|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: description |
|
dtype: string |
|
- name: cpes |
|
sequence: string |
|
- name: cvss_v4_0 |
|
dtype: float64 |
|
- name: cvss_v3_1 |
|
dtype: float64 |
|
- name: cvss_v3_0 |
|
dtype: float64 |
|
- name: cvss_v2_0 |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 363023583.0092845 |
|
num_examples: 559803 |
|
- name: test |
|
num_bytes: 40336385.990715496 |
|
num_examples: 62201 |
|
download_size: 158862200 |
|
dataset_size: 403359969 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
task_categories: |
|
- text-classification |
|
license: cc-by-4.0 |
|
library_name: datasets |
|
tags: |
|
- vulnerability |
|
- cybersecurity |
|
- security |
|
- cve |
|
- cvss |
|
--- |
|
|
|
This dataset, `CIRCL/vulnerability-scores`, comprises over 600,000 real-world vulnerabilities used to train and evaluate VLAI, a transformer-based model designed to predict software vulnerability severity levels directly from text descriptions, enabling faster and more consistent triage. |
|
|
|
The dataset is presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607). |
|
|
|
Project page: [https://vulnerability.circl.lu](https://vulnerability.circl.lu) |
|
Associated code: [https://github.com/vulnerability-lookup/ML-Gateway](https://github.com/vulnerability-lookup/ML-Gateway) |
|
|
|
### Sources of the data |
|
|
|
|
|
- CVE Program (enriched with data from vulnrichment and Fraunhofer FKIE) |
|
- GitHub Security Advisories |
|
- PySec advisories |
|
- CSAF Red Hat |
|
- CSAF Cisco |
|
- CSAF CISA |
|
|
|
|
|
Extracted from the database of [Vulnerability-Lookup](https://vulnerability.circl.lu). |
|
Dumps of the data are available [here](https://vulnerability.circl.lu/dumps/). |
|
|
|
### Query with datasets |
|
|
|
```python |
|
import json |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("CIRCL/vulnerability-scores") |
|
|
|
vulnerabilities = ["CVE-2012-2339", "RHSA-2023:5964", "GHSA-7chm-34j8-4f22", "PYSEC-2024-225"] |
|
|
|
filtered_entries = dataset.filter(lambda elem: elem["id"] in vulnerabilities) |
|
|
|
for entry in filtered_entries["train"]: |
|
print(json.dumps(entry, indent=4)) |
|
``` |