Datasets:
dataset_info: | |
features: | |
- name: id | |
dtype: string | |
- name: title | |
dtype: string | |
- name: description | |
dtype: string | |
- name: cpes | |
sequence: string | |
- name: cvss_v4_0 | |
dtype: float64 | |
- name: cvss_v3_1 | |
dtype: float64 | |
- name: cvss_v3_0 | |
dtype: float64 | |
- name: cvss_v2_0 | |
dtype: float64 | |
splits: | |
- name: train | |
num_bytes: 363023583.0092845 | |
num_examples: 559803 | |
- name: test | |
num_bytes: 40336385.990715496 | |
num_examples: 62201 | |
download_size: 158862200 | |
dataset_size: 403359969.0 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: test | |
path: data/test-* | |
task_categories: | |
- text-classification | |
license: agpl-3.0 | |
library_name: datasets | |
tags: | |
- vulnerability | |
- cybersecurity | |
- security | |
- cve | |
- cvss | |
This dataset, `CIRCL/vulnerability-scores`, comprises over 600,000 real-world vulnerabilities used to train and evaluate VLAI, a transformer-based model designed to predict software vulnerability severity levels directly from text descriptions, enabling faster and more consistent triage. | |
The dataset is presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607). | |
Project page: [https://vulnerability.circl.lu](https://vulnerability.circl.lu) | |
Associated code: [https://github.com/vulnerability-lookup/ML-Gateway](https://github.com/vulnerability-lookup/ML-Gateway) | |
### Sources of the data | |
- CVE Program (enriched with data from vulnrichment and Fraunhofer FKIE) | |
- GitHub Security Advisories | |
- PySec advisories | |
- CSAF Red Hat | |
- CSAF Cisco | |
- CSAF CISA | |
Extracted from the database of [Vulnerability-Lookup](https://vulnerability.circl.lu). | |
Dumps of the data are available [here](https://vulnerability.circl.lu/dumps/). | |
### Query with datasets | |
```python | |
import json | |
from datasets import load_dataset | |
dataset = load_dataset("CIRCL/vulnerability-scores") | |
vulnerabilities = ["CVE-2012-2339", "RHSA-2023:5964", "GHSA-7chm-34j8-4f22", "PYSEC-2024-225"] | |
filtered_entries = dataset.filter(lambda elem: elem["id"] in vulnerabilities) | |
for entry in filtered_entries["train"]: | |
print(json.dumps(entry, indent=4)) | |
``` |