metadata
license: cc-by-4.0
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- en
tags:
- speech
- audio
- dataset
- tts
- asr
- merged-dataset
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: train
path: data.csv
default: true
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: speaker_id
dtype: string
- name: emotion
dtype: string
- name: language
dtype: string
splits:
- name: train
num_examples: 1994
config_name: default
test6
This is a merged speech dataset containing 1994 audio segments from 2 source datasets.
Dataset Information
- Total Segments: 1994
- Speakers: 3
- Languages: en
- Emotions: neutral, negative_surprise, positive_surprise, distress, relief, contentment, adoration, interest, confusion, happy, sadness, triumph, fear, disappointment, awe, realization, angry
- Original Datasets: 2
Dataset Structure
Each example contains:
audio
: Audio file (WAV format, 16kHz sampling rate)text
: Transcription of the audiospeaker_id
: Unique speaker identifier (made unique across all merged datasets)emotion
: Detected emotion (neutral, happy, sad, etc.)language
: Language code (en, es, fr, etc.)
Usage
Loading the Dataset
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("Codyfederer/test6")
# Access the training split
train_data = dataset["train"]
# Example: Get first sample
sample = train_data[0]
print(f"Text: {sample['text']}")
print(f"Speaker: {sample['speaker_id']}")
print(f"Language: {sample['language']}")
print(f"Emotion: {sample['emotion']}")
# Play audio (requires audio libraries)
# sample['audio']['array'] contains the audio data
# sample['audio']['sampling_rate'] contains the sampling rate
Alternative: Load from CSV
import pandas as pd
from datasets import Dataset, Audio, Features, Value
# Load the CSV file
df = pd.read_csv("data.csv")
# Define features
features = Features({
"audio": Audio(sampling_rate=16000),
"text": Value("string"),
"speaker_id": Value("string"),
"emotion": Value("string"),
"language": Value("string")
})
# Create dataset
dataset = Dataset.from_pandas(df, features=features)
Dataset Structure
The dataset includes:
data.csv
- Main dataset file with all columns*.wav
- Audio files in the root directoryload_dataset.txt
- Python script for loading the dataset (rename to .py to use)
CSV columns:
audio
: Audio filename (in root directory)text
: Transcription of the audiospeaker_id
: Unique speaker identifieremotion
: Detected emotionlanguage
: Language code
Speaker ID Mapping
Speaker IDs have been made unique across all merged datasets to avoid conflicts. For example:
- Original Dataset A:
speaker_0
,speaker_1
- Original Dataset B:
speaker_0
,speaker_1
- Merged Dataset:
speaker_0
,speaker_1
,speaker_2
,speaker_3
Original dataset information is preserved in the metadata for reference.
Data Quality
This dataset was created using the Vyvo Dataset Builder with:
- Automatic transcription and diarization
- Quality filtering for audio segments
- Music and noise filtering
- Emotion detection
- Language identification
License
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Citation
@dataset{vyvo_merged_dataset,
title={test6},
author={Vyvo Dataset Builder},
year={2025},
url={https://huggingface.co/datasets/Codyfederer/test6}
}
This dataset was created using the Vyvo Dataset Builder tool.