Enhance model card with paper, code links and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,20 +1,21 @@
|
|
1 |
---
|
2 |
-
pipeline_tag: text-generation
|
3 |
library_name: transformers
|
4 |
license: cc-by-nc-4.0
|
|
|
5 |
tags:
|
6 |
- text-to-sql
|
7 |
- reinforcement-learning
|
8 |
---
|
9 |
|
10 |
-
|
11 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
12 |
|
13 |
### Important Links
|
14 |
|
15 |
-
π[
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
|
19 |
## News
|
20 |
|
@@ -36,24 +37,94 @@ tags:
|
|
36 |
> and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an
|
37 |
> average
|
38 |
> improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model
|
39 |
-
> achieved 67.08\% EX.
|
40 |
|
41 |
### Framework
|
42 |
|
43 |
-
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png"
|
44 |
|
45 |
### Main Results
|
46 |
|
47 |
-
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png"
|
48 |
|
|
|
49 |
|
50 |
-
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/
|
51 |
-
|
52 |
-
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_spider_main.png" height="500" alt="slmsql_spider_main">
|
53 |
|
54 |
Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
|
55 |
|
56 |
-
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
## Model
|
59 |
|
@@ -115,5 +186,4 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
115 |
archivePrefix={arXiv},
|
116 |
primaryClass={cs.CL},
|
117 |
url={https://arxiv.org/abs/2505.13271},
|
118 |
-
}
|
119 |
-
```
|
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
license: cc-by-nc-4.0
|
4 |
+
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
- text-to-sql
|
7 |
- reinforcement-learning
|
8 |
---
|
9 |
|
|
|
10 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
11 |
|
12 |
### Important Links
|
13 |
|
14 |
+
π[Hugging Face Paper](https://huggingface.co/papers/2507.22478) |
|
15 |
+
π[arXiv Paper](https://arxiv.org/abs/2507.22478) |
|
16 |
+
π»[GitHub Repository](https://github.com/CycloneBoy/slm_sql) |
|
17 |
+
π€[Hugging Face Models Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
18 |
+
π€[ModelScope Models Collection](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
19 |
|
20 |
## News
|
21 |
|
|
|
37 |
> and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an
|
38 |
> average
|
39 |
> improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model
|
40 |
+
> achieved 67.08\% EX.
|
41 |
|
42 |
### Framework
|
43 |
|
44 |
+
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
|
45 |
|
46 |
### Main Results
|
47 |
|
48 |
+
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
|
49 |
|
50 |
+
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_main.png" height="500" alt="slmsql_bird_main">
|
51 |
|
52 |
+
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_spider_main.png" height="500" alt="slmsql_spider_main">
|
|
|
|
|
53 |
|
54 |
Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
|
55 |
|
56 |
+
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slm_sql_ablation_study">
|
57 |
+
|
58 |
+
## Usage
|
59 |
+
|
60 |
+
This model can be used with the Hugging Face `transformers` library for text-to-SQL generation.
|
61 |
+
|
62 |
+
```python
|
63 |
+
import torch
|
64 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
+
|
66 |
+
# Load model and tokenizer
|
67 |
+
# Replace "cycloneboy/SLM-SQL-0.5B" with the specific model checkpoint you want to use.
|
68 |
+
model_id = "cycloneboy/SLM-SQL-0.5B"
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
71 |
+
|
72 |
+
# Set the model to evaluation mode
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
# Define the natural language question and database schema (replace with your data)
|
76 |
+
user_query = "What are the names of all employees who earn more than 50000?"
|
77 |
+
database_schema = """
|
78 |
+
CREATE TABLE employees (
|
79 |
+
employee_id INT PRIMARY KEY,
|
80 |
+
name VARCHAR(255),
|
81 |
+
salary DECIMAL(10, 2)
|
82 |
+
);
|
83 |
+
"""
|
84 |
+
|
85 |
+
# Construct the conversation using the model's chat template
|
86 |
+
# The model expects schema and question to generate the SQL query.
|
87 |
+
# The prompt format below is a common way to combine schema and question for Text-to-SQL.
|
88 |
+
full_prompt = f"""
|
89 |
+
You are a Text-to-SQL model.
|
90 |
+
Given the following database schema:
|
91 |
+
{database_schema}
|
92 |
+
Generate the SQL query for the question:
|
93 |
+
{user_query}
|
94 |
+
"""
|
95 |
+
|
96 |
+
messages = [
|
97 |
+
{"role": "user", "content": full_prompt.strip()}
|
98 |
+
]
|
99 |
+
|
100 |
+
# Apply the chat template and tokenize inputs
|
101 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
102 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
103 |
+
|
104 |
+
# Generate the SQL query
|
105 |
+
with torch.no_grad():
|
106 |
+
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.6, top_p=0.9, do_sample=True,
|
107 |
+
eos_token_id=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>")])
|
108 |
+
|
109 |
+
# Decode the generated text and extract the assistant's response
|
110 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
111 |
+
# The Qwen-style chat template wraps assistant's response between <|im_start|>assistant
|
112 |
+
and <|im_end|>
|
113 |
+
assistant_prefix = "<|im_start|>assistant\
|
114 |
+
"
|
115 |
+
if assistant_prefix in generated_text:
|
116 |
+
sql_query = generated_text.split(assistant_prefix, 1)[1].strip()
|
117 |
+
# Remove any trailing special tokens like <|im_end|>
|
118 |
+
sql_query = sql_query.split("<|im_end|>", 1)[0].strip()
|
119 |
+
else:
|
120 |
+
sql_query = generated_text # Fallback in case prompt format differs unexpectedly
|
121 |
+
|
122 |
+
print(f"User Query: {user_query}
|
123 |
+
Generated SQL: {sql_query}")
|
124 |
+
|
125 |
+
# Example of a potential output for the given query and schema:
|
126 |
+
# Generated SQL: SELECT name FROM employees WHERE salary > 50000;
|
127 |
+
```
|
128 |
|
129 |
## Model
|
130 |
|
|
|
186 |
archivePrefix={arXiv},
|
187 |
primaryClass={cs.CL},
|
188 |
url={https://arxiv.org/abs/2505.13271},
|
189 |
+
}
|
|