SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dakini/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : Quantifire Insights\nCategory: Predictive Analytics Solutions\nDepartment: Marketing\nLocation: Zurich, Switzerland\nAmount: 1275.58\nCard: Customer Engagement Enhancement\nTrip Name: unknown\n',
'\nName : Pardalis Digital\nCategory: Data Analytics Platform, Professional Networking Service\nDepartment: Sales\nLocation: Dublin, Ireland\nAmount: 1456.75\nCard: Sales Intelligence & Networking Platform\nTrip Name: unknown\n',
'\nName : Celo Communications\nCategory: Telecom Provider, Voice & Data Solutions\nDepartment: IT Operations\nLocation: Lisbon, Portugal\nAmount: 1509.85\nCard: Unified Communication Upgrade\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
bge-base-en-train - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8396 |
| dot_accuracy | 0.1604 |
| manhattan_accuracy | 0.8302 |
| euclidean_accuracy | 0.8396 |
| max_accuracy | 0.8396 |
Triplet
- Dataset:
bge-base-en-eval - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9394 |
| dot_accuracy | 0.0606 |
| manhattan_accuracy | 0.9242 |
| euclidean_accuracy | 0.9394 |
| max_accuracy | 0.9394 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 212 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 212 samples:
sentence label type string int details - min: 32 tokens
- mean: 39.57 tokens
- max: 49 tokens
- 0: ~3.77%
- 1: ~4.25%
- 2: ~2.83%
- 3: ~2.36%
- 4: ~4.25%
- 5: ~3.77%
- 6: ~3.77%
- 7: ~3.30%
- 8: ~3.77%
- 9: ~2.83%
- 10: ~2.36%
- 11: ~5.19%
- 12: ~6.13%
- 13: ~3.30%
- 14: ~2.83%
- 15: ~5.66%
- 16: ~3.77%
- 17: ~4.72%
- 18: ~4.25%
- 19: ~3.77%
- 20: ~3.77%
- 21: ~4.72%
- 22: ~3.30%
- 23: ~2.36%
- 24: ~5.19%
- 25: ~2.83%
- 26: ~0.94%
- Samples:
sentence label
Name : TransGlobal Solutions
Category: Cross-border Processing Services, Business Management Platforms
Department: Finance
Location: Geneva, Switzerland
Amount: 739.58
Card: Q3 International Service Fees Analysis
Trip Name: unknown0
Name : Clarion Synergy Group
Category: Organizational Development Services
Department: HR
Location: New York, NY
Amount: 1523.45
Card: Leadership Development Program
Trip Name: unknown1
Name : SkyElevate Group
Category: Luxury Travel Services, Corporate Event Planning
Department: Executive
Location: Dubai, UAE
Amount: 2113.47
Card: Executive Strategy Retreat
Trip Name: Board of Directors Retreat2 - Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 52 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 52 samples:
sentence label type string int details - min: 35 tokens
- mean: 39.4 tokens
- max: 46 tokens
- 0: ~3.85%
- 1: ~3.85%
- 3: ~3.85%
- 4: ~3.85%
- 5: ~5.77%
- 6: ~3.85%
- 7: ~3.85%
- 8: ~3.85%
- 9: ~3.85%
- 10: ~3.85%
- 11: ~3.85%
- 12: ~7.69%
- 13: ~1.92%
- 14: ~5.77%
- 16: ~7.69%
- 17: ~1.92%
- 18: ~3.85%
- 19: ~5.77%
- 20: ~3.85%
- 21: ~3.85%
- 22: ~3.85%
- 24: ~3.85%
- 25: ~1.92%
- 26: ~3.85%
- Samples:
sentence label
Name : Globex Regulatory Services
Category: Professional Services, Legal Consulting
Department: Compliance
Location: Brussels, Belgium
Amount: 993.47
Card: International Compliance Alignment
Trip Name: unknown22
Name : Connectiva Innovations
Category: Telecommunications, Software Services
Department: IT Operations
Location: Lisbon, Portugal
Amount: 1489.92
Card: Enhanced Connectivity Solutions
Trip Name: unknown14
Name : RBC
Category: Transaction Processing, Financial Services
Department: Finance
Location: Limassol, Cyprus
Amount: 843.56
Card: Quarterly Financial Management
Trip Name: unknown0 - Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|---|---|---|---|
| 0 | 0 | - | 0.8396 |
| 5.0 | 70 | 0.9394 | - |
Framework Versions
- Python: 3.9.21
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 5
Model tree for dakini/finetuned-bge-base-en
Base model
BAAI/bge-base-enEvaluation results
- Cosine Accuracy on bge base en trainself-reported0.840
- Dot Accuracy on bge base en trainself-reported0.160
- Manhattan Accuracy on bge base en trainself-reported0.830
- Euclidean Accuracy on bge base en trainself-reported0.840
- Max Accuracy on bge base en trainself-reported0.840
- Cosine Accuracy on bge base en evalself-reported0.939
- Dot Accuracy on bge base en evalself-reported0.061
- Manhattan Accuracy on bge base en evalself-reported0.924
- Euclidean Accuracy on bge base en evalself-reported0.939
- Max Accuracy on bge base en evalself-reported0.939