|
gpt4 |
|
|
|
--- |
|
|
|
I'm doing Python experiments. |
|
|
|
|
|
These are images. |
|
|
|
|
|
```python |
|
input = {} |
|
output = {} |
|
input[0] = {'width':16,'height':16,'background':0,(4,0):1,(5,0):1,(6,0):4,(8,0):2,(13,0):2,(15,0):5,(3,1):3,(4,1):5,(8,1):9,(9,1):9,(10,1):8,(12,1):4,(14,1):5,(15,1):8,(0,2):1,(2,2):8,(3,2):2,(4,2):8,(7,2):6,(9,2):8,(10,2):5,(14,2):8,(3,3):2,(4,3):2,(5,3):2,(11,3):6,(2,4):1,(3,4):2,(4,4):2,(5,4):2,(8,4):1,(9,4):9,(10,4):5,(13,4):2,(15,4):4,(1,5):4,(3,5):2,(4,5):2,(5,5):2,(7,5):2,(10,5):7,(0,6):3,(2,6):6,(3,6):2,(4,6):2,(5,6):2,(9,6):3,(10,6):5,(12,6):7,(0,7):7,(2,7):4,(3,7):6,(6,7):4,(7,7):7,(8,7):7,(9,7):3,(11,7):2,(14,7):7,(15,7):1,(1,8):7,(7,8):9,(8,8):7,(9,8):7,(13,8):8,(14,8):5,(15,8):2,(0,9):1,(1,9):5,(2,9):6,(3,9):4,(4,9):9,(5,9):3,(7,9):3,(13,9):9,(14,9):4,(15,9):6,(1,10):2,(2,10):4,(10,10):2,(12,10):1,(13,10):6,(3,11):5,(14,11):2,(15,11):4,(2,12):6,(8,12):6,(11,12):2,(1,13):3,(4,13):7,(6,13):2,(8,13):7,(9,13):9,(2,14):5,(4,14):7,(12,14):6,(13,14):5,(14,14):3,(0,15):1,(3,15):9,(7,15):2,(11,15):1,(14,15):9} |
|
output[0] = {'width':16,'height':16,'background':0,(3,3):2,(4,3):2,(5,3):2,(3,4):2,(4,4):2,(5,4):2,(3,5):2,(4,5):2,(5,5):2,(3,6):2,(4,6):2,(5,6):2} |
|
|
|
input[1] = {'width':16,'height':16,'background':0,(2,0):7,(5,0):6,(7,0):6,(11,0):7,(12,0):3,(2,1):3,(5,1):1,(8,1):8,(11,1):2,(4,2):3,(5,2):9,(13,2):8,(15,2):8,(0,3):2,(1,3):2,(3,3):2,(4,3):9,(9,3):1,(11,3):2,(1,4):5,(2,4):2,(5,4):7,(7,4):6,(11,4):3,(14,4):1,(0,5):4,(1,5):4,(3,5):3,(4,5):9,(9,5):7,(11,5):2,(0,6):8,(5,6):6,(9,6):8,(12,6):3,(1,7):9,(5,7):4,(6,7):8,(10,7):7,(2,8):9,(3,8):5,(8,8):4,(9,8):6,(11,8):1,(12,8):4,(8,9):3,(9,9):1,(11,9):8,(13,9):5,(14,9):9,(15,9):4,(1,10):9,(2,10):3,(3,10):9,(5,10):3,(8,10):5,(9,10):6,(10,10):7,(12,10):5,(2,11):6,(3,11):6,(4,11):6,(5,11):6,(6,11):6,(7,11):6,(8,11):6,(13,11):7,(1,12):4,(2,12):6,(3,12):6,(4,12):6,(5,12):6,(6,12):6,(7,12):6,(8,12):6,(11,12):4,(12,12):4,(13,12):6,(15,12):2,(1,13):5,(6,13):4,(7,13):5,(8,13):3,(10,13):8,(14,13):6,(15,13):9,(2,14):9,(3,14):7,(4,14):5,(12,14):1,(14,14):7,(15,14):1,(1,15):8,(7,15):1,(9,15):3,(12,15):3,(13,15):8,(14,15):7} |
|
output[1] = {'width':16,'height':16,'background':0,(2,11):6,(3,11):6,(4,11):6,(5,11):6,(6,11):6,(7,11):6,(8,11):6,(2,12):6,(3,12):6,(4,12):6,(5,12):6,(6,12):6,(7,12):6,(8,12):6} |
|
|
|
input[2] = {'width':16,'height':16,'background':0,(0,0):3,(6,0):6,(7,0):2,(11,0):5,(15,0):3,(1,1):7,(6,1):9,(14,1):5,(5,2):8,(6,2):8,(8,2):7,(9,2):7,(10,2):7,(15,2):4,(1,3):2,(8,3):7,(9,3):7,(10,3):7,(12,3):2,(14,3):5,(1,4):8,(4,4):9,(5,4):6,(6,4):1,(7,4):7,(8,4):7,(9,4):7,(10,4):7,(0,5):5,(5,5):3,(6,5):6,(8,5):6,(11,5):3,(12,5):3,(1,6):4,(3,6):2,(14,6):4,(0,7):9,(9,7):3,(11,7):8,(2,8):3,(7,8):6,(9,8):9,(0,9):9,(4,9):1,(7,9):3,(9,9):8,(10,10):3,(11,10):3,(14,10):7,(7,11):4,(13,11):5,(0,12):4,(3,12):1,(4,12):7,(6,12):3,(9,12):7,(10,12):5,(5,13):1,(6,13):7,(7,13):2,(10,13):5,(13,13):1,(15,13):4,(7,14):3,(10,14):2,(1,15):2,(5,15):7,(6,15):9,(10,15):5,(12,15):2,(14,15):3} |
|
output[2] = {'width':16,'height':16,'background':0,(8,2):7,(9,2):7,(10,2):7,(8,3):7,(9,3):7,(10,3):7,(8,4):7,(9,4):7,(10,4):7} |
|
``` |
|
|
|
# Task A |
|
Use at most 50 words. |
|
Think step by step. |
|
- Write notes about what shapes and patterns you observe. |
|
- The output is never the same as the input. |
|
|
|
|
|
# Task B |
|
Use at most 300 words. |
|
Include a markdown formatted table with the most important observations about input and output images. |
|
The table has three columns: observation name, observation values, comments about the observation. |
|
The `observation values` column can contain integers, IDs, yes/no, shape names, absent, decreasing order, and so on. |
|
Think step by step. |
|
- Count the mass of each layer. |
|
- Count how many strongly connected clusters there are inside each layer. |
|
- Is mass related to the sorting of layers. |
|
- Isolated pixels without an adjacent pixel of same layer, sometimes they change layer. |
|
- Are there horizontal lines, do they extend edge to edge. |
|
- Are there vertical lines, do they extend edge to edge. |
|
- Are there filled rectangles. |
|
- Are there hollow boxes. |
|
- Are there L-shapes. |
|
- Are there T-shapes. |
|
- Are there H-shapes. |
|
- Are there E-shapes. |
|
- Are there Plus-shapes. |
|
- Are there Tetris-shapes. |
|
- Are there other shapes. |
|
- Are there a line connecting two landmarks. |
|
- Does shape change layer, but preserves their shape, and what may be triggering it. |
|
- Does shape move relative x,y. |
|
- Boolean operations may happen: xor, and, or. |
|
|
|
|
|
# Task C |
|
Use at most 100 words. |
|
Think step by step. |
|
What are the actions that converts input to output. |
|
|
|
|
|
# Task D |
|
With the following example input, I want you to predict what the output should be. |
|
|
|
|
|
```python |
|
input[3] = {'width':16,'height':16,'background':0,(2,0):1,(3,0):7,(4,0):3,(10,0):1,(11,0):2,(13,0):4,(14,0):7,(3,1):3,(6,1):6,(7,1):8,(0,2):6,(3,2):8,(5,2):1,(8,2):1,(12,2):7,(14,2):4,(15,2):8,(1,3):3,(2,3):8,(6,3):3,(8,3):8,(0,4):5,(4,4):1,(7,4):8,(10,4):3,(11,4):8,(14,4):5,(1,5):8,(10,5):3,(11,5):7,(1,6):1,(2,6):1,(11,6):8,(13,6):5,(15,6):7,(7,7):9,(10,7):2,(11,7):7,(13,7):7,(0,8):9,(1,8):4,(3,8):2,(4,8):1,(10,8):7,(14,8):9,(5,9):1,(14,9):1,(15,9):5,(1,10):8,(2,10):9,(3,10):4,(5,10):5,(6,10):5,(7,10):5,(8,10):5,(9,10):5,(10,10):5,(11,10):3,(2,11):3,(4,11):6,(5,11):5,(6,11):5,(7,11):5,(8,11):5,(9,11):5,(10,11):5,(12,11):1,(13,11):4,(0,12):9,(1,12):5,(2,12):2,(5,12):5,(6,12):1,(7,12):3,(10,12):6,(11,12):2,(14,12):1,(15,12):5,(1,13):7,(6,13):1,(7,13):6,(9,13):7,(11,13):3,(13,13):6,(2,14):9,(5,14):3,(6,14):7,(7,14):7,(9,14):6,(12,14):8,(0,15):5,(6,15):8,(15,15):9} |
|
``` |
|
Print your reasoning before printing the code. |
|
Don't print other markdown code blocks than the code block containing your predictions. |
|
|
|
|
|
Fill your predictions into the following template and replace PREDICT with your predictions. |
|
```python |
|
output[3] = PREDICT |
|
``` |
|
|
|
--- |
|
|
|
# Task A |
|
|
|
- Each image has a unique identifier (layer) with different values ranging from 1 to 9. |
|
- There's a pattern in the spatial location of pixels with the same value. |
|
- The output images consist of only one kind of pixel that forms a square, while input images are complex with multiple pixel values. |
|
|
|
# Task B |
|
|
|
| Observation Name | Observation Values | Comments about the Observation | |
|
|------------------|--------------------|--------------------------------| |
|
| Mass of Each Layer | Varies | Input images have several layers with different masses, but output images always have a single layer. | |
|
| Strongly Connected Clusters | Yes | Input images have clusters but output images seem to be strongly connected. | |
|
| Mass Related to Sorting | No | There doesn't seem to be a relation between mass and the sorting of layers. | |
|
| Isolated Pixels | No | Not in the output images, only in the input. | |
|
| Horizontal and Vertical Lines | Yes | In input images but not always edge to edge, absent in output. | |
|
| Filled Rectangles | No | There are no filled rectangles observed in both input and output images. | |
|
| Hollow Boxes | No | Not observed in both input and output images. | |
|
| L, T, H, E, Plus, Tetris shapes | No | These specific shapes not observed in both input and output images. | |
|
| Line Connecting Landmarks | No | There's no apparent line connecting two landmarks in both input and output images. | |
|
| Shape Preservation | No | In output images, the original shapes from input images are not preserved. | |
|
| Shape Movement | No | Shapes don't seem to move in x,y directions from input to output. | |
|
| Boolean Operations | No | There's no apparent evidence of boolean operations happening between the layers. | |
|
|
|
# Task C |
|
|
|
1. Identify the layer that forms a filled square shape in the input image. |
|
2. The output seems to preserve this square shape but strips away all other information. |
|
|
|
# Task D |
|
|
|
Observing from the previous examples, the transformation seems to be preserving only the squares in the input images. In the given input[3], the only square observed is formed by pixels with value 5 from (5,10) to (10,10) and (5,11) to (10,11). |
|
|
|
```python |
|
output[3] = {'width':16,'height':16,'background':0,(5,10):5,(6,10):5,(7,10):5,(8,10):5,(9,10):5,(10,10):5,(5,11):5,(6,11):5,(7,11):5,(8,11):5,(9,11):5,(10,11):5} |
|
``` |
|
|
|
|