|
--- |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: utterance |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 763742 |
|
num_examples: 13084 |
|
- name: test |
|
num_bytes: 83070 |
|
num_examples: 1400 |
|
download_size: 409335 |
|
dataset_size: 846812 |
|
- config_name: intents |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regexp_full_match |
|
sequence: 'null' |
|
- name: regexp_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: 'null' |
|
splits: |
|
- name: intents |
|
num_bytes: 260 |
|
num_examples: 7 |
|
download_size: 3112 |
|
dataset_size: 260 |
|
- config_name: intentsqwen3-32b |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regex_full_match |
|
sequence: 'null' |
|
- name: regex_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: string |
|
splits: |
|
- name: intents |
|
num_bytes: 719 |
|
num_examples: 7 |
|
download_size: 3649 |
|
dataset_size: 719 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- config_name: intents |
|
data_files: |
|
- split: intents |
|
path: intents/intents-* |
|
- config_name: intentsqwen3-32b |
|
data_files: |
|
- split: intents |
|
path: intentsqwen3-32b/intents-* |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
--- |
|
|
|
# snips |
|
|
|
This is a text classification dataset. It is intended for machine learning research and experimentation. |
|
|
|
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). |
|
|
|
## Usage |
|
|
|
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from autointent import Dataset |
|
|
|
snips = Dataset.from_hub("AutoIntent/snips") |
|
``` |
|
|
|
## Source |
|
|
|
This dataset is taken from `benayas/snips` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
"""Convert snips dataset to autointent internal format and scheme.""" # noqa: INP001 |
|
|
|
from datasets import Dataset as HFDataset |
|
from datasets import load_dataset |
|
|
|
from autointent import Dataset |
|
from autointent.schemas import Intent, Sample |
|
|
|
|
|
def _extract_intents_data(split: HFDataset) -> tuple[dict[str, int], list[Intent]]: |
|
intent_names = sorted(split.unique("category")) |
|
name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False)) |
|
|
|
return name_to_id, [Intent(id=i, name=name) for i, name in enumerate(intent_names)] |
|
|
|
|
|
def convert_snips(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]: |
|
"""Convert one split into desired format.""" |
|
n_classes = len(name_to_id) |
|
|
|
classwise_samples = [[] for _ in range(n_classes)] |
|
|
|
for batch in split.iter(batch_size=16, drop_last_batch=False): |
|
for txt, name in zip(batch["text"], batch["category"], strict=False): |
|
intent_id = name_to_id[name] |
|
target_list = classwise_samples[intent_id] |
|
target_list.append({"utterance": txt, "label": intent_id}) |
|
|
|
return [Sample(**sample) for samples_from_one_class in classwise_samples for sample in samples_from_one_class] |
|
|
|
|
|
if __name__ == "__main__": |
|
snips = load_dataset("benayas/snips") |
|
|
|
name_to_id, intents_data = _extract_intents_data(snips["train"]) |
|
|
|
train_samples = convert_snips(snips["train"], name_to_id) |
|
test_samples = convert_snips(snips["test"], name_to_id) |
|
|
|
dataset = Dataset.from_dict({"train": train_samples, "test": test_samples, "intents": intents_data}) |
|
``` |