|
import json
|
|
from datasets import Dataset
|
|
from sklearn.model_selection import train_test_split
|
|
from transformers import (
|
|
T5Tokenizer,
|
|
T5ForConditionalGeneration,
|
|
TrainingArguments,
|
|
Trainer
|
|
)
|
|
|
|
def load_squad_data(file_path):
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
squad_data = json.load(f)
|
|
|
|
data = []
|
|
for article in squad_data["data"]:
|
|
for paragraph in article["paragraphs"]:
|
|
context = paragraph.get("context", "")
|
|
for qa in paragraph["qas"]:
|
|
if not qa.get("is_impossible", False) and qa.get("answers"):
|
|
answer = qa["answers"][0]["text"]
|
|
question = qa["question"]
|
|
input_text = f"answer: {answer} context: {context}"
|
|
data.append({"input": input_text, "target": question})
|
|
return data
|
|
|
|
def preprocess_function(example, tokenizer, max_input_length=512, max_target_length=64):
|
|
|
|
model_inputs = tokenizer(
|
|
example["input"],
|
|
max_length=max_input_length,
|
|
padding="max_length",
|
|
truncation=True,
|
|
)
|
|
labels = tokenizer(
|
|
text_target=example["target"],
|
|
max_length=max_target_length,
|
|
padding="max_length",
|
|
truncation=True,
|
|
)
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
return model_inputs
|
|
|
|
def main():
|
|
data_path = "30ktrain.json"
|
|
output_dir = "t5-viet-qg-finetuned"
|
|
logs_dir = "logs"
|
|
model_name = "VietAI/vit5-base"
|
|
|
|
print("Tải mô hình và tokenizer...")
|
|
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
print("Đọc và chia dữ liệu...")
|
|
raw_data = load_squad_data(data_path)
|
|
train_data, val_data = train_test_split(raw_data, test_size=0.2, random_state=42)
|
|
|
|
train_dataset = Dataset.from_list(train_data)
|
|
val_dataset = Dataset.from_list(val_data)
|
|
|
|
tokenized_train = train_dataset.map(
|
|
lambda x: preprocess_function(x, tokenizer),
|
|
batched=True,
|
|
remove_columns=["input", "target"]
|
|
)
|
|
tokenized_val = val_dataset.map(
|
|
lambda x: preprocess_function(x, tokenizer),
|
|
batched=True,
|
|
remove_columns=["input", "target"]
|
|
)
|
|
|
|
print("Cấu hình huấn luyện...")
|
|
training_args = TrainingArguments(
|
|
output_dir=output_dir,
|
|
overwrite_output_dir=True,
|
|
per_device_train_batch_size=1,
|
|
gradient_accumulation_steps=1,
|
|
num_train_epochs=3,
|
|
learning_rate=2e-4,
|
|
weight_decay=0.01,
|
|
warmup_steps=0,
|
|
logging_dir=logs_dir,
|
|
logging_steps=10,
|
|
fp16=False
|
|
)
|
|
|
|
print("Huấn luyện mô hình...")
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_train,
|
|
eval_dataset=tokenized_val,
|
|
tokenizer=tokenizer,
|
|
)
|
|
trainer.train()
|
|
|
|
print("Lưu mô hình...")
|
|
model.save_pretrained(output_dir)
|
|
tokenizer.save_pretrained(output_dir)
|
|
print("Huấn luyện hoàn tất!")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|