DF-Arc
DF-Arc is a specialized Arabic tokenizer that minimizes the "Arabic Token Tax" by combining Morphological Pre-tokenization with PMI-based Phrase Merging.
It achieves near 1:1 fertility (1.26) and high semantic density.
Key Highlights
- Architecture: Unigram SentencePiece (compatible with
LlamaTokenizer). - Vocab Size: 64,000 tokens.
- Baked-in Logic: Rules for morphology (prefixes) and identity (God/Prophet names) are built into the vocabulary. No custom code needed.
- Dialect Native: Trained on Egyptian dialogue, songs, and feedback corpora.
Performance
| Model | Fertility | Total Tokens | Total Words |
|---|---|---|---|
| DF-Arc | 1.260 | 144,734 | 114,882 |
| GPT-4 (cl100k) | 3.689 | 423,743 | 114,882 |
| AraBERT v2 | 1.555 | 178,609 | 114,882 |
| AraT5 | 1.193 | 137,107 | 114,882 |
Usage
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dataflare/df-arc")
text = "بسم الله الرحمن الرحيم، انا بحب الذكاء الاصطناعي جدا"
print(tokenizer.tokenize(text))
# Output: ['ب_سم', 'الله', 'ال_رحمن', 'ال_رحيم', '،', 'انا', 'ب_حب', 'ال_ذكاء_ال_اصطناع_ي', 'جدا']
Citation
@misc{df_arc,
title={DF-Arc: The Arabic Token Tax & Morphology-Aware Tokenization},
author={Dataflare Lab},
year={2026},
publisher={Hugging Face}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
1
Ask for provider support