|
--- |
|
license: mit |
|
task_categories: |
|
- image-classification |
|
- zero-shot-image-classification |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': rocher_chocolate |
|
'1': milka_chocolate |
|
'2': kinder_chocolate |
|
'3': toblerone_white |
|
'4': toblerone_black |
|
'5': lays_classic |
|
'6': lays_chill |
|
'7': pringles_original |
|
'8': pringles_paprika |
|
'9': nestle_water |
|
'10': sanpellegrino_water |
|
'11': redbull_energydrink |
|
'12': monster_energydrink |
|
'13': heinz_ketchup |
|
'14': heinz_mayo |
|
'15': barilla_pesto |
|
'16': barilla_pomodoro |
|
'17': barilla_lasagne |
|
'18': loreal_shampoo |
|
'19': dove_soap |
|
'20': sensodyne_toothpaste |
|
'21': colgate_toothpaste |
|
'22': sensodyne_mouthwash |
|
'23': nivea_rollon |
|
'24': rexona_spray |
|
'25': dove_spray |
|
'26': nivea_baby |
|
'27': johnson_baby |
|
- name: image_hash |
|
dtype: string |
|
- name: product_name |
|
dtype: string |
|
- name: sample_id |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 437784366.375 |
|
num_examples: 10357 |
|
- name: test |
|
num_bytes: 193054870.0 |
|
num_examples: 4920 |
|
download_size: 630652408 |
|
dataset_size: 630839236.375 |
|
--- |
|
|
|
# Micro Market Experience (MIMEX) Product Recognition Dataset |
|
|
|
## Dataset Description |
|
|
|
The Micro Market Experience (MIMEX) Dataset is a comprehensive collection of product images tailored for retail and consumer product classification tasks. This dataset encompasses 15,277 images across 28 product categories, including chocolates, snacks, beverages, personal care items, and food products. |
|
|
|
## Dataset Features |
|
|
|
- **Total Images**: 15,277 |
|
- **Number of Classes**: 28 |
|
- **Splits**: Train (10,357) / Test (4,920) |
|
- **Image Format**: PNG, RGB |
|
- **Resolution**: Variable (original product images) |
|
|
|
## Product Categories |
|
|
|
The dataset includes the following 28 product categories: |
|
|
|
- **0**: Rocher Chocolate |
|
- **1**: Milka Chocolate |
|
- **2**: Kinder Chocolate |
|
- **3**: Toblerone White |
|
- **4**: Toblerone Black |
|
- **5**: Lays Classic |
|
- **6**: Lays Chill |
|
- **7**: Pringles Original |
|
- **8**: Pringles Paprika |
|
- **9**: Nestle Water |
|
- **10**: Sanpellegrino Water |
|
- **11**: Redbull Energydrink |
|
- **12**: Monster Energydrink |
|
- **13**: Heinz Ketchup |
|
- **14**: Heinz Mayo |
|
- **15**: Barilla Pesto |
|
- **16**: Barilla Pomodoro |
|
- **17**: Barilla Lasagne |
|
- **18**: Loreal Shampoo |
|
- **19**: Dove Soap |
|
- **20**: Sensodyne Toothpaste |
|
- **21**: Colgate Toothpaste |
|
- **22**: Sensodyne Mouthwash |
|
- **23**: Nivea Rollon |
|
- **24**: Rexona Spray |
|
- **25**: Dove Spray |
|
- **26**: Nivea Baby |
|
- **27**: Johnson Baby |
|
|
|
## Dataset Structure |
|
|
|
``` |
|
mimex-dataset/ |
|
βββ train/ # Training images (10,357 samples) |
|
βββ test/ # Test images (4,920 samples) |
|
βββ metadata/ # Dataset information and mappings |
|
``` |
|
|
|
## Data Fields |
|
|
|
- **image**: PIL Image of the product |
|
- **label**: Integer class label (0-27) |
|
- **image_hash**: Unique 12-character hash identifier |
|
- **product_name**: Human-readable product name |
|
- **sample_id**: Original sample identifier from source dataset |
|
|
|
## How to Use |
|
|
|
### Loading the Dataset |
|
|
|
``` |
|
from datasets import load_dataset |
|
|
|
# Load the full dataset |
|
dataset = load_dataset("Anilot/MIMEX") |
|
|
|
# Load specific split |
|
train_dataset = load_dataset("Anilot/MIMEX", split="train") |
|
test_dataset = load_dataset("Anilot/MIMEX", split="test") |
|
|
|
print(f"Train samples: {len(train_dataset)}") |
|
print(f"Test samples: {len(test_dataset)}") |
|
``` |
|
|
|
### Basic Usage Example |
|
|
|
``` |
|
import matplotlib.pyplot as plt |
|
from datasets import load_dataset |
|
|
|
# Load dataset |
|
dataset = load_dataset("Anilot/MIMEX", split="train") |
|
|
|
# Show first few samples |
|
fig, axes = plt.subplots(2, 3, figsize=(12, 8)) |
|
for i, ax in enumerate(axes.flat): |
|
sample = dataset[i] |
|
ax.imshow(sample['image']) |
|
ax.set_title(f"{sample['product_name']}\nLabel: {sample['label']}") |
|
ax.axis('off') |
|
plt.tight_layout() |
|
plt.show() |
|
``` |
|
|
|
## License |
|
|
|
This dataset is released under the MIT License. Please cite appropriately if used in research. |
|
|
|
## Citation |
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
``` |
|
Tur, Anil Osman, et al. "Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models." 2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI). IEEE, 2024. |
|
``` |
|
|
|
DOI: [10.1109/RTSI61910.2024.10761839](https://doi.org/10.1109/RTSI61910.2024.10761839) |
|
|
|
### BibTeX |
|
``` |
|
@inproceedings{tur2024exploring, |
|
title={Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models}, |
|
author={Tur, Anil Osman and Conti, Alessandro and Beyan, Cigdem and Boscaini, Davide and Larcher, Roberto and Messelodi, Stefano and Poiesi, Fabio and Ricci, Elisa}, |
|
booktitle={2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI)}, |
|
pages={97--102}, |
|
year={2024}, |
|
organization={IEEE} |
|
} |
|
``` |