metadata
license: mit
task_categories:
- question-answering
- text-retrieval
language:
- en
tags:
- mulesoft
- documentation
- embeddings
- rag
- api-integration
size_categories: 10K<n<100K
configs:
- config_name: default
data_files: dataset.parquet
default: true
mulesoft-documentation-embeddings
MuleSoft Documentation Embeddings for RAG Applications
Dataset Information
- Version: 1.0.0
- Created: 2025-09-16T02:41:16.352809
- Source: Vector Database
- License: MIT
- Language: en
Task Categories
question-answering, retrieval, knowledge-base
Dataset Statistics
SkillPilotDataSet_v11
- Total Objects: 6430
- Unique Properties: 13
- Knowledge Sources: mulesoft, user_defined_docs
- Average Content Length: 5079 characters
Dataset Schema
The dataset contains the original document properties with the following fields:
author
: Document authorchunk_id
: Unique chunk identifierchunk_index
: Position of chunk in documentdocument_id
: Source document identifierentities
: Extracted entitieskeywords
: Document keywordsknowledge_source
: Source of knowledge (mulesoft, user_defined_docs)page_content
: Main text contentrelationships
: Entity relationshipssource_url
: Original document URLtags
: Document tagstitle
: Document titletotal_chunks
: Total number of chunks in documentvector
: Embedding vector (3072 dimensions from OpenAI text-embedding-3-large)
RAG Configuration
This dataset was created using the following RAG (Retrieval-Augmented Generation) configuration:
Embedding Model
- Model Type: OpenAI
- Model ID: text-embedding-3-large
- Embedding Dimensions: 3072
- Provider: OpenAI
Chunking Configuration
- Chunk Size: 2048 characters
- Chunk Overlap: 256 characters
Technical Details
- Vector Database: Vector Database
- Collection: SkillPilotDataSet_v11
- Total Vectors: 6430
- Vector Distance: Cosine similarity
Usage
This dataset can be used for:
- Question answering systems
- Retrieval-augmented generation (RAG)
- Knowledge base construction
- Technical interview preparation
- AI assistant training
Files
dataset.parquet
: Dataset in Parquet format (recommended for large datasets)README.md
: This documentation file
Citation
If you use this dataset, please cite:
@dataset{{mulesoft_documentation_embeddings,
title={{MuleSoft Documentation Embeddings}},
author={{Bassem Elsodany}},
year={{2025}},
url={{https://huggingface.co/datasets/BassemE/mulesoft-documentation-embeddings}}
}}