BassemE's picture
Upload README.md with huggingface_hub
87a0ece verified
metadata
license: mit
task_categories:
  - question-answering
  - text-retrieval
language:
  - en
tags:
  - mulesoft
  - documentation
  - embeddings
  - rag
  - api-integration
size_categories: 10K<n<100K
configs:
  - config_name: default
    data_files: dataset.parquet
    default: true

mulesoft-documentation-embeddings

MuleSoft Documentation Embeddings for RAG Applications

Dataset Information

  • Version: 1.0.0
  • Created: 2025-09-16T02:41:16.352809
  • Source: Vector Database
  • License: MIT
  • Language: en

Task Categories

question-answering, retrieval, knowledge-base

Dataset Statistics

SkillPilotDataSet_v11

  • Total Objects: 6430
  • Unique Properties: 13
  • Knowledge Sources: mulesoft, user_defined_docs
  • Average Content Length: 5079 characters

Dataset Schema

The dataset contains the original document properties with the following fields:

  • author: Document author
  • chunk_id: Unique chunk identifier
  • chunk_index: Position of chunk in document
  • document_id: Source document identifier
  • entities: Extracted entities
  • keywords: Document keywords
  • knowledge_source: Source of knowledge (mulesoft, user_defined_docs)
  • page_content: Main text content
  • relationships: Entity relationships
  • source_url: Original document URL
  • tags: Document tags
  • title: Document title
  • total_chunks: Total number of chunks in document
  • vector: Embedding vector (3072 dimensions from OpenAI text-embedding-3-large)

RAG Configuration

This dataset was created using the following RAG (Retrieval-Augmented Generation) configuration:

Embedding Model

  • Model Type: OpenAI
  • Model ID: text-embedding-3-large
  • Embedding Dimensions: 3072
  • Provider: OpenAI

Chunking Configuration

  • Chunk Size: 2048 characters
  • Chunk Overlap: 256 characters

Technical Details

  • Vector Database: Vector Database
  • Collection: SkillPilotDataSet_v11
  • Total Vectors: 6430
  • Vector Distance: Cosine similarity

Usage

This dataset can be used for:

  • Question answering systems
  • Retrieval-augmented generation (RAG)
  • Knowledge base construction
  • Technical interview preparation
  • AI assistant training

Files

  • dataset.parquet: Dataset in Parquet format (recommended for large datasets)
  • README.md: This documentation file

Citation

If you use this dataset, please cite:

@dataset{{mulesoft_documentation_embeddings,
  title={{MuleSoft Documentation Embeddings}},
  author={{Bassem Elsodany}},
  year={{2025}},
  url={{https://huggingface.co/datasets/BassemE/mulesoft-documentation-embeddings}}
}}