|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- automatic-speech-recognition |
|
- text-to-speech |
|
language: |
|
- en |
|
tags: |
|
- speech |
|
- audio |
|
- dataset |
|
- tts |
|
- asr |
|
- merged-dataset |
|
size_categories: |
|
- n<1K |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: "data.csv" |
|
default: true |
|
dataset_info: |
|
features: |
|
- name: audio |
|
dtype: |
|
audio: |
|
sampling_rate: 16000 |
|
- name: text |
|
dtype: string |
|
- name: speaker_id |
|
dtype: string |
|
- name: emotion |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_examples: 345 |
|
config_name: default |
|
--- |
|
|
|
# test3 |
|
|
|
This is a merged speech dataset containing 345 audio segments from 2 source datasets. |
|
|
|
## Dataset Information |
|
|
|
- **Total Segments**: 345 |
|
- **Speakers**: 7 |
|
- **Languages**: en |
|
- **Emotions**: happy, neutral, angry, sad |
|
- **Original Datasets**: 2 |
|
|
|
## Dataset Structure |
|
|
|
Each example contains: |
|
- `audio`: Audio file (WAV format, 16kHz sampling rate) |
|
- `text`: Transcription of the audio |
|
- `speaker_id`: Unique speaker identifier (made unique across all merged datasets) |
|
- `emotion`: Detected emotion (neutral, happy, sad, etc.) |
|
- `language`: Language code (en, es, fr, etc.) |
|
|
|
## Usage |
|
|
|
### Loading the Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("Codyfederer/test3") |
|
|
|
# Access the training split |
|
train_data = dataset["train"] |
|
|
|
# Example: Get first sample |
|
sample = train_data[0] |
|
print(f"Text: {sample['text']}") |
|
print(f"Speaker: {sample['speaker_id']}") |
|
print(f"Language: {sample['language']}") |
|
print(f"Emotion: {sample['emotion']}") |
|
|
|
# Play audio (requires audio libraries) |
|
# sample['audio']['array'] contains the audio data |
|
# sample['audio']['sampling_rate'] contains the sampling rate |
|
``` |
|
|
|
### Alternative: Load from CSV |
|
|
|
```python |
|
import pandas as pd |
|
from datasets import Dataset, Audio, Features, Value |
|
|
|
# Load the CSV file |
|
df = pd.read_csv("data.csv") |
|
|
|
# Define features |
|
features = Features({ |
|
"audio": Audio(sampling_rate=16000), |
|
"text": Value("string"), |
|
"speaker_id": Value("string"), |
|
"emotion": Value("string"), |
|
"language": Value("string") |
|
}) |
|
|
|
# Create dataset |
|
dataset = Dataset.from_pandas(df, features=features) |
|
``` |
|
|
|
### Dataset Structure |
|
|
|
The dataset includes: |
|
- `data.csv` - Main dataset file with all columns |
|
- `segments/` - Directory containing all audio files |
|
- `load_dataset.txt` - Python script for loading the dataset (rename to .py to use) |
|
|
|
CSV columns: |
|
- `audio`: Path to the audio file (in segments/ directory) |
|
- `text`: Transcription of the audio |
|
- `speaker_id`: Unique speaker identifier |
|
- `emotion`: Detected emotion |
|
- `language`: Language code |
|
|
|
## Speaker ID Mapping |
|
|
|
Speaker IDs have been made unique across all merged datasets to avoid conflicts. |
|
For example: |
|
- Original Dataset A: `speaker_0`, `speaker_1` |
|
- Original Dataset B: `speaker_0`, `speaker_1` |
|
- Merged Dataset: `speaker_0`, `speaker_1`, `speaker_2`, `speaker_3` |
|
|
|
Original dataset information is preserved in the metadata for reference. |
|
|
|
## Data Quality |
|
|
|
This dataset was created using the Vyvo Dataset Builder with: |
|
- Automatic transcription and diarization |
|
- Quality filtering for audio segments |
|
- Music and noise filtering |
|
- Emotion detection |
|
- Language identification |
|
|
|
## License |
|
|
|
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0). |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@dataset{vyvo_merged_dataset, |
|
title={test3}, |
|
author={Vyvo Dataset Builder}, |
|
year={2025}, |
|
url={https://huggingface.co/datasets/Codyfederer/test3} |
|
} |
|
``` |
|
|
|
This dataset was created using the Vyvo Dataset Builder tool. |
|
|