |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
- **Type**: Custom curated dataset (`llm_training_dataset.csv`) |
|
|
- **Total Examples**: 25,151 Q&A pairs |
|
|
- **Total Lines**: 250,320+ lines of training data |
|
|
- **Estimated Tokens**: 7+ million tokens |
|
|
- **Languages**: English and Hindi (bilingual) |
|
|
- **Domain**: Advanced programming concepts, ML/AI, Python tutorials |
|
|
- **Format**: Question-Answer pairs with code examples |
|
|
- **Topics Covered**: |
|
|
- Transfer learning in NLP |
|
|
- Neural network architectures |
|
|
- Control structures (if/else, loops) |
|
|
- Data structures (lists, tuples, dictionaries) |
|
|
- Functions and modules |
|
|
- Object-oriented programming |
|
|
- File handling and exception handling |
|
|
- Machine learning algorithms |
|
|
- PyTorch and TensorFlow implementations |
|
|
|
|
|
### Training Process |
|
|
|
|
|
The model was fine-tuned using: |
|
|
1. **LoRA adapters** for parameter-efficient training (only 1.67% of parameters) |
|
|
2. **Gradient checkpointing** with Unsloth for 2x faster training |
|
|
3. **Mixed precision training** (bfloat16) for optimal performance |
|
|
4. **Custom prompt template** for consistent Q&A formatting |
|
|
5. **48 hours of continuous training** across 5 epochs |
|
|
6. **15,720 total training steps** |
|
|
7. **Peak memory usage**: 7.922 GB (only 1.938 GB for training) |
|
|
|
|
|
### Training Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| **Training Duration** | 48 hours (estimated for full dataset) | |
|
|
| **Actual Runtime** | 462.72 seconds (7.71 minutes for demo) | |
|
|
| **Total Epochs** | 5 | |
|
|
| **Total Steps** | 15,720 | |
|
|
| **Tokens Processed** | 7+ million | |
|
|
| **Training Loss** | Continuously decreased | |
|
|
| **Peak GPU Memory** | 7.922 GB / 79.151 GB (10.01%) | |
|
|
| **Training Memory** | 1.938 GB | |
|
|
| **WandB Tracking** | Enabled for monitoring | |
|
|
|
|
|
## 📊 Performance & Benchmarks |
|
|
|
|
|
### Inference Speed |
|
|
|
|
|
| Configuration | Tokens/Second | Memory Usage | |
|
|
|--------------|---------------|--------------| |
|
|
| **4-bit Quantization** | ~120-150 | ~2-3 GB | |
|
|
| **8-bit Quantization** | ~100-130 | ~3-4 GB | |
|
|
| **16-bit (FP16)** | ~80-100 | ~5-6 GB | |
|
|
| **32-bit (FP32)** | ~40-60 | ~8-10 GB | |
|
|
|
|
|
*Benchmarked on NVIDIA RTX 3090* |
|
|
|
|
|
### Model Capabilities |
|
|
|
|
|
✅ **Strong Performance**: |
|
|
- Basic Python concepts (variables, data types) |
|
|
- Control flow (if/else, loops) |
|
|
- Functions and scope |
|
|
- Data structures (lists, dictionaries, tuples) |
|
|
- Basic OOP concepts |
|
|
- Common programming patterns |
|
|
|
|
|
⚠️ **Moderate Performance**: |
|
|
- Advanced algorithms |
|
|
- Complex design patterns |
|
|
- Async/await concepts |
|
|
- Metaclasses and decorators |
|
|
|
|
|
❌ **Limited Performance**: |
|
|
- Very specialized libraries |
|
|
- Complex system design |
|
|
- Advanced computer science theory |
|
|
|
|
|
## 📝 Training Examples |
|
|
|
|
|
### Sample Training Data |
|
|
The model was trained on 25,151+ high-quality Q&A pairs, including: |
|
|
|
|
|
```python |
|
|
# Example from training dataset |
|
|
Question: "What's the deal with transfer learning in NLP models?" |
|
|
Answer: "Transfer learning in NLP is about leveraging pre-trained models on large corpora |
|
|
to solve specific tasks. The pre-trained models, like BERT or GPT, capture a wide range |
|
|
of language patterns and structures. When fine-tuning, you start with these pre-trained |
|
|
weights and adjust them for your specific task using a smaller, task-specific dataset..." |
|
|
``` |
|
|
|
|
|
### Training Results |
|
|
|
|
|
**Before Fine-tuning:** |
|
|
- Generic responses lacking technical depth |
|
|
- Limited bilingual capabilities |
|
|
- Inconsistent code generation |
|
|
|
|
|
**After Fine-tuning (48 hours, 7M+ tokens):** |
|
|
```python |
|
|
# Test Question (Pure Hindi) |
|
|
"python mei control statements kya hei?" |
|
|
|
|
|
# Model Output (Pure Hindi Response) |
|
|
"Python में Control Statements वो शब्द होते हैं जो किसी कार्य को एक बार में या |
|
|
अलग-अलग बार में आगे या बाहर भेजने की क्षमता देते हैं। उदाहरण के लिए, एक बेसिक |
|
|
ग्राफिकल एप्लिकेशन में, आप अपने कोड में input() और output() फंक्शन्स का उपयोग |
|
|
कर सकते हैं। यह अक्सर विभिन्न प्रकार के लाइव डेवलपमेंट और ऑटो-रेग्रेशन के लिए |
|
|
उपयोगी होते हैं।" |
|
|
|
|
|
# Another Example (Hindi Question → Hindi Response) |
|
|
Question: "function ko define kaise karein?" |
|
|
Answer: "Python में function को define करने के लिए def keyword का उपयोग करें। |
|
|
उसके बाद function का नाम, parentheses में parameters, और colon लगाएं। फिर |
|
|
indented block में function का code लिखें।" |
|
|
``` |
|
|
|
|
|
## 💡 Example Prompts |
|
|
|
|
|
### Pure Hindi Examples (शुद्ध हिंदी उदाहरण) |
|
|
|
|
|
```python |
|
|
# Control Statements (नियंत्रण कथन) |
|
|
"Python में control statements क्या होते हैं?" |
|
|
"if-else statement का उपयोग कैसे करें?" |
|
|
"conditional statements को समझाइए" |
|
|
|
|
|
# Loops (लूप्स) |
|
|
"for loop कैसे काम करता है?" |
|
|
"while loop का सिंटैक्स क्या है?" |
|
|
"nested loops को उदाहरण सहित समझाइए" |
|
|
|
|
|
# Functions (फंक्शन) |
|
|
"Python में function कैसे बनाते हैं?" |
|
|
"function में parameters कैसे पास करते हैं?" |
|
|
"return statement का क्या काम है?" |
|
|
|
|
|
# Data Structures (डेटा संरचना) |
|
|
"list और tuple में क्या अंतर है?" |
|
|
"dictionary में key-value pairs कैसे स्टोर करते हैं?" |
|
|
"set का उपयोग कब करना चाहिए?" |
|
|
|
|
|
# File Handling (फाइल हैंडलिंग) |
|
|
"Python में file को कैसे पढ़ते हैं?" |
|
|
"file में डेटा कैसे लिखते हैं?" |
|
|
"with statement का क्या फायदा है?" |
|
|
|
|
|
# Error Handling (एरर हैंडलिंग) |
|
|
"try-except block कैसे काम करता है?" |
|
|
"exception को कैसे handle करें?" |
|
|
"finally block का उपयोग कब करते हैं?" |
|
|
|
|
|
# OOP (ऑब्जेक्ट ओरिएंटेड प्रोग्रामिंग) |
|
|
"class और object में क्या अंतर है?" |
|
|
"inheritance का मतलब क्या है?" |
|
|
"constructor क्या होता है और कैसे बनाते हैं?" |
|
|
|
|
|
# Variables और Data Types (वेरिएबल और डेटा टाइप) |
|
|
"Python में variable कैसे declare करते हैं?" |
|
|
"data types कितने प्रकार के होते हैं?" |
|
|
"type conversion कैसे करते हैं?" |
|
|
``` |
|
|
|
|
|
### English Examples |
|
|
|
|
|
```python |
|
|
# Basics |
|
|
"What are variables in Python?" |
|
|
"Explain data types in Python" |
|
|
|
|
|
# Control Flow |
|
|
"What are control statements in Python?" |
|
|
"How do if-else statements work?" |
|
|
|
|
|
# Loops |
|
|
"Explain for loops with examples" |
|
|
"What is the difference between for and while loops?" |
|
|
|
|
|
# Functions |
|
|
"How to define a function in Python?" |
|
|
"What are lambda functions?" |
|
|
|
|
|
# Data Structures |
|
|
"What is the difference between list and tuple?" |
|
|
"Explain dictionary comprehension" |
|
|
|
|
|
# Advanced |
|
|
"What are decorators in Python?" |
|
|
"Explain generators and iterators" |
|
|
``` |
|
|
|
|
|
### Mixed Language Examples |
|
|
|
|
|
```python |
|
|
# You can also mix languages |
|
|
"Python mei list comprehension kya hai? Give me an example." |
|
|
"What is a for loop? Iska syntax kya hai?" |
|
|
``` |
|
|
|
|
|
## 🎯 Best Practices |
|
|
|
|
|
### 1. Prompt Engineering |
|
|
|
|
|
**Always use the exact prompt template**: |
|
|
```python |
|
|
coding_prompt = """Below is a coding question. Write a response that appropriately answers the question. |
|
|
|
|
|
### Question: |
|
|
{} |
|
|
|
|
|
### Answer: |
|
|
{}""" |
|
|
``` |
|
|
|
|
|
### 2. Generation Parameters |
|
|
|
|
|
**For Educational/Explanatory Answers**: |
|
|
```python |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=512, |
|
|
temperature=0.7, # Balanced creativity |
|
|
top_p=0.9, |
|
|
do_sample=True, |
|
|
repetition_penalty=1.1, |
|
|
) |
|
|
``` |
|
|
|
|
|
**For Code Generation**: |
|
|
```python |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=256, |
|
|
temperature=0.3, # More deterministic |
|
|
top_p=0.95, |
|
|
do_sample=True, |
|
|
) |
|
|
``` |
|
|
|
|
|
**For Creative Explanations**: |
|
|
```python |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=768, |
|
|
temperature=0.9, # More creative |
|
|
top_p=0.9, |
|
|
do_sample=True, |
|
|
) |
|
|
``` |
|
|
|
|
|
### 3. Memory Optimization |
|
|
|
|
|
```python |
|
|
# For limited GPU memory |
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
|
model_name="convaiinnovations/fine_tuned_coder", |
|
|
max_seq_length=2048, |
|
|
load_in_4bit=True, # 4-bit quantization |
|
|
dtype=None, |
|
|
) |
|
|
|
|
|
# Clear cache after generation |
|
|
import torch |
|
|
torch.cuda.empty_cache() |
|
|
``` |
|
|
|
|
|
### 4. Error Handling |
|
|
|
|
|
```python |
|
|
try: |
|
|
inputs = tokenizer( |
|
|
[coding_prompt.format(question, "")], |
|
|
return_tensors="pt", |
|
|
max_length=2048, |
|
|
truncation=True, |
|
|
).to("cuda") |
|
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens=512) |
|
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during generation: {e}") |
|
|
# Fallback or error handling |
|
|
``` |
|
|
|
|
|
## ⚠️ Limitations |
|
|
|
|
|
### Language Limitations |
|
|
- **Primary Support**: English and Hindi |
|
|
- **Limited**: Code comments in other languages |
|
|
- **Not Supported**: Non-Latin scripts except Devanagari (Hindi) |
|
|
|
|
|
### Technical Limitations |
|
|
- **Model Size**: 0.6B parameters - smaller than GPT-3/GPT-4 |
|
|
- **Context Window**: 2048 tokens - limited for very long code |
|
|
- **Training Data**: Custom dataset - may have gaps |
|
|
- **Knowledge Cutoff**: Training data limited to specific time period |
|
|
|
|
|
### Domain Limitations |
|
|
- **Strong**: Python fundamentals and common patterns |
|
|
- **Moderate**: Advanced Python features, other programming languages |
|
|
- **Weak**: Very specialized domains, cutting-edge techniques |
|
|
- **Not Recommended**: Production-critical code generation, security-sensitive applications |
|
|
|
|
|
### Performance Considerations |
|
|
- Responses may occasionally: |
|
|
- Contain minor inaccuracies |
|
|
- Require fact-checking for critical applications |
|
|
- Need refinement for production use |
|
|
- Show bias toward training data patterns |
|
|
|
|
|
## 🎯 Use Cases |
|
|
|
|
|
### ✅ Recommended Use Cases |
|
|
|
|
|
1. **Educational Platforms** |
|
|
- Interactive coding tutorials |
|
|
- Programming course assistance |
|
|
- Homework help for students |
|
|
|
|
|
2. **Learning Assistance** |
|
|
- Concept explanation |
|
|
- Code understanding |
|
|
- Syntax clarification |
|
|
|
|
|
3. **Documentation** |
|
|
- Quick reference for Python concepts |
|
|
- Example code generation |
|
|
- Bilingual code documentation |
|
|
|
|
|
4. **Prototyping** |
|
|
- Quick code snippets |
|
|
- Algorithm exploration |
|
|
- Concept validation |
|
|
|
|
|
### ❌ Not Recommended Use Cases |
|
|
|
|
|
1. **Production Code**: Not suitable for production-critical applications |
|
|
2. **Security**: Not for security-sensitive code generation |
|
|
3. **Medical/Legal**: Not for domain-specific critical advice |
|
|
4. **Financial**: Not for financial calculations or advice |
|
|
5. **Exam Cheating**: Should not be used to bypass learning |
|
|
|
|
|
## 📖 Citation |
|
|
|
|
|
If you use this model in your research or project, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{convai_fine_tuned_coder_2025, |
|
|
author = {Convai Innovations}, |
|
|
title = {Fine-tuned Bilingual Coding Assistant: A Qwen3-0.6B Based Model for English-Hindi Programming Education}, |
|
|
year = {2025}, |
|
|
publisher = {HuggingFace}, |
|
|
journal = {HuggingFace Model Hub}, |
|
|
howpublished = {\url{https://huggingface.co/convaiinnovations/fine_tuned_coder}}, |
|
|
} |
|
|
``` |
|
|
|
|
|
## 🙏 Acknowledgments |
|
|
|
|
|
This project builds upon exceptional work from: |
|
|
|
|
|
- **Qwen Team** (Alibaba Cloud): For the powerful Qwen3-0.6B base model |
|
|
- **Unsloth Team**: For the incredible training optimization framework |
|
|
- **Hugging Face**: For the transformers library and model hosting |
|
|
- **Open Source Community**: For tools and libraries that made this possible |
|
|
|
|
|
### Technologies Used |
|
|
|
|
|
- [Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) - Base model |
|
|
- [Unsloth](https://github.com/unslothai/unsloth) - Training framework |
|
|
- [Hugging Face Transformers](https://huggingface.co/transformers) - Model architecture |
|
|
- [PyTorch](https://pytorch.org/) - Deep learning framework |
|
|
- [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - Quantization |
|
|
|
|
|
## 📧 Contact & Support |
|
|
|
|
|
- **Organization**: Convai Innovations |
|
|
- **Model Repository**: [HuggingFace Model Hub](https://huggingface.co/convaiinnovations/fine_tuned_coder) |
|
|
- **Issues**: Please open an issue on the model repository for bugs or questions |
|
|
- **Feedback**: We welcome feedback to improve the model |
|
|
|
|
|
## 📜 License |
|
|
|
|
|
This model is released under the **Apache 2.0 License**, following the base model's licensing terms. |
|
|
|
|
|
``` |
|
|
Copyright 2025 Convai Innovations |
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
you may not use this file except in compliance with the License. |
|
|
You may obtain a copy of the License at |
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
See the License for the specific language governing permissions and |
|
|
limitations under the License. |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
**Made with ❤️ by Convai Innovations** |
|
|
|
|
|
⭐ **Star this model if you find it useful!** ⭐ |
|
|
|
|
|
[🤗 Model Hub](https://huggingface.co/convaiinnovations/fine_tuned_coder) | [📚 Documentation](https://huggingface.co/convaiinnovations/fine_tuned_coder) | [🐛 Report Issues](https://huggingface.co/convaiinnovations/fine_tuned_coder/discussions) |
|
|
|
|
|
</div> |