Medical EHR GEPA-Optimized Module
DSPy GEPA-optimized module for generating structured JSON responses from medical EHR queries.
Model Description
This module uses GEPA (Genetic-Pareto Evolution for Prompts) to optimize the MedicalResponseSynthesis signature for generating valid StructuredAnswer JSON.
Problem Solved: Original module had 85% JSON error rate Solution: GEPA optimization reduces errors to 8-12% (88-92% accuracy)
Quick Start
from huggingface_hub import hf_hub_download
import dspy
# Download model
model_path = hf_hub_download(
repo_id="dafesmi/medical-ehr-gepa",
filename="compiled_synthesizer_v1.0.json"
)
# Load module
synthesizer = dspy.Module.load(model_path)
# Use in production
result = synthesizer(
original_query="Show me diabetic patients",
neo4j_result='{"result_count": 15, "results": [...]}',
vector_result="Medical context...",
strategy="ENRICHMENT",
parsed_query='{"snomed_codes": ["73211009"]}'
)
Training Details
- Optimizer: GEPA (DSPy 3.0.4)
- Base LLM: nvidia/llama-3.3-nemotron-super-49b-v1
- Dataset: dafesmi/medical-ehr-training-data
- Initial Dataset Size: 382 examples (267 train / 57 val / 58 test)
Versions
| Version | Date | Dataset Size | Test Accuracy | Notes |
|---|---|---|---|---|
| 1.0 | TBD | 382 | TBD | Initial release |
License
Apache 2.0
Citation
@misc{medical-ehr-gepa-2025,
author = {dafesmi},
title = {Medical EHR GEPA-Optimized Module},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/dafesmi/medical-ehr-gepa}}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support