file_name
large_stringlengths
4
140
prefix
large_stringlengths
0
12.1k
suffix
large_stringlengths
0
12k
middle
large_stringlengths
0
7.51k
fim_type
large_stringclasses
4 values
made.py
.qgisUserDbFilePath()).path() + "/python/plugins/dalacalc" # initialize locale localePath = "" locale = QSettings().value("locale/userLocale").toString()[0:2] if QFileInfo(self.plugin_dir).exists(): localePath = self.plugin_dir + "/i18n/dalacalc_" + locale + ".qm" if QFileInfo(localePath).exists(): self.translator = QTranslator() self.translator.load(localePath) if qVersion() > '4.3.3': QCoreApplication.installTranslator(self.translator) # Create the dialog (after translation) and keep reference # self.dlg = DalaCalcDialog(self.iface.mainWindow(), flags) def initGui(self): # Create action that will start plugin configuration self.action = QAction(QIcon(":/plugins/dalacalc/icon.png"),"Hitung Dala", self.iface.mainWindow()) self.action.setWhatsThis("Plugin untuk hitungan Kerusakan dan Kerugian") self.action.setStatusTip("Damages And Losses Plugin") # connect the action to the run method QObject.connect(self.action, SIGNAL("triggered()"), self.run) # Add toolbar button and menu item self.iface.addToolBarIcon(self.action) self.iface.addPluginToMenu(u"&Hitungan Kerusakan Kerugian", self.action) def unload(self): # Remove the plugin menu item and icon
# run method that performs all the real work def run(self): # create and show the dialog flags = Qt.WindowTitleHint | Qt.WindowSystemMenuHint | Qt.WindowMaximizeButtonHint self.dlg = DalaCalcDialog(self.iface.mainWindow(), flags) # show the dialog self.dlg.show() # koneksi signal QObject.connect(self.dlg.ui.KeterdampakanComboBox,SIGNAL('currentIndexChanged(int)'), self.bacaKeterdampakan) QObject.connect(self.dlg.ui.BahayaComboBox,SIGNAL('currentIndexChanged(int)'), self.bacaBahaya) #QObject.connect(self.dlg.ui.KerugianLineEdit,SIGNAL('currentIndexChanged(int)'), self.bacaKerugian) QObject.connect(self.dlg.ui.helpPushButton,SIGNAL('clicked()'), self.bantuan) QObject.connect(self.dlg.ui.hitungPushButton,SIGNAL('clicked()'), self.hitungDala) quitbutton = self.dlg.ui.closePushButton QObject.connect(quitbutton, SIGNAL('clicked()'), self.dlg, SLOT('close()')) # membuat daftar layer yang ada di qgis self.layermap=QgsMapLayerRegistry.instance().mapLayers() for (name,layer) in self.layermap.iteritems(): if type(layer).__name__ == "QgsVectorLayer": tempname = str(name).rstrip('01234567890') self.layerids.append(name) self.dlg.ui.KeterdampakanComboBox.addItem(tempname) self.dlg.ui.BahayaComboBox.addItem(tempname) def bacaKeterdampakan(self): # membaca layer yg akan digunakan sebagai keterdampakan try: comboindex = self.dlg.ui.KeterdampakanComboBox.currentIndex() layerKeterdampakan = self.layermap[self.layerids[comboindex]] except: #Crashes without valid shapefiles return def bacaBahaya(self): # membaca layer yg akan digunakan sebagai exposure try: comboindex = self.dlg.ui.BahayaComboBox.currentIndex() layerBahaya = self.layermap[self.layerids[comboindex]] except: #Crashes without valid shapefiles return def bantuan(self): # membaca menu bantuan QMessageBox.information(self.iface.mainWindow(),"Bantuan Dala","Hitungan kerugian disesuaikan dengan peraturan daerah yang berlaku, dan diasumsikan kerusakan sebesar 90 %", QMessageBox.Close) def hitungDala(self): # membaca isi nilai kerugian - menguji isinya apakah yang dimasukkan benar merupakan angka try: nilaiKerugian = self.dlg.ui.KerugianLineEdit.text() nilaiKerugian = float(nilaiKerugian) except ValueError: QMessageBox.warning(self.iface.mainWindow(),"Error","Nilai kerugian tidak boleh kosong dan harus berupa angka!", QMessageBox.Close) return # membaca layer exposure comboindex = self.dlg.ui.KeterdampakanComboBox.currentIndex() layerKeterdampakan = self.layermap[self.layerids[comboindex]] # membaca layer hazard comboindex = self.dlg.ui.BahayaComboBox.currentIndex() layerBahaya = self.layermap[self.layerids[comboindex]] # check apakah layer sudah bener masuk #QMessageBox.information(self.iface.mainWindow(),"Error","terdampak = "+str(layerKeterdampakan)+"\nBahaya = "+str(layerBahaya), QMessageBox.Close) # membuat spatial index untuk mempercepat proses dampakIndex = QgsSpatialIndex() #index kosong untuk menampung layer dengan jumlah feature banyak bahayaIndex = QgsSpatialIndex() fbahaya = QgsFeature() #variabel untuk menyimpan feature pada layer bahaya fdampak = QgsFeature() #variabel untuk menyimpan feature pada layer dampak # dampak - buat penyimpanan feature menggunakan spatial index allAttrsDampak = layerKeterdampakan.pendingAllAttributesList() layerKeterdampakan.select(allAttrsDampak) allFeaturesDampak = {fdampak.id(): fdampak for fdampak in layerKeterdampakan} # bahaya - buat penyimpanan feature menggunakan spatial index allAttrsBahaya = layerBahaya.pendingAllAttributesList() layerBahaya.select(allAttrsBahaya) allFeaturesBahaya = {fbahaya.id(): fbahaya for fbahaya in layerBahaya} #mengisi dictionary dengan data keterdampakan for fd in allFeaturesDampak.values(): dampakIndex.insertFeature(fd) #mengisi dictionary dengan data bahaya for fb in allFeaturesBahaya.values(): bahayaIndex.insertFeature(fb) # --- MAIN ITERATION --- ids_D = {} ids_B = {} luasAkhirTerdampak = 0 # loop untuk mengisi feature di layer dampak dengan spatial indexnya for fdampak in allFeaturesDampak.values(): varA = fdampak.id() ids_D[varA] = dampakIndex.intersects(fdampak.geometry().boundingBox()) #QMessageBox.information(self.iface.mainWindow(),"test", str(varA),QMessageBox.Close) # loop untuk mengisi feature di layer bahaya dengan spatial indexnya for fbahaya in allFeaturesBahaya.values(): varB = fbahaya.id() ids_B[varB] = bahayaIndex.intersects(fbahaya.geometry().boundingBox()) #QMessageBox.information(self.iface.mainWindow(),"test", str(varB),QMessageBox.Close) selection=[] # seleksi fitur yang terseleksi for id_D in ids_D: f_D = allFeaturesDampak[id_D] for id_B in ids_B: f_B = allFeaturesBahaya[id_B] intersct = f_D.geometry().intersects(f_B.geometry()) #QMessageBox.information(self.iface.mainWindow(),"test1", "intersect pa gak?"+str(intersct),QMessageBox.Close) if intersct == True: luasTerdampak = f_D.geometry().area() luasAkhirTerdampak += luasTerdampak selection.append(id_D) # mendaftar feature yang terseleksi else: pass layerKeterdampakan.setSelectedFeatures(selection) if varA == 1: self.zoomFeature() else: mc=self.iface.mapCanvas() mc.zoomToSelected(layerKeterdampakan) # menghitung perkalian antara nilai kerugian dengan luas area terdampak persentase = 90.0*(0.01) hasilKali = luasAkhirTerdampak * nilaiKerugian * persentase # menampilkan hasil stringHasil = ("Hasil analisis kerugian dan kerusakan: \n" "\n- Total jumlah fasilitas terdampak = "+str(len(selection))+ "\n- Total luas semua fasilitas terdampak " "\n = "+str(luasAkhirTerdampak)+ " m2" "\n- Dengan nilai kerugian per unit sebesar " "\n Rp. "+locale.format("%d",nilaiKerugian,grouping=True)+",- " "\n dan dengan asumsi bahwa bangunan yang rusak " "\n mengalami "+str(persentase*100)+"% kerus
self.iface.removePluginMenu(u"&Hitungan Kerusakan Kerugian", self.action) self.iface.removeToolBarIcon(self.action)
identifier_body
__init__.py
PUT|DELETE|TRACE|PATCH) ') _accept_html = re.compile(rb'^Accept:[^\r]*text/html', re.IGNORECASE) _keep_alive = re.compile(rb'^Connection:[^\r]*keep-alive$', re.IGNORECASE) _error_page = '''<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>wstan error</title> <style type="text/css"> body {{ font-family: sans-serif; font-size: 12pt; height: 100%; }} h1 {{ font-size: 18pt; color: #333; }} #frame {{ margin: 0 auto; margin-top: 80px; width: 80%; color: #444; }} hr {{ color: #BBB }} </style> </head> <body> <div id="frame"> <h1>wstan error: {title}</h1> <hr /> <p>{detail}</p> </div> </body> </html> ''' async def my_sock_connect(host=None, port=None, *, family=0, proto=0, flags=0): """Modified version of BaseEventLoop.create_connection: this function returns sock object. And it resolve names for Py 3.4- capability.""" assert (host and port) infos = await loop.getaddrinfo( host, port, family=family, type=socket.SOCK_STREAM, proto=proto, flags=flags) if not infos: raise OSError('getaddrinfo() returned empty list') exceptions = [] sock = None for family, type_, proto, cname, address in infos: try: sock = socket.socket(family=family, type=type_, proto=proto) sock.setblocking(False) await loop.sock_connect(sock, address) except OSError as exc: if sock is not None: sock.close() exceptions.append(exc) except Exception: if sock is not None: sock.close() raise else: break else: if len(exceptions) == 1: raise exceptions[0] else: model = str(exceptions[0]) if all(str(exc) == model for exc in exceptions): # If they all have the same str(), raise one. raise exceptions[0] raise OSError('Multiple exceptions: {}'.format(', '.join(map(str, exceptions)))) return sock def make_socks_addr(host, port): return b'\x00\x03' + bytes([len(host)]) + host + struct.pack('>H', port) def parse_socks_addr(dat, allow_remain=False): """Extract address and port from SOCKS request header (only 4 parts: RSV(0x00) | ATYP | DST.ADDR | DST.PORT). The header will be reused in tunnel server.""" if not dat or dat[0] != 0x00: raise ValueError try: atyp = dat[1] if atyp == 0x01: # IPv4 port_idx = 6 target_addr = socket.inet_ntoa(dat[2:port_idx]) elif atyp == 0x03: # domain name port_idx = 3 + dat[2] target_addr = dat[3:port_idx].decode('ascii') elif atyp == 0x04: # IPv6 port_idx = 18 target_addr = socket.inet_ntop(socket.AF_INET6, dat[2:port_idx]) else: raise ValueError("unknown address type") target_port = struct.unpack('>H', dat[port_idx:port_idx+2])[0] if allow_remain: return target_addr, target_port, port_idx + 2 else: if dat[port_idx+2:]: raise ValueError return target_addr, target_port except (IndexError, struct.error): raise ValueError def die(reason): print(reason, file=sys.stderr) sys.exit(1) def load_ini(ini_path): """Read config from ini file.""" ini = ConfigParser() try: # utf-8 with BOM will kill ConfigParser with open(ini_path, encoding='utf-8-sig') as f: ini.read_string('[DEFAULT]\n' + f.read()) except (ParsingError, FileNotFoundError) as e: die('error reading config file: %s' % e) ini = ini['DEFAULT'] ret = {} ret.update(ini) # fix types for i in ('port', 'tun-port'): if i in ini: ret[i] = ini.getint(i) for i in ('client', 'server', 'debug', 'compatible'): if i in ini: ret[i] = ini.getboolean(i) for i in ret: if '-' in i: ret[i.replace('-', '_')] = ret.pop(i) return ret.items() def load_config(): import argparse from wstan.autobahn.websocket.protocol import parseWsUrl parser = argparse.ArgumentParser( description='Ver %s | Tunneling TCP in WebSocket' % __version__) # common config parser.add_argument('-g', '--gen-key', help='generate a key and exit', action='store_true') parser.add_argument('uri', help='URI of server', nargs='?') parser.add_argument('key', help='base64 encoded 16-byte key', nargs='?') g = parser.add_mutually_exclusive_group() g.add_argument('-c', '--client', help='run as client (default, also act as SOCKS5/HTTP(S) server)', default=True, action='store_true') g.add_argument('-s', '--server', help='run as server', action='store_true') parser.add_argument('-d', '--debug', action='store_true') parser.add_argument('-z', '--compatible', help='useful when server is behind WS proxy', action='store_true') parser.add_argument('-i', '--ini', help='load config file') # client config parser.add_argument('-y', '--proxy', help='let client use a HTTPS proxy (host:port)') parser.add_argument('-p', '--port', help='listen port of SOCKS5/HTTP(S) server at localhost (defaults 1080)', type=int, default=1080) # server config parser.add_argument('-t', '--tun-addr', help='listen address of server, overrides URI') parser.add_argument('-r', '--tun-port', help='listen port of server, overrides URI', type=int) parser.add_argument('--x-forward', help='Use X-Forwarded-For as client IP address when behind proxy', default=False, action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.gen_key: # option -g can be used without URI and key, just like -h return args if args.ini: for k, v in load_ini(args.ini): setattr(args, k, v) # file config will override args for i in ['uri', 'key']: if not getattr(args, i): die('%s not specified' % i) if '?' in args.uri: die('URI should not contain query') try: args.key = base64.b64decode(args.key) assert len(args.key) == 16 except (Base64Error, AssertionError): die('invalid key') args.tun_ssl, args.uri_addr, args.uri_port = parseWsUrl(args.uri)[:3] if args.proxy and args.client: try: args.proxy_host, port = args.proxy.split(':') args.proxy_port = int(port) except ValueError: dir('invalid proxy format') if args.compatible: d = get_sha1(args.key)[-1] args.cookie_key = '_' + chr((d % 26) + 65) # an upper case character return args def http_die_soon(req): """Disable keep-alive to make HTTP proxy act like SOCKS. By doing this wstan server can remain unchanged, but it will increase latency.""" dropped = [i for i in req.split(b'\r\n') if not _keep_alive.match(i)] end = dropped.index(b'') return b'\r\n'.join(dropped[:end] + [b'Connection: close'] + dropped[end:]) def is_http_req(dat): return bool(_http_req.match(dat)) def can_return_error_page(dat): return dat and bool(_http_req.match(dat) and any(map(_accept_html.match, dat.split(b'\r\n')))) def gen_error_page(title, detail): body = _error_page.format(title=title, detail=detail).encode() header = '\r\n'.join( ['HTTP/1.1 599 WSTAN ERROR', 'Content-Type: text/html; charset=UTF-8', 'Content-Length: %d' % len(body), '', '']).encode() return header + body def get_sha1(dat):
sha1 = hashlib.sha1() sha1.update(dat) return sha1.digest()
random_line_split
__init__.py
, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import logging import socket import struct import hashlib import asyncio import base64 import sys import os import re from binascii import Error as Base64Error from configparser import ConfigParser, ParsingError from collections import deque __version__ = '0.4.1' # Don't use "super().__init__()" in constructor of classes of this package (all libraries # used are using old style) # global variables shared between modules config = loop = None _http_req = re.compile(rb'^(GET|POST|HEAD|CONNECT|OPTIONS|PUT|DELETE|TRACE|PATCH) ') _accept_html = re.compile(rb'^Accept:[^\r]*text/html', re.IGNORECASE) _keep_alive = re.compile(rb'^Connection:[^\r]*keep-alive$', re.IGNORECASE) _error_page = '''<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>wstan error</title> <style type="text/css"> body {{ font-family: sans-serif; font-size: 12pt; height: 100%; }} h1 {{ font-size: 18pt; color: #333; }} #frame {{ margin: 0 auto; margin-top: 80px; width: 80%; color: #444; }} hr {{ color: #BBB }} </style> </head> <body> <div id="frame"> <h1>wstan error: {title}</h1> <hr /> <p>{detail}</p> </div> </body> </html> ''' async def my_sock_connect(host=None, port=None, *, family=0, proto=0, flags=0): """Modified version of BaseEventLoop.create_connection: this function returns sock object. And it resolve names for Py 3.4- capability.""" assert (host and port) infos = await loop.getaddrinfo( host, port, family=family, type=socket.SOCK_STREAM, proto=proto, flags=flags) if not infos: raise OSError('getaddrinfo() returned empty list') exceptions = [] sock = None for family, type_, proto, cname, address in infos: try: sock = socket.socket(family=family, type=type_, proto=proto) sock.setblocking(False) await loop.sock_connect(sock, address) except OSError as exc: if sock is not None: sock.close() exceptions.append(exc) except Exception: if sock is not None: sock.close() raise else: break else: if len(exceptions) == 1: raise exceptions[0] else: model = str(exceptions[0]) if all(str(exc) == model for exc in exceptions): # If they all have the same str(), raise one. raise exceptions[0] raise OSError('Multiple exceptions: {}'.format(', '.join(map(str, exceptions)))) return sock def make_socks_addr(host, port): return b'\x00\x03' + bytes([len(host)]) + host + struct.pack('>H', port) def parse_socks_addr(dat, allow_remain=False): """Extract address and port from SOCKS request header (only 4 parts: RSV(0x00) | ATYP | DST.ADDR | DST.PORT). The header will be reused in tunnel server.""" if not dat or dat[0] != 0x00: raise ValueError try: atyp = dat[1] if atyp == 0x01: # IPv4 port_idx = 6 target_addr = socket.inet_ntoa(dat[2:port_idx]) elif atyp == 0x03: # domain name port_idx = 3 + dat[2] target_addr = dat[3:port_idx].decode('ascii') elif atyp == 0x04: # IPv6 port_idx = 18 target_addr = socket.inet_ntop(socket.AF_INET6, dat[2:port_idx]) else: raise ValueError("unknown address type") target_port = struct.unpack('>H', dat[port_idx:port_idx+2])[0] if allow_remain: return target_addr, target_port, port_idx + 2 else: if dat[port_idx+2:]: raise ValueError return target_addr, target_port except (IndexError, struct.error): raise ValueError def die(reason): print(reason, file=sys.stderr) sys.exit(1) def load_ini(ini_path): """Read config from ini file.""" ini = ConfigParser() try: # utf-8 with BOM will kill ConfigParser with open(ini_path, encoding='utf-8-sig') as f: ini.read_string('[DEFAULT]\n' + f.read()) except (ParsingError, FileNotFoundError) as e: die('error reading config file: %s' % e) ini = ini['DEFAULT'] ret = {} ret.update(ini) # fix types for i in ('port', 'tun-port'): if i in ini: ret[i] = ini.getint(i) for i in ('client', 'server', 'debug', 'compatible'): if i in ini: ret[i] = ini.getboolean(i) for i in ret: if '-' in i: ret[i.replace('-', '_')] = ret.pop(i) return ret.items() def
(): import argparse from wstan.autobahn.websocket.protocol import parseWsUrl parser = argparse.ArgumentParser( description='Ver %s | Tunneling TCP in WebSocket' % __version__) # common config parser.add_argument('-g', '--gen-key', help='generate a key and exit', action='store_true') parser.add_argument('uri', help='URI of server', nargs='?') parser.add_argument('key', help='base64 encoded 16-byte key', nargs='?') g = parser.add_mutually_exclusive_group() g.add_argument('-c', '--client', help='run as client (default, also act as SOCKS5/HTTP(S) server)', default=True, action='store_true') g.add_argument('-s', '--server', help='run as server', action='store_true') parser.add_argument('-d', '--debug', action='store_true') parser.add_argument('-z', '--compatible', help='useful when server is behind WS proxy', action='store_true') parser.add_argument('-i', '--ini', help='load config file') # client config parser.add_argument('-y', '--proxy', help='let client use a HTTPS proxy (host:port)') parser.add_argument('-p', '--port', help='listen port of SOCKS5/HTTP(S) server at localhost (defaults 1080)', type=int, default=1080) # server config parser.add_argument('-t', '--tun-addr', help='listen address of server, overrides URI') parser.add_argument('-r', '--tun-port', help='listen port of server, overrides URI', type=int) parser.add_argument('--x-forward', help='Use X-Forwarded-For as client IP address when behind proxy', default=False, action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.gen_key: # option -g can be used without URI and key, just like -h return args if args.ini: for k, v in load_ini(args.ini): setattr(args, k, v) # file config will override args for i in ['uri', 'key']: if not getattr(args, i): die('%s not specified' % i) if '?' in args.uri: die('URI should not contain query') try: args.key = base64.b64decode(args.key) assert len(args.key) == 16 except (Base64Error, AssertionError): die('invalid key') args.tun_ssl, args.uri_addr, args.uri_port = parseWsUrl(args.uri)[:3] if args.proxy and args.client: try: args.proxy_host, port = args.proxy.split(':') args.proxy_port = int(port) except ValueError: dir('invalid proxy format') if args.compatible: d = get_sha1(args.key)[-1] args.cookie_key = '_' + chr((d % 26) + 65) # an upper case character return args def http_die_soon(req): """Disable keep-alive to make HTTP proxy act like SOCKS. By doing this wstan server can remain unchanged, but it will increase latency.""" dropped = [i for i in req.split(b'\r\n') if not _keep_alive.match(i)] end = dropped.index(b'') return b'\r\n'.join(dropped[:end] + [b'Connection: close'] + dropped[end
load_config
identifier_name
__init__.py
PUT|DELETE|TRACE|PATCH) ') _accept_html = re.compile(rb'^Accept:[^\r]*text/html', re.IGNORECASE) _keep_alive = re.compile(rb'^Connection:[^\r]*keep-alive$', re.IGNORECASE) _error_page = '''<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>wstan error</title> <style type="text/css"> body {{ font-family: sans-serif; font-size: 12pt; height: 100%; }} h1 {{ font-size: 18pt; color: #333; }} #frame {{ margin: 0 auto; margin-top: 80px; width: 80%; color: #444; }} hr {{ color: #BBB }} </style> </head> <body> <div id="frame"> <h1>wstan error: {title}</h1> <hr /> <p>{detail}</p> </div> </body> </html> ''' async def my_sock_connect(host=None, port=None, *, family=0, proto=0, flags=0): """Modified version of BaseEventLoop.create_connection: this function returns sock object. And it resolve names for Py 3.4- capability.""" assert (host and port) infos = await loop.getaddrinfo( host, port, family=family, type=socket.SOCK_STREAM, proto=proto, flags=flags) if not infos: raise OSError('getaddrinfo() returned empty list') exceptions = [] sock = None for family, type_, proto, cname, address in infos: try: sock = socket.socket(family=family, type=type_, proto=proto) sock.setblocking(False) await loop.sock_connect(sock, address) except OSError as exc: if sock is not None: sock.close() exceptions.append(exc) except Exception: if sock is not None: sock.close() raise else: break else: if len(exceptions) == 1: raise exceptions[0] else: model = str(exceptions[0]) if all(str(exc) == model for exc in exceptions): # If they all have the same str(), raise one. raise exceptions[0] raise OSError('Multiple exceptions: {}'.format(', '.join(map(str, exceptions)))) return sock def make_socks_addr(host, port): return b'\x00\x03' + bytes([len(host)]) + host + struct.pack('>H', port) def parse_socks_addr(dat, allow_remain=False): """Extract address and port from SOCKS request header (only 4 parts: RSV(0x00) | ATYP | DST.ADDR | DST.PORT). The header will be reused in tunnel server.""" if not dat or dat[0] != 0x00: raise ValueError try: atyp = dat[1] if atyp == 0x01: # IPv4 port_idx = 6 target_addr = socket.inet_ntoa(dat[2:port_idx]) elif atyp == 0x03: # domain name port_idx = 3 + dat[2] target_addr = dat[3:port_idx].decode('ascii') elif atyp == 0x04: # IPv6 port_idx = 18 target_addr = socket.inet_ntop(socket.AF_INET6, dat[2:port_idx]) else: raise ValueError("unknown address type") target_port = struct.unpack('>H', dat[port_idx:port_idx+2])[0] if allow_remain: return target_addr, target_port, port_idx + 2 else: if dat[port_idx+2:]: raise ValueError return target_addr, target_port except (IndexError, struct.error): raise ValueError def die(reason): print(reason, file=sys.stderr) sys.exit(1) def load_ini(ini_path): """Read config from ini file.""" ini = ConfigParser() try: # utf-8 with BOM will kill ConfigParser with open(ini_path, encoding='utf-8-sig') as f: ini.read_string('[DEFAULT]\n' + f.read()) except (ParsingError, FileNotFoundError) as e: die('error reading config file: %s' % e) ini = ini['DEFAULT'] ret = {} ret.update(ini) # fix types for i in ('port', 'tun-port'): if i in ini: ret[i] = ini.getint(i) for i in ('client', 'server', 'debug', 'compatible'): if i in ini: ret[i] = ini.getboolean(i) for i in ret: if '-' in i: ret[i.replace('-', '_')] = ret.pop(i) return ret.items() def load_config(): import argparse from wstan.autobahn.websocket.protocol import parseWsUrl parser = argparse.ArgumentParser( description='Ver %s | Tunneling TCP in WebSocket' % __version__) # common config parser.add_argument('-g', '--gen-key', help='generate a key and exit', action='store_true') parser.add_argument('uri', help='URI of server', nargs='?') parser.add_argument('key', help='base64 encoded 16-byte key', nargs='?') g = parser.add_mutually_exclusive_group() g.add_argument('-c', '--client', help='run as client (default, also act as SOCKS5/HTTP(S) server)', default=True, action='store_true') g.add_argument('-s', '--server', help='run as server', action='store_true') parser.add_argument('-d', '--debug', action='store_true') parser.add_argument('-z', '--compatible', help='useful when server is behind WS proxy', action='store_true') parser.add_argument('-i', '--ini', help='load config file') # client config parser.add_argument('-y', '--proxy', help='let client use a HTTPS proxy (host:port)') parser.add_argument('-p', '--port', help='listen port of SOCKS5/HTTP(S) server at localhost (defaults 1080)', type=int, default=1080) # server config parser.add_argument('-t', '--tun-addr', help='listen address of server, overrides URI') parser.add_argument('-r', '--tun-port', help='listen port of server, overrides URI', type=int) parser.add_argument('--x-forward', help='Use X-Forwarded-For as client IP address when behind proxy', default=False, action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.gen_key: # option -g can be used without URI and key, just like -h return args if args.ini: for k, v in load_ini(args.ini): setattr(args, k, v) # file config will override args for i in ['uri', 'key']: if not getattr(args, i): die('%s not specified' % i) if '?' in args.uri: die('URI should not contain query') try: args.key = base64.b64decode(args.key) assert len(args.key) == 16 except (Base64Error, AssertionError): die('invalid key') args.tun_ssl, args.uri_addr, args.uri_port = parseWsUrl(args.uri)[:3] if args.proxy and args.client: try: args.proxy_host, port = args.proxy.split(':') args.proxy_port = int(port) except ValueError: dir('invalid proxy format') if args.compatible: d = get_sha1(args.key)[-1] args.cookie_key = '_' + chr((d % 26) + 65) # an upper case character return args def http_die_soon(req): """Disable keep-alive to make HTTP proxy act like SOCKS. By doing this wstan server can remain unchanged, but it will increase latency.""" dropped = [i for i in req.split(b'\r\n') if not _keep_alive.match(i)] end = dropped.index(b'') return b'\r\n'.join(dropped[:end] + [b'Connection: close'] + dropped[end:]) def is_http_req(dat): return bool(_http_req.match(dat)) def can_return_error_page(dat): return dat and bool(_http_req.match(dat) and any(map(_accept_html.match, dat.split(b'\r\n')))) def gen_error_page(title, detail): body = _error_page.format(title=title, detail=detail).encode() header = '\r\n'.join( ['HTTP/1.1 599 WSTAN ERROR', 'Content-Type: text/html; charset=UTF-8', 'Content-Length: %d' % len(body), '', '']).encode() return header + body def get_sha1(dat):
sha1 = hashlib.sha1() sha1.update(dat) return sha1.digest()
identifier_body
__init__.py
, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import logging import socket import struct import hashlib import asyncio import base64 import sys import os import re from binascii import Error as Base64Error from configparser import ConfigParser, ParsingError from collections import deque __version__ = '0.4.1' # Don't use "super().__init__()" in constructor of classes of this package (all libraries # used are using old style) # global variables shared between modules config = loop = None _http_req = re.compile(rb'^(GET|POST|HEAD|CONNECT|OPTIONS|PUT|DELETE|TRACE|PATCH) ') _accept_html = re.compile(rb'^Accept:[^\r]*text/html', re.IGNORECASE) _keep_alive = re.compile(rb'^Connection:[^\r]*keep-alive$', re.IGNORECASE) _error_page = '''<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>wstan error</title> <style type="text/css"> body {{ font-family: sans-serif; font-size: 12pt; height: 100%; }} h1 {{ font-size: 18pt; color: #333; }} #frame {{ margin: 0 auto; margin-top: 80px; width: 80%; color: #444; }} hr {{ color: #BBB }} </style> </head> <body> <div id="frame"> <h1>wstan error: {title}</h1> <hr /> <p>{detail}</p> </div> </body> </html> ''' async def my_sock_connect(host=None, port=None, *, family=0, proto=0, flags=0): """Modified version of BaseEventLoop.create_connection: this function returns sock object. And it resolve names for Py 3.4- capability.""" assert (host and port) infos = await loop.getaddrinfo( host, port, family=family, type=socket.SOCK_STREAM, proto=proto, flags=flags) if not infos:
exceptions = [] sock = None for family, type_, proto, cname, address in infos: try: sock = socket.socket(family=family, type=type_, proto=proto) sock.setblocking(False) await loop.sock_connect(sock, address) except OSError as exc: if sock is not None: sock.close() exceptions.append(exc) except Exception: if sock is not None: sock.close() raise else: break else: if len(exceptions) == 1: raise exceptions[0] else: model = str(exceptions[0]) if all(str(exc) == model for exc in exceptions): # If they all have the same str(), raise one. raise exceptions[0] raise OSError('Multiple exceptions: {}'.format(', '.join(map(str, exceptions)))) return sock def make_socks_addr(host, port): return b'\x00\x03' + bytes([len(host)]) + host + struct.pack('>H', port) def parse_socks_addr(dat, allow_remain=False): """Extract address and port from SOCKS request header (only 4 parts: RSV(0x00) | ATYP | DST.ADDR | DST.PORT). The header will be reused in tunnel server.""" if not dat or dat[0] != 0x00: raise ValueError try: atyp = dat[1] if atyp == 0x01: # IPv4 port_idx = 6 target_addr = socket.inet_ntoa(dat[2:port_idx]) elif atyp == 0x03: # domain name port_idx = 3 + dat[2] target_addr = dat[3:port_idx].decode('ascii') elif atyp == 0x04: # IPv6 port_idx = 18 target_addr = socket.inet_ntop(socket.AF_INET6, dat[2:port_idx]) else: raise ValueError("unknown address type") target_port = struct.unpack('>H', dat[port_idx:port_idx+2])[0] if allow_remain: return target_addr, target_port, port_idx + 2 else: if dat[port_idx+2:]: raise ValueError return target_addr, target_port except (IndexError, struct.error): raise ValueError def die(reason): print(reason, file=sys.stderr) sys.exit(1) def load_ini(ini_path): """Read config from ini file.""" ini = ConfigParser() try: # utf-8 with BOM will kill ConfigParser with open(ini_path, encoding='utf-8-sig') as f: ini.read_string('[DEFAULT]\n' + f.read()) except (ParsingError, FileNotFoundError) as e: die('error reading config file: %s' % e) ini = ini['DEFAULT'] ret = {} ret.update(ini) # fix types for i in ('port', 'tun-port'): if i in ini: ret[i] = ini.getint(i) for i in ('client', 'server', 'debug', 'compatible'): if i in ini: ret[i] = ini.getboolean(i) for i in ret: if '-' in i: ret[i.replace('-', '_')] = ret.pop(i) return ret.items() def load_config(): import argparse from wstan.autobahn.websocket.protocol import parseWsUrl parser = argparse.ArgumentParser( description='Ver %s | Tunneling TCP in WebSocket' % __version__) # common config parser.add_argument('-g', '--gen-key', help='generate a key and exit', action='store_true') parser.add_argument('uri', help='URI of server', nargs='?') parser.add_argument('key', help='base64 encoded 16-byte key', nargs='?') g = parser.add_mutually_exclusive_group() g.add_argument('-c', '--client', help='run as client (default, also act as SOCKS5/HTTP(S) server)', default=True, action='store_true') g.add_argument('-s', '--server', help='run as server', action='store_true') parser.add_argument('-d', '--debug', action='store_true') parser.add_argument('-z', '--compatible', help='useful when server is behind WS proxy', action='store_true') parser.add_argument('-i', '--ini', help='load config file') # client config parser.add_argument('-y', '--proxy', help='let client use a HTTPS proxy (host:port)') parser.add_argument('-p', '--port', help='listen port of SOCKS5/HTTP(S) server at localhost (defaults 1080)', type=int, default=1080) # server config parser.add_argument('-t', '--tun-addr', help='listen address of server, overrides URI') parser.add_argument('-r', '--tun-port', help='listen port of server, overrides URI', type=int) parser.add_argument('--x-forward', help='Use X-Forwarded-For as client IP address when behind proxy', default=False, action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.gen_key: # option -g can be used without URI and key, just like -h return args if args.ini: for k, v in load_ini(args.ini): setattr(args, k, v) # file config will override args for i in ['uri', 'key']: if not getattr(args, i): die('%s not specified' % i) if '?' in args.uri: die('URI should not contain query') try: args.key = base64.b64decode(args.key) assert len(args.key) == 16 except (Base64Error, AssertionError): die('invalid key') args.tun_ssl, args.uri_addr, args.uri_port = parseWsUrl(args.uri)[:3] if args.proxy and args.client: try: args.proxy_host, port = args.proxy.split(':') args.proxy_port = int(port) except ValueError: dir('invalid proxy format') if args.compatible: d = get_sha1(args.key)[-1] args.cookie_key = '_' + chr((d % 26) + 65) # an upper case character return args def http_die_soon(req): """Disable keep-alive to make HTTP proxy act like SOCKS. By doing this wstan server can remain unchanged, but it will increase latency.""" dropped = [i for i in req.split(b'\r\n') if not _keep_alive.match(i)] end = dropped.index(b'') return b'\r\n'.join(dropped[:end] + [b'Connection: close'] + dropped[end
raise OSError('getaddrinfo() returned empty list')
conditional_block
fs.rs
VirtioFeatures}; use crate::virtio; use crate::virtio::copy_config; use crate::virtio::fs::passthrough::PassthroughFs; use crate::virtio::fs::{process_fs_queue, virtio_fs_config, FS_MAX_TAG_LEN}; use crate::virtio::vhost::user::device::handler::{ CallEvent, DeviceRequestHandler, VhostUserBackend, }; static FS_EXECUTOR: OnceCell<Executor> = OnceCell::new(); async fn handle_fs_queue( mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: EventAsync, server: Arc<fuse::Server<PassthroughFs>>, tube: Arc<Mutex<Tube>>, ) { // Slot is always going to be 0 because we do not support DAX let slot: u32 = 0; loop { if let Err(e) = kick_evt.next_val().await { error!("Failed to read kick event for fs queue: {}", e); break; } if let Err(e) = process_fs_queue(&mem, &call_evt, &mut queue, &server, &tube, slot) { error!("Process FS queue failed: {}", e); break; } } } fn default_uidmap() -> String { let euid = unsafe { libc::geteuid() }; format!("{} {} 1", euid, euid) } fn default_gidmap() -> String
fn jail_and_fork( mut keep_rds: Vec<RawDescriptor>, dir_path: PathBuf, uid_map: Option<String>, gid_map: Option<String>, ) -> anyhow::Result<i32> { // Create new minijail sandbox let mut j = Minijail::new()?; j.namespace_pids(); j.namespace_user(); j.namespace_user_disable_setgroups(); j.uidmap(&uid_map.unwrap_or_else(default_uidmap))?; j.gidmap(&gid_map.unwrap_or_else(default_gidmap))?; j.run_as_init(); j.namespace_vfs(); j.namespace_net(); j.no_new_privs(); // Only pivot_root if we are not re-using the current root directory. if dir_path != Path::new("/") { // It's safe to call `namespace_vfs` multiple times. j.namespace_vfs(); j.enter_pivot_root(&dir_path)?; } j.set_remount_mode(libc::MS_SLAVE); let limit = get_max_open_files().context("failed to get max open files")?; j.set_rlimit(libc::RLIMIT_NOFILE as i32, limit, limit)?; // Make sure there are no duplicates in keep_rds keep_rds.dedup(); // fork on the jail here let pid = unsafe { j.fork(Some(&keep_rds))? }; if pid > 0 { unsafe { libc::prctl(libc::PR_SET_PDEATHSIG, libc::SIGTERM) }; } if pid < 0 { bail!("Fork error! {}", std::io::Error::last_os_error()); } Ok(pid) } struct FsBackend { server: Arc<fuse::Server<PassthroughFs>>, tag: [u8; FS_MAX_TAG_LEN], avail_features: u64, acked_features: u64, acked_protocol_features: VhostUserProtocolFeatures, workers: [Option<AbortHandle>; Self::MAX_QUEUE_NUM], keep_rds: Vec<RawDescriptor>, } impl FsBackend { pub fn new(tag: &str) -> anyhow::Result<Self> { if tag.len() > FS_MAX_TAG_LEN { bail!( "fs tag is too long: {} (max supported: {})", tag.len(), FS_MAX_TAG_LEN ); } let mut fs_tag = [0u8; FS_MAX_TAG_LEN]; fs_tag[..tag.len()].copy_from_slice(tag.as_bytes()); let avail_features = virtio::base_features(ProtectionType::Unprotected) | VhostUserVirtioFeatures::PROTOCOL_FEATURES.bits(); // Use default passthroughfs config let fs = PassthroughFs::new(Default::default())?; let mut keep_rds: Vec<RawDescriptor> = [0, 1, 2].to_vec(); keep_rds.append(&mut fs.keep_rds()); let server = Arc::new(Server::new(fs)); Ok(FsBackend { server, tag: fs_tag, avail_features, acked_features: 0, acked_protocol_features: VhostUserProtocolFeatures::empty(), workers: Default::default(), keep_rds, }) } } impl VhostUserBackend for FsBackend { const MAX_QUEUE_NUM: usize = 2; /* worker queue and high priority queue */ const MAX_VRING_LEN: u16 = 1024; type Doorbell = CallEvent; type Error = anyhow::Error; fn features(&self) -> u64 { self.avail_features } fn ack_features(&mut self, value: u64) -> anyhow::Result<()> { let unrequested_features = value & !self.avail_features; if unrequested_features != 0 { bail!("invalid features are given: {:#x}", unrequested_features); } self.acked_features |= value; Ok(()) } fn acked_features(&self) -> u64 { self.acked_features } fn protocol_features(&self) -> VhostUserProtocolFeatures { VhostUserProtocolFeatures::CONFIG | VhostUserProtocolFeatures::MQ } fn ack_protocol_features(&mut self, features: u64) -> anyhow::Result<()> { let features = VhostUserProtocolFeatures::from_bits(features) .ok_or_else(|| anyhow!("invalid protocol features are given: {:#x}", features))?; let supported = self.protocol_features(); self.acked_protocol_features = features & supported; Ok(()) } fn acked_protocol_features(&self) -> u64 { self.acked_protocol_features.bits() } fn read_config(&self, offset: u64, data: &mut [u8]) { let config = virtio_fs_config { tag: self.tag, num_request_queues: Le32::from(1), }; copy_config(data, 0, config.as_slice(), offset); } fn reset(&mut self) { for handle in self.workers.iter_mut().filter_map(Option::take) { handle.abort(); } } fn start_queue( &mut self, idx: usize, mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: Event, ) -> anyhow::Result<()> { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { warn!("Starting new queue handler without stopping old handler"); handle.abort(); } // Safe because the executor is initialized in main() below. let ex = FS_EXECUTOR.get().expect("Executor not initialized"); // Enable any virtqueue features that were negotiated (like VIRTIO_RING_F_EVENT_IDX). queue.ack_features(self.acked_features); let kick_evt = EventAsync::new(kick_evt.0, ex).context("failed to create EventAsync for kick_evt")?; let (handle, registration) = AbortHandle::new_pair(); let (_, fs_device_tube) = Tube::pair()?; ex.spawn_local(Abortable::new( handle_fs_queue( queue, mem, call_evt, kick_evt, self.server.clone(), Arc::new(Mutex::new(fs_device_tube)), ), registration, )) .detach(); self.workers[idx] = Some(handle); Ok(()) } fn stop_queue(&mut self, idx: usize) { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { handle.abort(); } } } #[derive(FromArgs)] #[argh(description = "")] struct Options { #[argh(option, description = "path to a socket", arg_name = "PATH")] socket: String, #[argh(option, description = "the virtio-fs tag", arg_name = "TAG")] tag: String, #[argh(option, description = "path to a directory to share", arg_name = "DIR")] shared_dir: PathBuf, #[argh(option, description = "uid map to use", arg_name = "UIDMAP")] uid_map: Option<String>, #[argh(option, description = "gid map to use", arg_name = "GIDMAP")] gid_map: Option<String>, } /// Starts a vhost-user fs device. /// Returns an error if the given `args` is invalid or the device fails to run. pub fn run_fs_device(program_name: &str, args: &[&str]) -> anyhow::Result<()> { let opts = match Options::from_args(&[program_name], args) { Ok(opts) => opts, Err(e) => { if e.status.is_err() { bail
{ let egid = unsafe { libc::getegid() }; format!("{} {} 1", egid, egid) }
identifier_body
fs.rs
VirtioFeatures}; use crate::virtio; use crate::virtio::copy_config; use crate::virtio::fs::passthrough::PassthroughFs; use crate::virtio::fs::{process_fs_queue, virtio_fs_config, FS_MAX_TAG_LEN}; use crate::virtio::vhost::user::device::handler::{ CallEvent, DeviceRequestHandler, VhostUserBackend, }; static FS_EXECUTOR: OnceCell<Executor> = OnceCell::new(); async fn handle_fs_queue( mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: EventAsync, server: Arc<fuse::Server<PassthroughFs>>, tube: Arc<Mutex<Tube>>, ) { // Slot is always going to be 0 because we do not support DAX let slot: u32 = 0; loop { if let Err(e) = kick_evt.next_val().await { error!("Failed to read kick event for fs queue: {}", e); break; } if let Err(e) = process_fs_queue(&mem, &call_evt, &mut queue, &server, &tube, slot) { error!("Process FS queue failed: {}", e); break; } } } fn default_uidmap() -> String { let euid = unsafe { libc::geteuid() }; format!("{} {} 1", euid, euid) } fn default_gidmap() -> String { let egid = unsafe { libc::getegid() }; format!("{} {} 1", egid, egid) } fn jail_and_fork( mut keep_rds: Vec<RawDescriptor>, dir_path: PathBuf, uid_map: Option<String>, gid_map: Option<String>, ) -> anyhow::Result<i32> { // Create new minijail sandbox let mut j = Minijail::new()?; j.namespace_pids(); j.namespace_user(); j.namespace_user_disable_setgroups(); j.uidmap(&uid_map.unwrap_or_else(default_uidmap))?; j.gidmap(&gid_map.unwrap_or_else(default_gidmap))?; j.run_as_init(); j.namespace_vfs(); j.namespace_net(); j.no_new_privs(); // Only pivot_root if we are not re-using the current root directory. if dir_path != Path::new("/") { // It's safe to call `namespace_vfs` multiple times. j.namespace_vfs(); j.enter_pivot_root(&dir_path)?; } j.set_remount_mode(libc::MS_SLAVE); let limit = get_max_open_files().context("failed to get max open files")?; j.set_rlimit(libc::RLIMIT_NOFILE as i32, limit, limit)?; // Make sure there are no duplicates in keep_rds keep_rds.dedup(); // fork on the jail here let pid = unsafe { j.fork(Some(&keep_rds))? }; if pid > 0 { unsafe { libc::prctl(libc::PR_SET_PDEATHSIG, libc::SIGTERM) }; } if pid < 0 { bail!("Fork error! {}", std::io::Error::last_os_error()); } Ok(pid) } struct FsBackend { server: Arc<fuse::Server<PassthroughFs>>, tag: [u8; FS_MAX_TAG_LEN], avail_features: u64, acked_features: u64, acked_protocol_features: VhostUserProtocolFeatures, workers: [Option<AbortHandle>; Self::MAX_QUEUE_NUM], keep_rds: Vec<RawDescriptor>, } impl FsBackend { pub fn new(tag: &str) -> anyhow::Result<Self> { if tag.len() > FS_MAX_TAG_LEN { bail!( "fs tag is too long: {} (max supported: {})", tag.len(), FS_MAX_TAG_LEN ); } let mut fs_tag = [0u8; FS_MAX_TAG_LEN]; fs_tag[..tag.len()].copy_from_slice(tag.as_bytes()); let avail_features = virtio::base_features(ProtectionType::Unprotected) | VhostUserVirtioFeatures::PROTOCOL_FEATURES.bits(); // Use default passthroughfs config let fs = PassthroughFs::new(Default::default())?; let mut keep_rds: Vec<RawDescriptor> = [0, 1, 2].to_vec(); keep_rds.append(&mut fs.keep_rds()); let server = Arc::new(Server::new(fs)); Ok(FsBackend { server, tag: fs_tag, avail_features, acked_features: 0, acked_protocol_features: VhostUserProtocolFeatures::empty(), workers: Default::default(), keep_rds, }) } } impl VhostUserBackend for FsBackend { const MAX_QUEUE_NUM: usize = 2; /* worker queue and high priority queue */ const MAX_VRING_LEN: u16 = 1024; type Doorbell = CallEvent; type Error = anyhow::Error; fn features(&self) -> u64 { self.avail_features } fn ack_features(&mut self, value: u64) -> anyhow::Result<()> { let unrequested_features = value & !self.avail_features; if unrequested_features != 0 { bail!("invalid features are given: {:#x}", unrequested_features); } self.acked_features |= value; Ok(()) } fn acked_features(&self) -> u64 { self.acked_features } fn protocol_features(&self) -> VhostUserProtocolFeatures { VhostUserProtocolFeatures::CONFIG | VhostUserProtocolFeatures::MQ } fn ack_protocol_features(&mut self, features: u64) -> anyhow::Result<()> { let features = VhostUserProtocolFeatures::from_bits(features) .ok_or_else(|| anyhow!("invalid protocol features are given: {:#x}", features))?; let supported = self.protocol_features(); self.acked_protocol_features = features & supported; Ok(()) } fn acked_protocol_features(&self) -> u64 { self.acked_protocol_features.bits() } fn read_config(&self, offset: u64, data: &mut [u8]) { let config = virtio_fs_config { tag: self.tag, num_request_queues: Le32::from(1), }; copy_config(data, 0, config.as_slice(), offset); } fn reset(&mut self) { for handle in self.workers.iter_mut().filter_map(Option::take) { handle.abort(); } } fn start_queue( &mut self, idx: usize, mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: Event, ) -> anyhow::Result<()> { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { warn!("Starting new queue handler without stopping old handler"); handle.abort(); } // Safe because the executor is initialized in main() below. let ex = FS_EXECUTOR.get().expect("Executor not initialized"); // Enable any virtqueue features that were negotiated (like VIRTIO_RING_F_EVENT_IDX). queue.ack_features(self.acked_features); let kick_evt = EventAsync::new(kick_evt.0, ex).context("failed to create EventAsync for kick_evt")?; let (handle, registration) = AbortHandle::new_pair(); let (_, fs_device_tube) = Tube::pair()?; ex.spawn_local(Abortable::new( handle_fs_queue( queue, mem, call_evt, kick_evt, self.server.clone(), Arc::new(Mutex::new(fs_device_tube)), ), registration, )) .detach(); self.workers[idx] = Some(handle); Ok(()) } fn stop_queue(&mut self, idx: usize) { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { handle.abort(); } } } #[derive(FromArgs)] #[argh(description = "")] struct
{ #[argh(option, description = "path to a socket", arg_name = "PATH")] socket: String, #[argh(option, description = "the virtio-fs tag", arg_name = "TAG")] tag: String, #[argh(option, description = "path to a directory to share", arg_name = "DIR")] shared_dir: PathBuf, #[argh(option, description = "uid map to use", arg_name = "UIDMAP")] uid_map: Option<String>, #[argh(option, description = "gid map to use", arg_name = "GIDMAP")] gid_map: Option<String>, } /// Starts a vhost-user fs device. /// Returns an error if the given `args` is invalid or the device fails to run. pub fn run_fs_device(program_name: &str, args: &[&str]) -> anyhow::Result<()> { let opts = match Options::from_args(&[program_name], args) { Ok(opts) => opts, Err(e) => { if e.status.is_err() { bail!(
Options
identifier_name
fs.rs
VirtioFeatures}; use crate::virtio; use crate::virtio::copy_config; use crate::virtio::fs::passthrough::PassthroughFs; use crate::virtio::fs::{process_fs_queue, virtio_fs_config, FS_MAX_TAG_LEN}; use crate::virtio::vhost::user::device::handler::{ CallEvent, DeviceRequestHandler, VhostUserBackend, }; static FS_EXECUTOR: OnceCell<Executor> = OnceCell::new(); async fn handle_fs_queue( mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: EventAsync, server: Arc<fuse::Server<PassthroughFs>>, tube: Arc<Mutex<Tube>>, ) { // Slot is always going to be 0 because we do not support DAX let slot: u32 = 0; loop { if let Err(e) = kick_evt.next_val().await { error!("Failed to read kick event for fs queue: {}", e); break; } if let Err(e) = process_fs_queue(&mem, &call_evt, &mut queue, &server, &tube, slot) { error!("Process FS queue failed: {}", e); break; } } } fn default_uidmap() -> String { let euid = unsafe { libc::geteuid() }; format!("{} {} 1", euid, euid) } fn default_gidmap() -> String { let egid = unsafe { libc::getegid() }; format!("{} {} 1", egid, egid) } fn jail_and_fork( mut keep_rds: Vec<RawDescriptor>, dir_path: PathBuf, uid_map: Option<String>, gid_map: Option<String>, ) -> anyhow::Result<i32> { // Create new minijail sandbox let mut j = Minijail::new()?; j.namespace_pids(); j.namespace_user(); j.namespace_user_disable_setgroups(); j.uidmap(&uid_map.unwrap_or_else(default_uidmap))?; j.gidmap(&gid_map.unwrap_or_else(default_gidmap))?; j.run_as_init(); j.namespace_vfs(); j.namespace_net(); j.no_new_privs(); // Only pivot_root if we are not re-using the current root directory. if dir_path != Path::new("/") { // It's safe to call `namespace_vfs` multiple times. j.namespace_vfs(); j.enter_pivot_root(&dir_path)?; } j.set_remount_mode(libc::MS_SLAVE); let limit = get_max_open_files().context("failed to get max open files")?; j.set_rlimit(libc::RLIMIT_NOFILE as i32, limit, limit)?; // Make sure there are no duplicates in keep_rds keep_rds.dedup(); // fork on the jail here let pid = unsafe { j.fork(Some(&keep_rds))? }; if pid > 0
if pid < 0 { bail!("Fork error! {}", std::io::Error::last_os_error()); } Ok(pid) } struct FsBackend { server: Arc<fuse::Server<PassthroughFs>>, tag: [u8; FS_MAX_TAG_LEN], avail_features: u64, acked_features: u64, acked_protocol_features: VhostUserProtocolFeatures, workers: [Option<AbortHandle>; Self::MAX_QUEUE_NUM], keep_rds: Vec<RawDescriptor>, } impl FsBackend { pub fn new(tag: &str) -> anyhow::Result<Self> { if tag.len() > FS_MAX_TAG_LEN { bail!( "fs tag is too long: {} (max supported: {})", tag.len(), FS_MAX_TAG_LEN ); } let mut fs_tag = [0u8; FS_MAX_TAG_LEN]; fs_tag[..tag.len()].copy_from_slice(tag.as_bytes()); let avail_features = virtio::base_features(ProtectionType::Unprotected) | VhostUserVirtioFeatures::PROTOCOL_FEATURES.bits(); // Use default passthroughfs config let fs = PassthroughFs::new(Default::default())?; let mut keep_rds: Vec<RawDescriptor> = [0, 1, 2].to_vec(); keep_rds.append(&mut fs.keep_rds()); let server = Arc::new(Server::new(fs)); Ok(FsBackend { server, tag: fs_tag, avail_features, acked_features: 0, acked_protocol_features: VhostUserProtocolFeatures::empty(), workers: Default::default(), keep_rds, }) } } impl VhostUserBackend for FsBackend { const MAX_QUEUE_NUM: usize = 2; /* worker queue and high priority queue */ const MAX_VRING_LEN: u16 = 1024; type Doorbell = CallEvent; type Error = anyhow::Error; fn features(&self) -> u64 { self.avail_features } fn ack_features(&mut self, value: u64) -> anyhow::Result<()> { let unrequested_features = value & !self.avail_features; if unrequested_features != 0 { bail!("invalid features are given: {:#x}", unrequested_features); } self.acked_features |= value; Ok(()) } fn acked_features(&self) -> u64 { self.acked_features } fn protocol_features(&self) -> VhostUserProtocolFeatures { VhostUserProtocolFeatures::CONFIG | VhostUserProtocolFeatures::MQ } fn ack_protocol_features(&mut self, features: u64) -> anyhow::Result<()> { let features = VhostUserProtocolFeatures::from_bits(features) .ok_or_else(|| anyhow!("invalid protocol features are given: {:#x}", features))?; let supported = self.protocol_features(); self.acked_protocol_features = features & supported; Ok(()) } fn acked_protocol_features(&self) -> u64 { self.acked_protocol_features.bits() } fn read_config(&self, offset: u64, data: &mut [u8]) { let config = virtio_fs_config { tag: self.tag, num_request_queues: Le32::from(1), }; copy_config(data, 0, config.as_slice(), offset); } fn reset(&mut self) { for handle in self.workers.iter_mut().filter_map(Option::take) { handle.abort(); } } fn start_queue( &mut self, idx: usize, mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: Event, ) -> anyhow::Result<()> { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { warn!("Starting new queue handler without stopping old handler"); handle.abort(); } // Safe because the executor is initialized in main() below. let ex = FS_EXECUTOR.get().expect("Executor not initialized"); // Enable any virtqueue features that were negotiated (like VIRTIO_RING_F_EVENT_IDX). queue.ack_features(self.acked_features); let kick_evt = EventAsync::new(kick_evt.0, ex).context("failed to create EventAsync for kick_evt")?; let (handle, registration) = AbortHandle::new_pair(); let (_, fs_device_tube) = Tube::pair()?; ex.spawn_local(Abortable::new( handle_fs_queue( queue, mem, call_evt, kick_evt, self.server.clone(), Arc::new(Mutex::new(fs_device_tube)), ), registration, )) .detach(); self.workers[idx] = Some(handle); Ok(()) } fn stop_queue(&mut self, idx: usize) { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { handle.abort(); } } } #[derive(FromArgs)] #[argh(description = "")] struct Options { #[argh(option, description = "path to a socket", arg_name = "PATH")] socket: String, #[argh(option, description = "the virtio-fs tag", arg_name = "TAG")] tag: String, #[argh(option, description = "path to a directory to share", arg_name = "DIR")] shared_dir: PathBuf, #[argh(option, description = "uid map to use", arg_name = "UIDMAP")] uid_map: Option<String>, #[argh(option, description = "gid map to use", arg_name = "GIDMAP")] gid_map: Option<String>, } /// Starts a vhost-user fs device. /// Returns an error if the given `args` is invalid or the device fails to run. pub fn run_fs_device(program_name: &str, args: &[&str]) -> anyhow::Result<()> { let opts = match Options::from_args(&[program_name], args) { Ok(opts) => opts, Err(e) => { if e.status.is_err() { bail
{ unsafe { libc::prctl(libc::PR_SET_PDEATHSIG, libc::SIGTERM) }; }
conditional_block
fs.rs
VirtioFeatures}; use crate::virtio; use crate::virtio::copy_config; use crate::virtio::fs::passthrough::PassthroughFs; use crate::virtio::fs::{process_fs_queue, virtio_fs_config, FS_MAX_TAG_LEN}; use crate::virtio::vhost::user::device::handler::{ CallEvent, DeviceRequestHandler, VhostUserBackend, }; static FS_EXECUTOR: OnceCell<Executor> = OnceCell::new(); async fn handle_fs_queue( mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: EventAsync, server: Arc<fuse::Server<PassthroughFs>>, tube: Arc<Mutex<Tube>>, ) { // Slot is always going to be 0 because we do not support DAX let slot: u32 = 0; loop { if let Err(e) = kick_evt.next_val().await { error!("Failed to read kick event for fs queue: {}", e); break; } if let Err(e) = process_fs_queue(&mem, &call_evt, &mut queue, &server, &tube, slot) { error!("Process FS queue failed: {}", e); break; } } } fn default_uidmap() -> String { let euid = unsafe { libc::geteuid() }; format!("{} {} 1", euid, euid) } fn default_gidmap() -> String { let egid = unsafe { libc::getegid() }; format!("{} {} 1", egid, egid) } fn jail_and_fork( mut keep_rds: Vec<RawDescriptor>, dir_path: PathBuf, uid_map: Option<String>, gid_map: Option<String>, ) -> anyhow::Result<i32> { // Create new minijail sandbox let mut j = Minijail::new()?; j.namespace_pids(); j.namespace_user(); j.namespace_user_disable_setgroups(); j.uidmap(&uid_map.unwrap_or_else(default_uidmap))?; j.gidmap(&gid_map.unwrap_or_else(default_gidmap))?; j.run_as_init(); j.namespace_vfs(); j.namespace_net(); j.no_new_privs(); // Only pivot_root if we are not re-using the current root directory. if dir_path != Path::new("/") { // It's safe to call `namespace_vfs` multiple times. j.namespace_vfs(); j.enter_pivot_root(&dir_path)?; } j.set_remount_mode(libc::MS_SLAVE); let limit = get_max_open_files().context("failed to get max open files")?; j.set_rlimit(libc::RLIMIT_NOFILE as i32, limit, limit)?; // Make sure there are no duplicates in keep_rds keep_rds.dedup(); // fork on the jail here let pid = unsafe { j.fork(Some(&keep_rds))? }; if pid > 0 { unsafe { libc::prctl(libc::PR_SET_PDEATHSIG, libc::SIGTERM) }; } if pid < 0 { bail!("Fork error! {}", std::io::Error::last_os_error()); } Ok(pid) } struct FsBackend { server: Arc<fuse::Server<PassthroughFs>>, tag: [u8; FS_MAX_TAG_LEN], avail_features: u64, acked_features: u64, acked_protocol_features: VhostUserProtocolFeatures, workers: [Option<AbortHandle>; Self::MAX_QUEUE_NUM], keep_rds: Vec<RawDescriptor>, } impl FsBackend { pub fn new(tag: &str) -> anyhow::Result<Self> { if tag.len() > FS_MAX_TAG_LEN { bail!( "fs tag is too long: {} (max supported: {})", tag.len(), FS_MAX_TAG_LEN ); } let mut fs_tag = [0u8; FS_MAX_TAG_LEN]; fs_tag[..tag.len()].copy_from_slice(tag.as_bytes()); let avail_features = virtio::base_features(ProtectionType::Unprotected) | VhostUserVirtioFeatures::PROTOCOL_FEATURES.bits(); // Use default passthroughfs config let fs = PassthroughFs::new(Default::default())?; let mut keep_rds: Vec<RawDescriptor> = [0, 1, 2].to_vec(); keep_rds.append(&mut fs.keep_rds()); let server = Arc::new(Server::new(fs)); Ok(FsBackend { server, tag: fs_tag, avail_features, acked_features: 0, acked_protocol_features: VhostUserProtocolFeatures::empty(), workers: Default::default(), keep_rds, }) } } impl VhostUserBackend for FsBackend { const MAX_QUEUE_NUM: usize = 2; /* worker queue and high priority queue */ const MAX_VRING_LEN: u16 = 1024; type Doorbell = CallEvent; type Error = anyhow::Error; fn features(&self) -> u64 { self.avail_features } fn ack_features(&mut self, value: u64) -> anyhow::Result<()> { let unrequested_features = value & !self.avail_features; if unrequested_features != 0 { bail!("invalid features are given: {:#x}", unrequested_features); } self.acked_features |= value; Ok(()) } fn acked_features(&self) -> u64 { self.acked_features } fn protocol_features(&self) -> VhostUserProtocolFeatures { VhostUserProtocolFeatures::CONFIG | VhostUserProtocolFeatures::MQ } fn ack_protocol_features(&mut self, features: u64) -> anyhow::Result<()> { let features = VhostUserProtocolFeatures::from_bits(features) .ok_or_else(|| anyhow!("invalid protocol features are given: {:#x}", features))?; let supported = self.protocol_features(); self.acked_protocol_features = features & supported; Ok(()) } fn acked_protocol_features(&self) -> u64 { self.acked_protocol_features.bits() } fn read_config(&self, offset: u64, data: &mut [u8]) { let config = virtio_fs_config { tag: self.tag, num_request_queues: Le32::from(1), }; copy_config(data, 0, config.as_slice(), offset); } fn reset(&mut self) { for handle in self.workers.iter_mut().filter_map(Option::take) { handle.abort(); } } fn start_queue( &mut self, idx: usize, mut queue: virtio::Queue, mem: GuestMemory, call_evt: Arc<Mutex<CallEvent>>, kick_evt: Event, ) -> anyhow::Result<()> { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { warn!("Starting new queue handler without stopping old handler"); handle.abort(); } // Safe because the executor is initialized in main() below. let ex = FS_EXECUTOR.get().expect("Executor not initialized"); // Enable any virtqueue features that were negotiated (like VIRTIO_RING_F_EVENT_IDX). queue.ack_features(self.acked_features); let kick_evt = EventAsync::new(kick_evt.0, ex).context("failed to create EventAsync for kick_evt")?; let (handle, registration) = AbortHandle::new_pair(); let (_, fs_device_tube) = Tube::pair()?; ex.spawn_local(Abortable::new( handle_fs_queue( queue, mem, call_evt, kick_evt, self.server.clone(), Arc::new(Mutex::new(fs_device_tube)), ), registration, )) .detach(); self.workers[idx] = Some(handle); Ok(()) } fn stop_queue(&mut self, idx: usize) { if let Some(handle) = self.workers.get_mut(idx).and_then(Option::take) { handle.abort(); } } } #[derive(FromArgs)] #[argh(description = "")] struct Options { #[argh(option, description = "path to a socket", arg_name = "PATH")] socket: String, #[argh(option, description = "the virtio-fs tag", arg_name = "TAG")] tag: String, #[argh(option, description = "path to a directory to share", arg_name = "DIR")] shared_dir: PathBuf,
/// Starts a vhost-user fs device. /// Returns an error if the given `args` is invalid or the device fails to run. pub fn run_fs_device(program_name: &str, args: &[&str]) -> anyhow::Result<()> { let opts = match Options::from_args(&[program_name], args) { Ok(opts) => opts, Err(e) => { if e.status.is_err() { bail!(
#[argh(option, description = "uid map to use", arg_name = "UIDMAP")] uid_map: Option<String>, #[argh(option, description = "gid map to use", arg_name = "GIDMAP")] gid_map: Option<String>, }
random_line_split
analysis.py
# put the files to analyze in a folder of your choosing in the same # directory as this python file. This folder will also # need to contain a "metadata.txt" file. The metadata file # needs to be a .tsv with the filename, genre, author, title, era columns directories = ["corpus"] # Size of resultant PDF figsize = (10,10) # Colors and labels for HCA/PCA # 1 is title, 2 is genre, 3 is era, 4 is author, 5 is dir, 6 is secname label_name = 2 label_color = 2 # Size of the dots in the PCA dot_size=4 # Set mean to zero? scalemeanzero = False # Plot Loadings? plotloadings = False ################## # PICKLE THINGS? # ################## # Save a pickle of the PCA loadings? pickle_loadings = True ''' Unimplemented features #Pickle or Analyze? topickle = False if topickle == True: skipanalysis = True: elif topickle == False: skipanalysis = False: skipimport = False # First number 1 used or 0 unused, second min features, third max featueres featurerange = (0, 0, 400) # Set Vocabulary 1 used 0 unused, list of vocab setvocab = (0, []) ''' ################ # MAIN PROGRAM # ################ if __name__ == "__main__": # Get yeshi titles y1 = open("ymetadata.txt","r").read() yeshititles = [] for line in y1.split("\n"): cells = line.split("\t") yeshititles.append(cells[2]) print("Acquiring Data") # Send the directories and genres to include to the appropriate function # from paulutility. if fschoise == "full": infolist = paulutility.fulltextcontent(directories, items_to_include, item_type, e=eras) elif fschoise == "split": infolist = paulutility.splittextcontent(directories, items_to_include, item_type,e=eras) elif fschoise == "num": infolist = paulutility.fullsplitbynum(directories, divnum, items_to_include, item_type, e=eras) else: print("Not a valid c
umerate(infolist[1]): if title in yeshititles: infolist[2][i] = "野史" ''' if "外史" in title or "逸史" in title or "密史" in title or "野史" in title: priorgenre = infolist[2][i] if priorgenre == "小说": infolist[2][i] = "ny" elif priorgenre == "演义": infolist[2][i] = "yy" elif priorgenre == "志存记录": infolist[2][i] = "hy" ''' if textbalance: if item_type == 0: dt = infolist[2] elif item_type == 1: dt = infolist[4] gs = Series(dt) vcgs = gs.value_counts() ungs = list(set(dt)) genstart = [] for ug in ungs: genstart.append(dt.index(ug)) rangesets = [] genstart= sorted(genstart) for i,it in enumerate(genstart): if i != (len(genstart)) -1: #print(i, it, genstart[i +1]) randrange = [x for x in range(it,genstart[i+1])] #print(len(randrange)) rangesets.append(randrange) else: #print(i,it) randrange = [x for x in range(it,len(dt))] #print(len(randrange)) rangesets.append(randrange) reduced = [] for rang in rangesets: red = random.sample(rang,vcgs[-1]) reduced.extend(red) altinfo = [] for i in range(0,len(infolist)): nl = [] for it in reduced: nl.append(infolist[i][it]) altinfo.append(nl) infolist = altinfo print("Making vectorizer") # create a vectorizer object to vectorize the documents into matrices. These # vectorizers return sparse matrices. # Calculate using plain term frequency if cnchoice == "tf": vectorizer = TfidfVectorizer(use_idf=False, analyzer='word', token_pattern='\S+', ngram_range=ngramrange, max_features=features, vocabulary=voc,norm='l2') # Calculate using TFIDF elif cnchoice == "tfidf": vectorizer = TfidfVectorizer(use_idf=True, analyzer='word', token_pattern='\S+', ngram_range=ngramrange, max_features=features,vocabulary=voc) # Calculate using raw term counts elif cnchoice == "raw": vectorizer = CountVectorizer(analyzer='word', token_pattern = '\S+', ngram_range=ngramrange, max_features=features,vocabulary=voc) # Calculate using a chi measure (based on Ted Underwood's tech note) # This returns a DataFrame and a list of vocabulary elif cnchoice == "chi": df, vocab = paulutility.chinormal(infolist[0], ngramrange, features, infolist[2]) densematrix = df#.toarray() print("Fitting vectorizer") # create the Matrix if using a sklearn vectorizer object # this will finish with a matrix in the same form as the one returned # using the chi metric if cnchoice != "chi": matrix = vectorizer.fit_transform(infolist[0]) vocab = vectorizer.get_feature_names() # A dense matrix is necessary for some purposes, so I convert the sparse # matrix to a dense one densematrix = matrix.toarray() if scalemeanzero: densematrix = scale(densematrix) #sklearn scale to mean 0, var 1 df = DataFrame(densematrix, columns=vocab, index=infolist[2]) ################ # PCA ANALYSIS # ################ #df = df[df[2] != "志存记录"] #print(df) if analysischoise == "pca": # run pca # by default I am only looking at the first two PCs pca = PCA(n_components=2) pca2 = PCA(n_components=2) pca2.fit(df) plt.figure(figsize=figsize) plt.plot(pca2.explained_variance_ratio_,marker='o') plt.xticks(np.arange(0,10,1)) plt.xlabel('Principal Component') plt.ylabel('Explained Variance') plt.title('Scree Plot') plt.savefig(screeplotname) plt.clf() if item_type == 0: dt = infolist[2] elif item_type == 1: dt = infolist[4] seriesgenre = Series(dt) genrecount = seriesgenre.value_counts() print(genrecount) titleseries = Series(infolist[1]) wf = open("usedtitles.txt","w") for title in set(infolist[1]): wf.write(title + "\n") wf.close() titlecount = titleseries.value_counts() print(titlecount) my_pca = pca.fit(df).transform(df) # same as PCA(n_components=2).fit_transform(df) # in sklearn, the loadings are held in pca.components_ loadings = pca.components_ # Pickle the loadings (useful for extra analysis), so # I don't have to reload data every time if pickle_loadings: pickle.dump([vocab,loadings], open('loadings.p','wb')) if plotloadings == True: # I first plot the loadings plt.figure(figsize=figsize) # Scatter plot using the loadings, needs work #plt.scatter(*loadings, alpha=0.0) plt.scatter(loadings[pcs[0]], loadings[pcs[1]], alpha=0.0) #plt.scatter([0,0],[0,0],alpha=0.0) # Label with explained variance pclabel1 = "PC"+str(pcs[0] + 1) + " " pclabel2 = "PC"+str(pcs[1] + 1) + " " plt.xlabel(pclabel1+str(pca.explained_variance_ratio_[pcs[0]])) plt.ylabel(pclabel2+str(pca.explained_variance_ratio_[pcs[1]])) # Set a Chinese Font. Mac compatible. Will need something else # on windows chinese = FontProperties(fname='/Library/Fonts/Songti.ttc') matplotlib.rc('font', family='STHeiti') # Iterate through the vocab and plot where it falls on loadings graph # numpy array the loadings
hoice") # Kill the program exit() for i,title in en
conditional_block
analysis.py
# put the files to analyze in a folder of your choosing in the same # directory as this python file. This folder will also # need to contain a "metadata.txt" file. The metadata file # needs to be a .tsv with the filename, genre, author, title, era columns directories = ["corpus"] # Size of resultant PDF figsize = (10,10) # Colors and labels for HCA/PCA # 1 is title, 2 is genre, 3 is era, 4 is author, 5 is dir, 6 is secname label_name = 2 label_color = 2 # Size of the dots in the PCA dot_size=4 # Set mean to zero? scalemeanzero = False # Plot Loadings? plotloadings = False ################## # PICKLE THINGS? # ################## # Save a pickle of the PCA loadings? pickle_loadings = True ''' Unimplemented features #Pickle or Analyze? topickle = False if topickle == True: skipanalysis = True: elif topickle == False: skipanalysis = False: skipimport = False # First number 1 used or 0 unused, second min features, third max featueres featurerange = (0, 0, 400) # Set Vocabulary 1 used 0 unused, list of vocab setvocab = (0, []) ''' ################ # MAIN PROGRAM # ################ if __name__ == "__main__": # Get yeshi titles y1 = open("ymetadata.txt","r").read() yeshititles = [] for line in y1.split("\n"): cells = line.split("\t") yeshititles.append(cells[2]) print("Acquiring Data") # Send the directories and genres to include to the appropriate function # from paulutility. if fschoise == "full": infolist = paulutility.fulltextcontent(directories, items_to_include, item_type, e=eras) elif fschoise == "split": infolist = paulutility.splittextcontent(directories, items_to_include, item_type,e=eras) elif fschoise == "num": infolist = paulutility.fullsplitbynum(directories, divnum, items_to_include, item_type, e=eras) else: print("Not a valid choice") # Kill the program exit() for i,title in enumerate(infolist[1]): if title in yeshititles: infolist[2][i] = "野史" ''' if "外史" in title or "逸史" in title or "密史" in title or "野史" in title: priorgenre = infolist[2][i] if priorgenre == "小说": infolist[2][i] = "ny" elif priorgenre == "演义": infolist[2][i] = "yy" elif priorgenre == "志存记录": infolist[2][i] = "hy" ''' if textbalance: if item_type == 0: dt = infolist[2] elif item_type == 1: dt = infolist[4] gs = Series(dt) vcgs = gs.value_counts() ungs = list(set(dt)) genstart = [] for ug in ungs: genstart.append(dt.index(ug)) rangesets = [] genstart= sorted(genstart) for i,it in enumerate(genstart): if i != (len(genstart)) -1: #print(i, it, genstart[i +1]) randrange = [x for x in range(it,genstart[i+1])] #print(len(randrange)) rangesets.append(randrange) else: #print(i,it) randrange = [x for x in range(it,len(dt))] #print(len(randrange)) rangesets.append(randrange) reduced = [] for rang in rangesets: red = random.sample(rang,vcgs[-1]) reduced.extend(red) altinfo = [] for i in range(0,len(infolist)): nl = [] for it in reduced:
infolist = altinfo print("Making vectorizer") # create a vectorizer object to vectorize the documents into matrices. These # vectorizers return sparse matrices. # Calculate using plain term frequency if cnchoice == "tf": vectorizer = TfidfVectorizer(use_idf=False, analyzer='word', token_pattern='\S+', ngram_range=ngramrange, max_features=features, vocabulary=voc,norm='l2') # Calculate using TFIDF elif cnchoice == "tfidf": vectorizer = TfidfVectorizer(use_idf=True, analyzer='word', token_pattern='\S+', ngram_range=ngramrange, max_features=features,vocabulary=voc) # Calculate using raw term counts elif cnchoice == "raw": vectorizer = CountVectorizer(analyzer='word', token_pattern = '\S+', ngram_range=ngramrange, max_features=features,vocabulary=voc) # Calculate using a chi measure (based on Ted Underwood's tech note) # This returns a DataFrame and a list of vocabulary elif cnchoice == "chi": df, vocab = paulutility.chinormal(infolist[0], ngramrange, features, infolist[2]) densematrix = df#.toarray() print("Fitting vectorizer") # create the Matrix if using a sklearn vectorizer object # this will finish with a matrix in the same form as the one returned # using the chi metric if cnchoice != "chi": matrix = vectorizer.fit_transform(infolist[0]) vocab = vectorizer.get_feature_names() # A dense matrix is necessary for some purposes, so I convert the sparse # matrix to a dense one densematrix = matrix.toarray() if scalemeanzero: densematrix = scale(densematrix) #sklearn scale to mean 0, var 1 df = DataFrame(densematrix, columns=vocab, index=infolist[2]) ################ # PCA ANALYSIS # ################ #df = df[df[2] != "志存记录"] #print(df) if analysischoise == "pca": # run pca # by default I am only looking at the first two PCs pca = PCA(n_components=2) pca2 = PCA(n_components=2) pca2.fit(df) plt.figure(figsize=figsize) plt.plot(pca2.explained_variance_ratio_,marker='o') plt.xticks(np.arange(0,10,1)) plt.xlabel('Principal Component') plt.ylabel('Explained Variance') plt.title('Scree Plot') plt.savefig(screeplotname) plt.clf() if item_type == 0: dt = infolist[2] elif item_type == 1: dt = infolist[4] seriesgenre = Series(dt) genrecount = seriesgenre.value_counts() print(genrecount) titleseries = Series(infolist[1]) wf = open("usedtitles.txt","w") for title in set(infolist[1]): wf.write(title + "\n") wf.close() titlecount = titleseries.value_counts() print(titlecount) my_pca = pca.fit(df).transform(df) # same as PCA(n_components=2).fit_transform(df) # in sklearn, the loadings are held in pca.components_ loadings = pca.components_ # Pickle the loadings (useful for extra analysis), so # I don't have to reload data every time if pickle_loadings: pickle.dump([vocab,loadings], open('loadings.p','wb')) if plotloadings == True: # I first plot the loadings plt.figure(figsize=figsize) # Scatter plot using the loadings, needs work #plt.scatter(*loadings, alpha=0.0) plt.scatter(loadings[pcs[0]], loadings[pcs[1]], alpha=0.0) #plt.scatter([0,0],[0,0],alpha=0.0) # Label with explained variance pclabel1 = "PC"+str(pcs[0] + 1) + " " pclabel2 = "PC"+str(pcs[1] + 1) + " " plt.xlabel(pclabel1+str(pca.explained_variance_ratio_[pcs[0]])) plt.ylabel(pclabel2+str(pca.explained_variance_ratio_[pcs[1]])) # Set a Chinese Font. Mac compatible. Will need something else # on windows chinese = FontProperties(fname='/Library/Fonts/Songti.ttc') matplotlib.rc('font', family='STHeiti') # Iterate through the vocab and plot where it falls on loadings graph # numpy array the loadings info is
nl.append(infolist[i][it]) altinfo.append(nl)
random_line_split
tools.py
data = yaml.safe_load(descriptor) except Exception as ex: raise CekitError('Cannot load descriptor', ex) if isinstance(data, basestring): LOGGER.debug("Reading descriptor from '{}' file...".format(descriptor)) if os.path.exists(descriptor): with open(descriptor, 'r') as fh: return yaml.safe_load(fh) raise CekitError( "Descriptor could not be found on the '{}' path, please check your arguments!".format(descriptor)) LOGGER.debug("Reading descriptor directly...") return data def decision(question): """Asks user for a question returning True/False answed""" return click.confirm(question, show_default=True) def get_brew_url(md5): try: LOGGER.debug("Getting brew details for an artifact with '{}' md5 sum".format(md5)) list_archives_cmd = ['/usr/bin/brew', 'call', '--json-output', 'listArchives', "checksum={}".format(md5), 'type=maven'] LOGGER.debug("Executing '{}'.".format(" ".join(list_archives_cmd))) try: json_archives = subprocess.check_output(list_archives_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: if ex.output is not None and 'AuthError' in ex.output: LOGGER.warning( "Brew authentication failed, please make sure you have a valid Kerberos ticket") raise CekitError("Could not fetch archives for checksum {}".format(md5), ex) archives = yaml.safe_load(json_archives) if not archives: raise CekitError("Artifact with md5 checksum {} could not be found in Brew".format(md5)) archive = archives[0] build_id = archive['build_id'] filename = archive['filename'] group_id = archive['group_id'] artifact_id = archive['artifact_id'] version = archive['version'] get_build_cmd = ['brew', 'call', '--json-output', 'getBuild', "buildInfo={}".format(build_id)] LOGGER.debug("Executing '{}'".format(" ".join(get_build_cmd))) try: json_build = subprocess.check_output(get_build_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: raise CekitError("Could not fetch build {} from Brew".format(build_id), ex) build = yaml.safe_load(json_build) build_states = ['BUILDING', 'COMPLETE', 'DELETED', 'FAILED', 'CANCELED'] # State 1 means: COMPLETE which is the only success state. Other states are: # # 'BUILDING': 0 # 'COMPLETE': 1 # 'DELETED': 2 # 'FAILED': 3 # 'CANCELED': 4 if build['state'] != 1: raise CekitError( "Artifact with checksum {} was found in Koji metadata but the build is in incorrect state ({}) making " "the artifact not available for downloading anymore".format(md5, build_states[build['state']])) package = build['package_name'] release = build['release'] url = 'http://download.devel.redhat.com/brewroot/packages/' + package + '/' + \ version.replace('-', '_') + '/' + release + '/maven/' + \ group_id.replace('.', '/') + '/' + \ artifact_id + '/' + version + '/' + filename except subprocess.CalledProcessError as ex: LOGGER.error("Can't fetch artifacts details from brew: '{}'.".format( ex.output)) raise ex return url def copy_recursively(source_directory, destination_directory): """ Copies contents of a directory to selected target location (also a directory). the specific source file to destination. If the source directory contains a directory, it will copy all the content recursively. Symlinks are preserved (not followed). The destination directory tree will be created if it does not exist. """ # If the source directory does not exists, return if not os.path.isdir(source_directory): return # Iterate over content in the source directory for name in os.listdir(source_directory): src = os.path.join(source_directory, name) dst = os.path.join(destination_directory, name) LOGGER.debug("Copying '{}' to '{}'...".format(src, dst)) if not os.path.isdir(os.path.dirname(dst)): os.makedirs(os.path.dirname(dst)) if os.path.islink(src): os.symlink(os.readlink(src), dst) elif os.path.isdir(src): shutil.copytree(src, dst, symlinks=True) else: shutil.copy2(src, dst) class Chdir(object): """ Context manager for changing the current working directory """ def __init__(self, new_path): self.newPath = os.path.expanduser(new_path) self.savedPath = None def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) class DependencyHandler(object):
self.os_release = {} self.platform = None os_release_path = "/etc/os-release" if os.path.exists(os_release_path): # Read the file containing operating system information with open(os_release_path, 'r') as f: content = f.readlines() self.os_release = dict([l.strip().split('=') for l in content if not l.isspace() and not l.strip().startswith('#')]) # Remove the quote character, if it's there for key in self.os_release.keys(): self.os_release[key] = self.os_release[key].strip('"') if not self.os_release or 'ID' not in self.os_release or 'NAME' not in self.os_release or 'VERSION' not in self.os_release: LOGGER.warning( "You are running CEKit on an unknown platform. External dependencies suggestions may not work!") return self.platform = self.os_release['ID'] if self.os_release['ID'] not in DependencyHandler.KNOWN_OPERATING_SYSTEMS: LOGGER.warning( "You are running CEKit on an untested platform: {} {}. External dependencies " "suggestions will not work!".format(self.os_release['NAME'], self.os_release['VERSION'])) return LOGGER.info("You are running on known platform: {} {}".format( self.os_release['NAME'], self.os_release['VERSION'])) def _handle_dependencies(self, dependencies): """ The dependencies provided is expected to be a dict in following format: { PACKAGE_ID: { 'package': PACKAGE_NAME, 'command': COMMAND_TO_TEST_FOR_PACKACGE_EXISTENCE }, } Additionally every package can contain platform specific information, for example: { 'git': { 'package': 'git', 'executable': 'git', 'fedora': { 'package': 'git-latest' } } } If the platform on which CEKit is currently running is available, it takes precedence before defaults. """ if not dependencies: LOGGER.debug("No dependencies found, skipping...") return for dependency in dependencies.keys(): current_dependency = dependencies[dependency] package = current_dependency.get('package') library = current_dependency.get('library') executable = current_dependency.get('executable') if self.platform in current_dependency: package = current_dependency[self.platform].get('package', package) library = current_dependency[self.platform].get('library', library) executable = current_dependency[self.platform].get('executable', executable) LOGGER.debug("Checking if '{}' dependency is provided...".format(dependency)) if library: if self._check_for_library(library): LOGGER.debug("Required CEKit library '{}' was found as a '{}' module!".format( dependency, library)) continue else: msg = "Required CEKit library '{}' was not found; required module '{}' could not be found.".format( dependency, library) # Library was not found, check if we have a hint if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: msg += " Try to install the '{}' package.".format(package) raise CekitError(msg) if executable: if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: self._check_for_executable(dependency, executable, package) else: self._check_for_executable(dependency, executable) LOGGER.debug("All dependencies provided!") # pylint: disable=R0201 def _check_for_library(self, library): library_found = False if sys.version_info[0] < 3: import imp try: imp.find_module(library) library_found = True except ImportError: pass else: import importlib
""" External dependency manager. Understands on what platform are we currently running and what dependencies are required to be installed to satisfy the requirements. """ # List of operating system families on which CEKit is known to work. # It may work on other operating systems too, but it was not tested. KNOWN_OPERATING_SYSTEMS = ['fedora', 'centos', 'rhel'] # Set of core CEKit external dependencies. # Format is defined below, in the handle_dependencies() method EXTERNAL_CORE_DEPENDENCIES = { 'git': { 'package': 'git', 'executable': 'git' } } def __init__(self):
identifier_body
tools.py
as ex: if ex.output is not None and 'AuthError' in ex.output: LOGGER.warning( "Brew authentication failed, please make sure you have a valid Kerberos ticket") raise CekitError("Could not fetch archives for checksum {}".format(md5), ex) archives = yaml.safe_load(json_archives) if not archives: raise CekitError("Artifact with md5 checksum {} could not be found in Brew".format(md5)) archive = archives[0] build_id = archive['build_id'] filename = archive['filename'] group_id = archive['group_id'] artifact_id = archive['artifact_id'] version = archive['version'] get_build_cmd = ['brew', 'call', '--json-output', 'getBuild', "buildInfo={}".format(build_id)] LOGGER.debug("Executing '{}'".format(" ".join(get_build_cmd))) try: json_build = subprocess.check_output(get_build_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: raise CekitError("Could not fetch build {} from Brew".format(build_id), ex) build = yaml.safe_load(json_build) build_states = ['BUILDING', 'COMPLETE', 'DELETED', 'FAILED', 'CANCELED'] # State 1 means: COMPLETE which is the only success state. Other states are: # # 'BUILDING': 0 # 'COMPLETE': 1 # 'DELETED': 2 # 'FAILED': 3 # 'CANCELED': 4 if build['state'] != 1: raise CekitError( "Artifact with checksum {} was found in Koji metadata but the build is in incorrect state ({}) making " "the artifact not available for downloading anymore".format(md5, build_states[build['state']])) package = build['package_name'] release = build['release'] url = 'http://download.devel.redhat.com/brewroot/packages/' + package + '/' + \ version.replace('-', '_') + '/' + release + '/maven/' + \ group_id.replace('.', '/') + '/' + \ artifact_id + '/' + version + '/' + filename except subprocess.CalledProcessError as ex: LOGGER.error("Can't fetch artifacts details from brew: '{}'.".format( ex.output)) raise ex return url def copy_recursively(source_directory, destination_directory): """ Copies contents of a directory to selected target location (also a directory). the specific source file to destination. If the source directory contains a directory, it will copy all the content recursively. Symlinks are preserved (not followed). The destination directory tree will be created if it does not exist. """ # If the source directory does not exists, return if not os.path.isdir(source_directory): return # Iterate over content in the source directory for name in os.listdir(source_directory): src = os.path.join(source_directory, name) dst = os.path.join(destination_directory, name) LOGGER.debug("Copying '{}' to '{}'...".format(src, dst)) if not os.path.isdir(os.path.dirname(dst)): os.makedirs(os.path.dirname(dst)) if os.path.islink(src): os.symlink(os.readlink(src), dst) elif os.path.isdir(src): shutil.copytree(src, dst, symlinks=True) else: shutil.copy2(src, dst) class Chdir(object): """ Context manager for changing the current working directory """ def __init__(self, new_path): self.newPath = os.path.expanduser(new_path) self.savedPath = None def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) class DependencyHandler(object): """ External dependency manager. Understands on what platform are we currently running and what dependencies are required to be installed to satisfy the requirements. """ # List of operating system families on which CEKit is known to work. # It may work on other operating systems too, but it was not tested. KNOWN_OPERATING_SYSTEMS = ['fedora', 'centos', 'rhel'] # Set of core CEKit external dependencies. # Format is defined below, in the handle_dependencies() method EXTERNAL_CORE_DEPENDENCIES = { 'git': { 'package': 'git', 'executable': 'git' } } def __init__(self): self.os_release = {} self.platform = None os_release_path = "/etc/os-release" if os.path.exists(os_release_path): # Read the file containing operating system information with open(os_release_path, 'r') as f: content = f.readlines() self.os_release = dict([l.strip().split('=') for l in content if not l.isspace() and not l.strip().startswith('#')]) # Remove the quote character, if it's there for key in self.os_release.keys(): self.os_release[key] = self.os_release[key].strip('"') if not self.os_release or 'ID' not in self.os_release or 'NAME' not in self.os_release or 'VERSION' not in self.os_release: LOGGER.warning( "You are running CEKit on an unknown platform. External dependencies suggestions may not work!") return self.platform = self.os_release['ID'] if self.os_release['ID'] not in DependencyHandler.KNOWN_OPERATING_SYSTEMS: LOGGER.warning( "You are running CEKit on an untested platform: {} {}. External dependencies " "suggestions will not work!".format(self.os_release['NAME'], self.os_release['VERSION'])) return LOGGER.info("You are running on known platform: {} {}".format( self.os_release['NAME'], self.os_release['VERSION'])) def _handle_dependencies(self, dependencies): """ The dependencies provided is expected to be a dict in following format: { PACKAGE_ID: { 'package': PACKAGE_NAME, 'command': COMMAND_TO_TEST_FOR_PACKACGE_EXISTENCE }, } Additionally every package can contain platform specific information, for example: { 'git': { 'package': 'git', 'executable': 'git', 'fedora': { 'package': 'git-latest' } } } If the platform on which CEKit is currently running is available, it takes precedence before defaults. """ if not dependencies: LOGGER.debug("No dependencies found, skipping...") return for dependency in dependencies.keys(): current_dependency = dependencies[dependency] package = current_dependency.get('package') library = current_dependency.get('library') executable = current_dependency.get('executable') if self.platform in current_dependency: package = current_dependency[self.platform].get('package', package) library = current_dependency[self.platform].get('library', library) executable = current_dependency[self.platform].get('executable', executable) LOGGER.debug("Checking if '{}' dependency is provided...".format(dependency)) if library: if self._check_for_library(library): LOGGER.debug("Required CEKit library '{}' was found as a '{}' module!".format( dependency, library)) continue else: msg = "Required CEKit library '{}' was not found; required module '{}' could not be found.".format( dependency, library) # Library was not found, check if we have a hint if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: msg += " Try to install the '{}' package.".format(package) raise CekitError(msg) if executable: if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: self._check_for_executable(dependency, executable, package) else: self._check_for_executable(dependency, executable) LOGGER.debug("All dependencies provided!") # pylint: disable=R0201 def _check_for_library(self, library): library_found = False if sys.version_info[0] < 3: import imp try: imp.find_module(library) library_found = True except ImportError: pass else: import importlib if importlib.util.find_spec(library): library_found = True return library_found # pylint: disable=no-self-use def _check_for_executable(self, dependency, executable, package=None): if os.path.isabs(executable): if self._is_program(executable): return True else: return False path = os.environ.get("PATH", os.defpath) path = path.split(os.pathsep) for directory in path: file_path = os.path.join(os.path.normcase(directory), executable) if self._is_program(file_path): LOGGER.debug("CEKit dependency '{}' provided via the '{}' executable.".format( dependency, file_path)) return msg = "CEKit dependency: '{}' was not found, please provide the '{}' executable.".format( dependency, executable) if package: msg += " To satisfy this requirement you can install the '{}' package.".format(package) raise CekitError(msg) def _is_program(self, path): if os.path.exists(path) and os.access(path, os.F_OK | os.X_OK) and not os.path.isdir(path): return True return False def
handle_core_dependencies
identifier_name
tools.py
data = yaml.safe_load(descriptor) except Exception as ex: raise CekitError('Cannot load descriptor', ex) if isinstance(data, basestring): LOGGER.debug("Reading descriptor from '{}' file...".format(descriptor)) if os.path.exists(descriptor): with open(descriptor, 'r') as fh: return yaml.safe_load(fh) raise CekitError( "Descriptor could not be found on the '{}' path, please check your arguments!".format(descriptor)) LOGGER.debug("Reading descriptor directly...") return data def decision(question): """Asks user for a question returning True/False answed""" return click.confirm(question, show_default=True) def get_brew_url(md5): try: LOGGER.debug("Getting brew details for an artifact with '{}' md5 sum".format(md5)) list_archives_cmd = ['/usr/bin/brew', 'call', '--json-output', 'listArchives', "checksum={}".format(md5), 'type=maven'] LOGGER.debug("Executing '{}'.".format(" ".join(list_archives_cmd))) try: json_archives = subprocess.check_output(list_archives_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: if ex.output is not None and 'AuthError' in ex.output: LOGGER.warning( "Brew authentication failed, please make sure you have a valid Kerberos ticket") raise CekitError("Could not fetch archives for checksum {}".format(md5), ex) archives = yaml.safe_load(json_archives) if not archives: raise CekitError("Artifact with md5 checksum {} could not be found in Brew".format(md5)) archive = archives[0] build_id = archive['build_id'] filename = archive['filename'] group_id = archive['group_id'] artifact_id = archive['artifact_id'] version = archive['version'] get_build_cmd = ['brew', 'call', '--json-output', 'getBuild', "buildInfo={}".format(build_id)] LOGGER.debug("Executing '{}'".format(" ".join(get_build_cmd))) try: json_build = subprocess.check_output(get_build_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: raise CekitError("Could not fetch build {} from Brew".format(build_id), ex) build = yaml.safe_load(json_build) build_states = ['BUILDING', 'COMPLETE', 'DELETED', 'FAILED', 'CANCELED'] # State 1 means: COMPLETE which is the only success state. Other states are: # # 'BUILDING': 0 # 'COMPLETE': 1 # 'DELETED': 2 # 'FAILED': 3 # 'CANCELED': 4 if build['state'] != 1: raise CekitError( "Artifact with checksum {} was found in Koji metadata but the build is in incorrect state ({}) making " "the artifact not available for downloading anymore".format(md5, build_states[build['state']])) package = build['package_name'] release = build['release'] url = 'http://download.devel.redhat.com/brewroot/packages/' + package + '/' + \ version.replace('-', '_') + '/' + release + '/maven/' + \ group_id.replace('.', '/') + '/' + \ artifact_id + '/' + version + '/' + filename except subprocess.CalledProcessError as ex: LOGGER.error("Can't fetch artifacts details from brew: '{}'.".format( ex.output)) raise ex return url def copy_recursively(source_directory, destination_directory): """ Copies contents of a directory to selected target location (also a directory). the specific source file to destination. If the source directory contains a directory, it will copy all the content recursively. Symlinks are preserved (not followed). The destination directory tree will be created if it does not exist. """ # If the source directory does not exists, return if not os.path.isdir(source_directory): return # Iterate over content in the source directory for name in os.listdir(source_directory): src = os.path.join(source_directory, name) dst = os.path.join(destination_directory, name) LOGGER.debug("Copying '{}' to '{}'...".format(src, dst)) if not os.path.isdir(os.path.dirname(dst)): os.makedirs(os.path.dirname(dst)) if os.path.islink(src): os.symlink(os.readlink(src), dst) elif os.path.isdir(src): shutil.copytree(src, dst, symlinks=True) else: shutil.copy2(src, dst) class Chdir(object): """ Context manager for changing the current working directory """ def __init__(self, new_path): self.newPath = os.path.expanduser(new_path) self.savedPath = None def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) class DependencyHandler(object): """ External dependency manager. Understands on what platform are we currently running and what dependencies are required to be installed to satisfy the requirements. """ # List of operating system families on which CEKit is known to work. # It may work on other operating systems too, but it was not tested. KNOWN_OPERATING_SYSTEMS = ['fedora', 'centos', 'rhel'] # Set of core CEKit external dependencies. # Format is defined below, in the handle_dependencies() method EXTERNAL_CORE_DEPENDENCIES = { 'git': { 'package': 'git', 'executable': 'git' } } def __init__(self): self.os_release = {} self.platform = None os_release_path = "/etc/os-release" if os.path.exists(os_release_path): # Read the file containing operating system information with open(os_release_path, 'r') as f: content = f.readlines() self.os_release = dict([l.strip().split('=') for l in content if not l.isspace() and not l.strip().startswith('#')]) # Remove the quote character, if it's there for key in self.os_release.keys(): self.os_release[key] = self.os_release[key].strip('"') if not self.os_release or 'ID' not in self.os_release or 'NAME' not in self.os_release or 'VERSION' not in self.os_release: LOGGER.warning( "You are running CEKit on an unknown platform. External dependencies suggestions may not work!") return self.platform = self.os_release['ID'] if self.os_release['ID'] not in DependencyHandler.KNOWN_OPERATING_SYSTEMS: LOGGER.warning( "You are running CEKit on an untested platform: {} {}. External dependencies " "suggestions will not work!".format(self.os_release['NAME'], self.os_release['VERSION'])) return LOGGER.info("You are running on known platform: {} {}".format( self.os_release['NAME'], self.os_release['VERSION'])) def _handle_dependencies(self, dependencies): """ The dependencies provided is expected to be a dict in following format: { PACKAGE_ID: { 'package': PACKAGE_NAME, 'command': COMMAND_TO_TEST_FOR_PACKACGE_EXISTENCE }, } Additionally every package can contain platform specific information, for example: { 'git': { 'package': 'git', 'executable': 'git', 'fedora': { 'package': 'git-latest' } } } If the platform on which CEKit is currently running is available, it takes precedence before defaults. """ if not dependencies: LOGGER.debug("No dependencies found, skipping...") return for dependency in dependencies.keys(): current_dependency = dependencies[dependency] package = current_dependency.get('package') library = current_dependency.get('library') executable = current_dependency.get('executable') if self.platform in current_dependency: package = current_dependency[self.platform].get('package', package) library = current_dependency[self.platform].get('library', library) executable = current_dependency[self.platform].get('executable', executable) LOGGER.debug("Checking if '{}' dependency is provided...".format(dependency)) if library: if self._check_for_library(library): LOGGER.debug("Required CEKit library '{}' was found as a '{}' module!".format( dependency, library)) continue else: msg = "Required CEKit library '{}' was not found; required module '{}' could not be found.".format( dependency, library) # Library was not found, check if we have a hint if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: msg += " Try to install the '{}' package.".format(package) raise CekitError(msg) if executable: if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: self._check_for_executable(dependency, executable, package) else:
LOGGER.debug("All dependencies provided!") # pylint: disable=R0201 def _check_for_library(self, library): library_found = False if sys.version_info[0] < 3: import imp try: imp.find_module(library) library_found = True except ImportError: pass else: import import
self._check_for_executable(dependency, executable)
conditional_block
tools.py
data = yaml.safe_load(descriptor) except Exception as ex: raise CekitError('Cannot load descriptor', ex) if isinstance(data, basestring): LOGGER.debug("Reading descriptor from '{}' file...".format(descriptor)) if os.path.exists(descriptor): with open(descriptor, 'r') as fh: return yaml.safe_load(fh) raise CekitError( "Descriptor could not be found on the '{}' path, please check your arguments!".format(descriptor)) LOGGER.debug("Reading descriptor directly...") return data def decision(question): """Asks user for a question returning True/False answed""" return click.confirm(question, show_default=True) def get_brew_url(md5): try: LOGGER.debug("Getting brew details for an artifact with '{}' md5 sum".format(md5)) list_archives_cmd = ['/usr/bin/brew', 'call', '--json-output', 'listArchives', "checksum={}".format(md5), 'type=maven'] LOGGER.debug("Executing '{}'.".format(" ".join(list_archives_cmd))) try: json_archives = subprocess.check_output(list_archives_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: if ex.output is not None and 'AuthError' in ex.output: LOGGER.warning( "Brew authentication failed, please make sure you have a valid Kerberos ticket") raise CekitError("Could not fetch archives for checksum {}".format(md5), ex) archives = yaml.safe_load(json_archives) if not archives: raise CekitError("Artifact with md5 checksum {} could not be found in Brew".format(md5)) archive = archives[0] build_id = archive['build_id'] filename = archive['filename'] group_id = archive['group_id'] artifact_id = archive['artifact_id'] version = archive['version'] get_build_cmd = ['brew', 'call', '--json-output', 'getBuild', "buildInfo={}".format(build_id)] LOGGER.debug("Executing '{}'".format(" ".join(get_build_cmd))) try: json_build = subprocess.check_output(get_build_cmd).strip().decode("utf8") except subprocess.CalledProcessError as ex: raise CekitError("Could not fetch build {} from Brew".format(build_id), ex) build = yaml.safe_load(json_build) build_states = ['BUILDING', 'COMPLETE', 'DELETED', 'FAILED', 'CANCELED'] # State 1 means: COMPLETE which is the only success state. Other states are:
# 'BUILDING': 0 # 'COMPLETE': 1 # 'DELETED': 2 # 'FAILED': 3 # 'CANCELED': 4 if build['state'] != 1: raise CekitError( "Artifact with checksum {} was found in Koji metadata but the build is in incorrect state ({}) making " "the artifact not available for downloading anymore".format(md5, build_states[build['state']])) package = build['package_name'] release = build['release'] url = 'http://download.devel.redhat.com/brewroot/packages/' + package + '/' + \ version.replace('-', '_') + '/' + release + '/maven/' + \ group_id.replace('.', '/') + '/' + \ artifact_id + '/' + version + '/' + filename except subprocess.CalledProcessError as ex: LOGGER.error("Can't fetch artifacts details from brew: '{}'.".format( ex.output)) raise ex return url def copy_recursively(source_directory, destination_directory): """ Copies contents of a directory to selected target location (also a directory). the specific source file to destination. If the source directory contains a directory, it will copy all the content recursively. Symlinks are preserved (not followed). The destination directory tree will be created if it does not exist. """ # If the source directory does not exists, return if not os.path.isdir(source_directory): return # Iterate over content in the source directory for name in os.listdir(source_directory): src = os.path.join(source_directory, name) dst = os.path.join(destination_directory, name) LOGGER.debug("Copying '{}' to '{}'...".format(src, dst)) if not os.path.isdir(os.path.dirname(dst)): os.makedirs(os.path.dirname(dst)) if os.path.islink(src): os.symlink(os.readlink(src), dst) elif os.path.isdir(src): shutil.copytree(src, dst, symlinks=True) else: shutil.copy2(src, dst) class Chdir(object): """ Context manager for changing the current working directory """ def __init__(self, new_path): self.newPath = os.path.expanduser(new_path) self.savedPath = None def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) class DependencyHandler(object): """ External dependency manager. Understands on what platform are we currently running and what dependencies are required to be installed to satisfy the requirements. """ # List of operating system families on which CEKit is known to work. # It may work on other operating systems too, but it was not tested. KNOWN_OPERATING_SYSTEMS = ['fedora', 'centos', 'rhel'] # Set of core CEKit external dependencies. # Format is defined below, in the handle_dependencies() method EXTERNAL_CORE_DEPENDENCIES = { 'git': { 'package': 'git', 'executable': 'git' } } def __init__(self): self.os_release = {} self.platform = None os_release_path = "/etc/os-release" if os.path.exists(os_release_path): # Read the file containing operating system information with open(os_release_path, 'r') as f: content = f.readlines() self.os_release = dict([l.strip().split('=') for l in content if not l.isspace() and not l.strip().startswith('#')]) # Remove the quote character, if it's there for key in self.os_release.keys(): self.os_release[key] = self.os_release[key].strip('"') if not self.os_release or 'ID' not in self.os_release or 'NAME' not in self.os_release or 'VERSION' not in self.os_release: LOGGER.warning( "You are running CEKit on an unknown platform. External dependencies suggestions may not work!") return self.platform = self.os_release['ID'] if self.os_release['ID'] not in DependencyHandler.KNOWN_OPERATING_SYSTEMS: LOGGER.warning( "You are running CEKit on an untested platform: {} {}. External dependencies " "suggestions will not work!".format(self.os_release['NAME'], self.os_release['VERSION'])) return LOGGER.info("You are running on known platform: {} {}".format( self.os_release['NAME'], self.os_release['VERSION'])) def _handle_dependencies(self, dependencies): """ The dependencies provided is expected to be a dict in following format: { PACKAGE_ID: { 'package': PACKAGE_NAME, 'command': COMMAND_TO_TEST_FOR_PACKACGE_EXISTENCE }, } Additionally every package can contain platform specific information, for example: { 'git': { 'package': 'git', 'executable': 'git', 'fedora': { 'package': 'git-latest' } } } If the platform on which CEKit is currently running is available, it takes precedence before defaults. """ if not dependencies: LOGGER.debug("No dependencies found, skipping...") return for dependency in dependencies.keys(): current_dependency = dependencies[dependency] package = current_dependency.get('package') library = current_dependency.get('library') executable = current_dependency.get('executable') if self.platform in current_dependency: package = current_dependency[self.platform].get('package', package) library = current_dependency[self.platform].get('library', library) executable = current_dependency[self.platform].get('executable', executable) LOGGER.debug("Checking if '{}' dependency is provided...".format(dependency)) if library: if self._check_for_library(library): LOGGER.debug("Required CEKit library '{}' was found as a '{}' module!".format( dependency, library)) continue else: msg = "Required CEKit library '{}' was not found; required module '{}' could not be found.".format( dependency, library) # Library was not found, check if we have a hint if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: msg += " Try to install the '{}' package.".format(package) raise CekitError(msg) if executable: if package and self.platform in DependencyHandler.KNOWN_OPERATING_SYSTEMS: self._check_for_executable(dependency, executable, package) else: self._check_for_executable(dependency, executable) LOGGER.debug("All dependencies provided!") # pylint: disable=R0201 def _check_for_library(self, library): library_found = False if sys.version_info[0] < 3: import imp try: imp.find_module(library) library_found = True except ImportError: pass else: import importlib
#
random_line_split
deploy.go
[]string) { defer log.Flush() stx.EnsureVaultSession(config) if flags.DeployDeps { flags.DeploySave = true } availableStacks := make(map[string]deployArgs) workingGraph := graph.NewGraph() buildInstances := stx.GetBuildInstances(args, config.PackageName) stx.Process(buildInstances, flags, log, func(buildInstance *build.Instance, cueInstance *cue.Instance) { stacksIterator, stacksIteratorErr := stx.NewStacksIterator(cueInstance, flags, log) if stacksIteratorErr != nil { log.Fatal(stacksIteratorErr) } // since the Process handler generally only sees one stack per instance, // we need to gather ALL the stacks first primarily to support dependencies for stacksIterator.Next() { stackValue := stacksIterator.Value() var stack stx.Stack decodeErr := stackValue.Decode(&stack) if decodeErr != nil { if flags.DeployDeps { log.Fatal(decodeErr) } else { log.Error(decodeErr) continue } } availableStacks[stack.Name] = deployArgs{stack: stack, buildInstance: buildInstance, stackValue: stackValue} if flags.DeployDeps { workingGraph.AddNode(stack.Name, stack.DependsOn...) } } }) if flags.DeployDeps { resolved, err := workingGraph.Resolve() if err != nil { log.Fatalf("Failed to resolve dependency graph: %s\n", err) } for _, stackName := range resolved { dplArgs := availableStacks[stackName] deployStack(dplArgs.stack, dplArgs.buildInstance, dplArgs.stackValue) } } else { for _, dplArgs := range availableStacks { deployStack(dplArgs.stack, dplArgs.buildInstance, dplArgs.stackValue) } } }, } func deployStack(stack stx.Stack, buildInstance *build.Instance, stackValue cue.Value)
changeSetName := "stx-dpl-" + usr.Username + "-" + fmt.Sprintf("%x", sha1.Sum(templateFileBytes)) // validate template validateTemplateInput := cloudformation.ValidateTemplateInput{ TemplateBody: &templateBody, } validateTemplateOutput, validateTemplateErr := cfn.ValidateTemplate(&validateTemplateInput) // template failed to validate if validateTemplateErr != nil { log.Infof(" %s\n", au.Red("✕")) log.Fatalf("%+v\n", validateTemplateErr) } // template must have validated log.Infof("%s\n", au.BrightGreen("✓")) //log.Infof("%+v\n", validateTemplateOutput.String()) // look to see if stack exists log.Debug("Describing", stack.Name) describeStacksInput := cloudformation.DescribeStacksInput{StackName: aws.String(stack.Name)} _, describeStacksErr := cfn.DescribeStacks(&describeStacksInput) createChangeSetInput := cloudformation.CreateChangeSetInput{ Capabilities: validateTemplateOutput.Capabilities, ChangeSetName: aws.String(changeSetName), // I think AWS overuses pointers StackName: aws.String(stack.Name), TemplateBody: aws.String(templateBody), } changeSetType := "UPDATE" // default // if stack does not exist set action to CREATE if describeStacksErr != nil { changeSetType = "CREATE" // if stack does not already exist } createChangeSetInput.ChangeSetType = &changeSetType stackParametersValue := stackValue.Lookup("Template", "Parameters") if stackParametersValue.Exists() { // TODO paramaters need to support the type as declared in Parameter.Type (in the least string and number). // this should be map[string]interface{} with type casting done when adding parameters to the changeset parametersMap := make(map[string]string) var parameters []*cloudformation.Parameter if flags.DeployPrevious { // deploy using previous values stackParameters, stackParametersErr := stackParametersValue.Fields() if stackParametersErr != nil { log.Fatal(stackParametersErr) return } log.Infof("%s", au.Gray(11, " Using previous parameters...")) for stackParameters.Next() { stackParam := stackParameters.Value() key, _ := stackParam.Label() parametersMap[key] = "" } log.Check() } else { // load overrides // TODO #48 stx should prompt for each Parameter input if overrides are undefined if len(stack.Overrides) < 0 { log.Fatal("Template has Parameters but no Overrides are defined.") return } for k, v := range stack.Overrides { path := strings.Replace(k, "${STX::CuePath}", strings.Replace(buildInstance.Dir, buildInstance.Root+"/", "", 1), 1) behavior := v log.Infof("%s", au.Gray(11, " Applying overrides: "+path+" ")) var yamlBytes []byte var yamlBytesErr error if behavior.SopsProfile != "" { // decrypt the file contents yamlBytes, yamlBytesErr = stx.DecryptSecrets(filepath.Clean(buildInstance.Root+"/"+path), behavior.SopsProfile) } else { // just pull the file contents directly yamlBytes, yamlBytesErr = ioutil.ReadFile(filepath.Clean(buildInstance.Root + "/" + path)) } if yamlBytesErr != nil { log.Fatal(yamlBytesErr) return } // TODO #47 parameters need to support the type as declared in Parameter.Type (in the least string and number). // this should be map[string]interface{} with type casting done when adding parameters to the changeset var override map[string]string yamlUnmarshalErr := yaml.Unmarshal(yamlBytes, &override) if yamlUnmarshalErr != nil { log.Fatal(yamlUnmarshalErr) return } // TODO #50 stx should error when a parameter key is duplicated among two or more overrides files if len(behavior.Map) > 0 { // map the yaml key:value to parameter key:value for k, v := range behavior.Map { fromKey := k toKey := v parametersMap[toKey] = override[fromKey] } } else { // just do a straight copy, keys should align 1:1 for k, v := range override { overrideKey := k overrideVal := v parametersMap[overrideKey] = overrideVal } } log.Check() } } // apply parameters to changeset for k, v := range parametersMap { paramKey := k paramVal := v parameter := cloudformation.Parameter{ParameterKey: aws.String(paramKey)} if flags.DeployPrevious { parameter.SetUsePreviousValue(true) } else { parameter.ParameterValue = aws.String(paramVal) } parameters = append(parameters, &parameter) } createChangeSetInput.SetParameters(parameters) } // end stackParametersValue.Exists() // handle Stack.Tags if len(stack.Tags) > 0 && stack.TagsEnabled { var tags []*cloudformation.Tag for k, v := range stack.Tags { tagK := k // reassign here to avoid issues with for-scope var var tagV string switch v { default: tagV = v case "${STX::CuePath}": tagV = strings.Replace(buildInstance.Dir, buildInstance.Root, "", 1) case "${STX::CueFiles}": tagV = strings.Join(buildInstance.CUEFiles, ", ") } tags = append(tags, &cloudformation.Tag{Key: &tagK, Value: &tagV}) } createChangeSetInput.SetTags(tags) } if config.Cmd.Deploy.Notify.TopicArn != "" { // && stx notify command is running! perhaps use unix domain sockets to test log.Infof("%s", au.Gray(11, " Reticulating splines...")) snsClient := sns.New(session, awsCfg) subscribeInput := sns.SubscribeInput{Endpoint: aws.String(config.Cmd.Deploy.Notify.Endpoint), TopicArn
{ fileName, saveErr := saveStackAsYml(stack, buildInstance, stackValue) if saveErr != nil { log.Error(saveErr) } log.Infof("%s %s %s %s:%s\n", au.White("Deploying"), au.Magenta(stack.Name), au.White("⤏"), au.Green(stack.Profile), au.Cyan(stack.Region)) log.Infof("%s", au.Gray(11, " Validating template...")) // get a session and cloudformation service client log.Debugf("\nGetting session for profile %s\n", stack.Profile) session := stx.GetSession(stack.Profile) awsCfg := aws.NewConfig().WithRegion(stack.Region) cfn := cloudformation.New(session, awsCfg) // read template from disk log.Debug("Reading template from", fileName) templateFileBytes, _ := ioutil.ReadFile(fileName) templateBody := string(templateFileBytes) usr, _ := user.Current()
identifier_body
deploy.go
() { rootCmd.AddCommand(deployCmd) deployCmd.Flags().BoolVarP(&flags.DeployWait, "wait", "w", false, "Wait for stack updates to complete before continuing.") deployCmd.Flags().BoolVarP(&flags.DeploySave, "save", "s", false, "Save stack outputs upon successful completion. Implies --wait.") deployCmd.Flags().BoolVarP(&flags.DeployDeps, "dependencies", "d", false, "Deploy stack dependencies in order. Implies --save.") deployCmd.Flags().BoolVarP(&flags.DeployPrevious, "previous-values", "v", false, "Deploy stack using previous parameter values.") } type deployArgs struct { stack stx.Stack stackValue cue.Value buildInstance *build.Instance } // deployCmd represents the deploy command var deployCmd = &cobra.Command{ Use: "deploy", Short: "Deploys a stack by creating a changeset, previews expected changes, and optionally executes.", Long: `Deploy will act upon every stack it finds among the evaluated cue files. For each stack, a changeset is first created, and the proposed changes are displayed. At this point you have the option to execute the changeset before moving on to the next stack. The following config.stx.cue options are available: Cmd: { Deploy: { Notify: { Endpoint: string | *"" TopicArn: string | *"" } } } Use Cmd:Deploy:Notify: properties to enable the notify command to receive stack event notifications from SNS. The endpoint will be the http address provided by the notify command. If this is run behind a router, you will need to enable port forwarding. If port forwarding is not possible, such as in a corporate office setting, stx notify could be run on a remote machine such as an EC2 instance, or virtual workspace. The TopicArn is an SNS topic that is provided as a NotificationArn when creating changesets. In a team setting, it may be better for each member to have their own topic; keep in mind that the last person to deploy will be the one to receive notifications when the stack is deleted. To receive events during a delete operation, be sure to update the stack with your own TopicArn first. `, Run: func(cmd *cobra.Command, args []string) { defer log.Flush() stx.EnsureVaultSession(config) if flags.DeployDeps { flags.DeploySave = true } availableStacks := make(map[string]deployArgs) workingGraph := graph.NewGraph() buildInstances := stx.GetBuildInstances(args, config.PackageName) stx.Process(buildInstances, flags, log, func(buildInstance *build.Instance, cueInstance *cue.Instance) { stacksIterator, stacksIteratorErr := stx.NewStacksIterator(cueInstance, flags, log) if stacksIteratorErr != nil { log.Fatal(stacksIteratorErr) } // since the Process handler generally only sees one stack per instance, // we need to gather ALL the stacks first primarily to support dependencies for stacksIterator.Next() { stackValue := stacksIterator.Value() var stack stx.Stack decodeErr := stackValue.Decode(&stack) if decodeErr != nil { if flags.DeployDeps { log.Fatal(decodeErr) } else { log.Error(decodeErr) continue } } availableStacks[stack.Name] = deployArgs{stack: stack, buildInstance: buildInstance, stackValue: stackValue} if flags.DeployDeps { workingGraph.AddNode(stack.Name, stack.DependsOn...) } } }) if flags.DeployDeps { resolved, err := workingGraph.Resolve() if err != nil { log.Fatalf("Failed to resolve dependency graph: %s\n", err) } for _, stackName := range resolved { dplArgs := availableStacks[stackName] deployStack(dplArgs.stack, dplArgs.buildInstance, dplArgs.stackValue) } } else { for _, dplArgs := range availableStacks { deployStack(dplArgs.stack, dplArgs.buildInstance, dplArgs.stackValue) } } }, } func deployStack(stack stx.Stack, buildInstance *build.Instance, stackValue cue.Value) { fileName, saveErr := saveStackAsYml(stack, buildInstance, stackValue) if saveErr != nil { log.Error(saveErr) } log.Infof("%s %s %s %s:%s\n", au.White("Deploying"), au.Magenta(stack.Name), au.White("⤏"), au.Green(stack.Profile), au.Cyan(stack.Region)) log.Infof("%s", au.Gray(11, " Validating template...")) // get a session and cloudformation service client log.Debugf("\nGetting session for profile %s\n", stack.Profile) session := stx.GetSession(stack.Profile) awsCfg := aws.NewConfig().WithRegion(stack.Region) cfn := cloudformation.New(session, awsCfg) // read template from disk log.Debug("Reading template from", fileName) templateFileBytes, _ := ioutil.ReadFile(fileName) templateBody := string(templateFileBytes) usr, _ := user.Current() changeSetName := "stx-dpl-" + usr.Username + "-" + fmt.Sprintf("%x", sha1.Sum(templateFileBytes)) // validate template validateTemplateInput := cloudformation.ValidateTemplateInput{ TemplateBody: &templateBody, } validateTemplateOutput, validateTemplateErr := cfn.ValidateTemplate(&validateTemplateInput) // template failed to validate if validateTemplateErr != nil { log.Infof(" %s\n", au.Red("✕")) log.Fatalf("%+v\n", validateTemplateErr) } // template must have validated log.Infof("%s\n", au.BrightGreen("✓")) //log.Infof("%+v\n", validateTemplateOutput.String()) // look to see if stack exists log.Debug("Describing", stack.Name) describeStacksInput := cloudformation.DescribeStacksInput{StackName: aws.String(stack.Name)} _, describeStacksErr := cfn.DescribeStacks(&describeStacksInput) createChangeSetInput := cloudformation.CreateChangeSetInput{ Capabilities: validateTemplateOutput.Capabilities, ChangeSetName: aws.String(changeSetName), // I think AWS overuses pointers StackName: aws.String(stack.Name), TemplateBody: aws.String(templateBody), } changeSetType := "UPDATE" // default // if stack does not exist set action to CREATE if describeStacksErr != nil { changeSetType = "CREATE" // if stack does not already exist } createChangeSetInput.ChangeSetType = &changeSetType stackParametersValue := stackValue.Lookup("Template", "Parameters") if stackParametersValue.Exists() { // TODO paramaters need to support the type as declared in Parameter.Type (in the least string and number). // this should be map[string]interface{} with type casting done when adding parameters to the changeset parametersMap := make(map[string]string) var parameters []*cloudformation.Parameter if flags.DeployPrevious { // deploy using previous values stackParameters, stackParametersErr := stackParametersValue.Fields() if stackParametersErr != nil { log.Fatal(stackParametersErr) return } log.Infof("%s", au.Gray(11, " Using previous parameters...")) for stackParameters.Next() { stackParam := stackParameters.Value() key, _ := stackParam.Label() parametersMap[key] = "" } log.Check() } else { // load overrides // TODO #48 stx should prompt for each Parameter input if overrides are undefined if len(stack.Overrides) < 0 { log.Fatal("Template has Parameters but no Overrides are defined.") return } for k, v := range stack.Overrides { path := strings.Replace(k, "${STX::CuePath}", strings.Replace(buildInstance.Dir, buildInstance.Root+"/", "", 1), 1) behavior := v log.Infof("%s", au.Gray(11, " Applying overrides: "+path+" ")) var yamlBytes []byte var yamlBytesErr error if behavior.SopsProfile != "" { // decrypt the file contents yamlBytes, yamlBytesErr = stx.DecryptSecrets(filepath.Clean(buildInstance.Root+"/"+path), behavior.SopsProfile) } else { // just pull the file contents directly yamlBytes, yamlBytesErr = ioutil.ReadFile(filepath.Clean(buildInstance.Root + "/" + path)) } if yamlBytesErr != nil { log.Fatal(yamlBytesErr) return } // TODO #47 parameters need to support the type as declared in Parameter.Type (in the least string and number). // this should be map[string]interface{} with type casting done when adding parameters to the changeset var override map[string]string yamlUnmarshalErr := yaml.Unmarshal(yamlBytes, &override) if yamlUnmarshalErr != nil { log.Fatal(yamlUnmarshalErr) return } // TODO #50 stx should error when a parameter key is duplicated among
init
identifier_name
deploy.go
} // TODO #47 parameters need to support the type as declared in Parameter.Type (in the least string and number). // this should be map[string]interface{} with type casting done when adding parameters to the changeset var override map[string]string yamlUnmarshalErr := yaml.Unmarshal(yamlBytes, &override) if yamlUnmarshalErr != nil { log.Fatal(yamlUnmarshalErr) return } // TODO #50 stx should error when a parameter key is duplicated among two or more overrides files if len(behavior.Map) > 0 { // map the yaml key:value to parameter key:value for k, v := range behavior.Map { fromKey := k toKey := v parametersMap[toKey] = override[fromKey] } } else { // just do a straight copy, keys should align 1:1 for k, v := range override { overrideKey := k overrideVal := v parametersMap[overrideKey] = overrideVal } } log.Check() } } // apply parameters to changeset for k, v := range parametersMap { paramKey := k paramVal := v parameter := cloudformation.Parameter{ParameterKey: aws.String(paramKey)} if flags.DeployPrevious { parameter.SetUsePreviousValue(true) } else { parameter.ParameterValue = aws.String(paramVal) } parameters = append(parameters, &parameter) } createChangeSetInput.SetParameters(parameters) } // end stackParametersValue.Exists() // handle Stack.Tags if len(stack.Tags) > 0 && stack.TagsEnabled { var tags []*cloudformation.Tag for k, v := range stack.Tags { tagK := k // reassign here to avoid issues with for-scope var var tagV string switch v { default: tagV = v case "${STX::CuePath}": tagV = strings.Replace(buildInstance.Dir, buildInstance.Root, "", 1) case "${STX::CueFiles}": tagV = strings.Join(buildInstance.CUEFiles, ", ") } tags = append(tags, &cloudformation.Tag{Key: &tagK, Value: &tagV}) } createChangeSetInput.SetTags(tags) } if config.Cmd.Deploy.Notify.TopicArn != "" { // && stx notify command is running! perhaps use unix domain sockets to test log.Infof("%s", au.Gray(11, " Reticulating splines...")) snsClient := sns.New(session, awsCfg) subscribeInput := sns.SubscribeInput{Endpoint: aws.String(config.Cmd.Deploy.Notify.Endpoint), TopicArn: aws.String(config.Cmd.Deploy.Notify.TopicArn), Protocol: aws.String("http")} _, subscribeErr := snsClient.Subscribe(&subscribeInput) if subscribeErr != nil { log.Errorf("%s\n", subscribeErr) } else { var notificationArns []*string notificationArns = append(notificationArns, aws.String(config.Cmd.Deploy.Notify.TopicArn)) createChangeSetInput.SetNotificationARNs(notificationArns) log.Check() } } log.Infof("%s", au.Gray(11, " Creating changeset...")) _, createChangeSetErr := cfn.CreateChangeSet(&createChangeSetInput) if createChangeSetErr != nil { if awsErr, ok := createChangeSetErr.(awserr.Error); ok { log.Infof(" %s\n", au.Red(awsErr)) if awsErr.Code() == "AlreadyExistsException" { var deleteChangesetInput cloudformation.DeleteChangeSetInput deleteChangesetInput.ChangeSetName = createChangeSetInput.ChangeSetName deleteChangesetInput.StackName = createChangeSetInput.StackName log.Infof("%s %s\n", au.White("Deleting"), au.BrightBlue(changeSetName)) _, deleteChangeSetErr := cfn.DeleteChangeSet(&deleteChangesetInput) if deleteChangeSetErr != nil { log.Error(deleteChangeSetErr) } return } } log.Fatal(createChangeSetErr) } describeChangesetInput := cloudformation.DescribeChangeSetInput{ ChangeSetName: aws.String(changeSetName), StackName: aws.String(stack.Name), } waitOption := request.WithWaiterDelay(request.ConstantWaiterDelay(5 * time.Second)) cfn.WaitUntilChangeSetCreateCompleteWithContext(context.Background(), &describeChangesetInput, waitOption) log.Check() log.Infof("%s %s %s %s:%s\n", au.White("Describing"), au.BrightBlue(changeSetName), au.White("⤎"), au.Magenta(stack.Name), au.Cyan(stack.Region)) describeChangesetOuput, describeChangesetErr := cfn.DescribeChangeSet(&describeChangesetInput) if describeChangesetErr != nil { log.Fatalf("%+v", au.Red(describeChangesetErr)) } if aws.StringValue(describeChangesetOuput.ExecutionStatus) != "AVAILABLE" || aws.StringValue(describeChangesetOuput.Status) != "CREATE_COMPLETE" { //TODO put describeChangesetOuput into table view log.Infof("%+v\n", describeChangesetOuput) log.Info(au.Yellow("No changes to deploy.")) var deleteChangesetInput cloudformation.DeleteChangeSetInput deleteChangesetInput.ChangeSetName = createChangeSetInput.ChangeSetName deleteChangesetInput.StackName = createChangeSetInput.StackName log.Infof("%s %s\n", au.White("Deleting"), au.BrightBlue(changeSetName)) _, deleteChangeSetErr := cfn.DeleteChangeSet(&deleteChangesetInput) if deleteChangeSetErr != nil { log.Error(deleteChangeSetErr) } return } if len(describeChangesetOuput.Changes) > 0 { // log.Infof("%+v\n", describeChangesetOuput.Changes) table := tablewriter.NewWriter(os.Stdout) table.SetAutoWrapText(false) table.SetAutoMergeCells(true) table.SetRowLine(true) table.SetHeader([]string{"Resource", "Action", "Attribute", "Property", "Recreation"}) table.SetHeaderColor(tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}) for _, change := range describeChangesetOuput.Changes { row := []string{ aws.StringValue(change.ResourceChange.LogicalResourceId), aws.StringValue(change.ResourceChange.Action), "", "", "", } if aws.StringValue(change.ResourceChange.Action) == "Modify" { for _, detail := range change.ResourceChange.Details { row[2] = aws.StringValue(detail.Target.Attribute) row[3] = aws.StringValue(detail.Target.Name) recreation := aws.StringValue(detail.Target.RequiresRecreation) if recreation == "ALWAYS" || recreation == "CONDITIONAL" { row[4] = au.Red(recreation).String() } else { row[4] = recreation } table.Append(row) } } else { table.Append(row) } } table.Render() } diff(cfn, stack.Name, templateBody) log.Infof("%s %s %s %s %s:%s:%s %s\n", au.Index(255-88, "Execute change set"), au.BrightBlue(changeSetName), au.Index(255-88, "on"), au.White("⤏"), au.Magenta(stack.Name), au.Green(stack.Profile), au.Cyan(stack.Region), au.Index(255-88, "?")) log.Infof("%s\n%s", au.Gray(11, "Y to execute. Anything else to cancel."), au.Gray(11, "▶︎")) var input string fmt.Scanln(&input) input = strings.ToLower(input) matched, _ := regexp.MatchString("^(y){1}(es)?$", input) if !matched { // delete changeset and continue var deleteChangesetInput cloudformation.DeleteChangeSetInput deleteChangesetInput.ChangeSetName = createChangeSetInput.ChangeSetName deleteChangesetInput.StackName = createChangeSetInput.StackName log.Infof("%s %s\n", au.White("Deleting"), au.BrightBlue(changeSetName)) _, deleteChangeSetErr := cfn.DeleteChangeSet(&deleteChangesetInput) if deleteChangeSetErr != nil { log.Error(deleteChangeSetErr) } return } executeChangeSetInput := cloudformation.ExecuteChangeSetInput{ ChangeSetName: aws.String(changeSetName), StackName: aws.String(stack.Name), } log.Infof("%s %s %s %s:%s\n", au.White("Executing"), au.BrightBlue(changeSetName), au.White("⤏"), au.Magenta(stack.Name), au.Cyan(stack.Region)) _, executeChangeSetErr := cfn.ExecuteChangeSet(&executeChangeSetInput) if executeChangeSetErr != nil { log.Fatal(ex
ecuteChangeSetErr) } if flags.Depl
conditional_block
deploy.go
behavior.Map) > 0 { // map the yaml key:value to parameter key:value for k, v := range behavior.Map { fromKey := k toKey := v parametersMap[toKey] = override[fromKey] } } else { // just do a straight copy, keys should align 1:1 for k, v := range override { overrideKey := k overrideVal := v parametersMap[overrideKey] = overrideVal } } log.Check() } } // apply parameters to changeset for k, v := range parametersMap { paramKey := k paramVal := v parameter := cloudformation.Parameter{ParameterKey: aws.String(paramKey)} if flags.DeployPrevious { parameter.SetUsePreviousValue(true) } else { parameter.ParameterValue = aws.String(paramVal) } parameters = append(parameters, &parameter) } createChangeSetInput.SetParameters(parameters) } // end stackParametersValue.Exists() // handle Stack.Tags if len(stack.Tags) > 0 && stack.TagsEnabled { var tags []*cloudformation.Tag for k, v := range stack.Tags { tagK := k // reassign here to avoid issues with for-scope var var tagV string switch v { default: tagV = v case "${STX::CuePath}": tagV = strings.Replace(buildInstance.Dir, buildInstance.Root, "", 1) case "${STX::CueFiles}": tagV = strings.Join(buildInstance.CUEFiles, ", ") } tags = append(tags, &cloudformation.Tag{Key: &tagK, Value: &tagV}) } createChangeSetInput.SetTags(tags) } if config.Cmd.Deploy.Notify.TopicArn != "" { // && stx notify command is running! perhaps use unix domain sockets to test log.Infof("%s", au.Gray(11, " Reticulating splines...")) snsClient := sns.New(session, awsCfg) subscribeInput := sns.SubscribeInput{Endpoint: aws.String(config.Cmd.Deploy.Notify.Endpoint), TopicArn: aws.String(config.Cmd.Deploy.Notify.TopicArn), Protocol: aws.String("http")} _, subscribeErr := snsClient.Subscribe(&subscribeInput) if subscribeErr != nil { log.Errorf("%s\n", subscribeErr) } else { var notificationArns []*string notificationArns = append(notificationArns, aws.String(config.Cmd.Deploy.Notify.TopicArn)) createChangeSetInput.SetNotificationARNs(notificationArns) log.Check() } } log.Infof("%s", au.Gray(11, " Creating changeset...")) _, createChangeSetErr := cfn.CreateChangeSet(&createChangeSetInput) if createChangeSetErr != nil { if awsErr, ok := createChangeSetErr.(awserr.Error); ok { log.Infof(" %s\n", au.Red(awsErr)) if awsErr.Code() == "AlreadyExistsException" { var deleteChangesetInput cloudformation.DeleteChangeSetInput deleteChangesetInput.ChangeSetName = createChangeSetInput.ChangeSetName deleteChangesetInput.StackName = createChangeSetInput.StackName log.Infof("%s %s\n", au.White("Deleting"), au.BrightBlue(changeSetName)) _, deleteChangeSetErr := cfn.DeleteChangeSet(&deleteChangesetInput) if deleteChangeSetErr != nil { log.Error(deleteChangeSetErr) } return } } log.Fatal(createChangeSetErr) } describeChangesetInput := cloudformation.DescribeChangeSetInput{ ChangeSetName: aws.String(changeSetName), StackName: aws.String(stack.Name), } waitOption := request.WithWaiterDelay(request.ConstantWaiterDelay(5 * time.Second)) cfn.WaitUntilChangeSetCreateCompleteWithContext(context.Background(), &describeChangesetInput, waitOption) log.Check() log.Infof("%s %s %s %s:%s\n", au.White("Describing"), au.BrightBlue(changeSetName), au.White("⤎"), au.Magenta(stack.Name), au.Cyan(stack.Region)) describeChangesetOuput, describeChangesetErr := cfn.DescribeChangeSet(&describeChangesetInput) if describeChangesetErr != nil { log.Fatalf("%+v", au.Red(describeChangesetErr)) } if aws.StringValue(describeChangesetOuput.ExecutionStatus) != "AVAILABLE" || aws.StringValue(describeChangesetOuput.Status) != "CREATE_COMPLETE" { //TODO put describeChangesetOuput into table view log.Infof("%+v\n", describeChangesetOuput) log.Info(au.Yellow("No changes to deploy.")) var deleteChangesetInput cloudformation.DeleteChangeSetInput deleteChangesetInput.ChangeSetName = createChangeSetInput.ChangeSetName deleteChangesetInput.StackName = createChangeSetInput.StackName log.Infof("%s %s\n", au.White("Deleting"), au.BrightBlue(changeSetName)) _, deleteChangeSetErr := cfn.DeleteChangeSet(&deleteChangesetInput) if deleteChangeSetErr != nil { log.Error(deleteChangeSetErr) } return } if len(describeChangesetOuput.Changes) > 0 { // log.Infof("%+v\n", describeChangesetOuput.Changes) table := tablewriter.NewWriter(os.Stdout) table.SetAutoWrapText(false) table.SetAutoMergeCells(true) table.SetRowLine(true) table.SetHeader([]string{"Resource", "Action", "Attribute", "Property", "Recreation"}) table.SetHeaderColor(tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}, tablewriter.Colors{tablewriter.FgWhiteColor}) for _, change := range describeChangesetOuput.Changes { row := []string{ aws.StringValue(change.ResourceChange.LogicalResourceId), aws.StringValue(change.ResourceChange.Action), "", "", "", } if aws.StringValue(change.ResourceChange.Action) == "Modify" { for _, detail := range change.ResourceChange.Details { row[2] = aws.StringValue(detail.Target.Attribute) row[3] = aws.StringValue(detail.Target.Name) recreation := aws.StringValue(detail.Target.RequiresRecreation) if recreation == "ALWAYS" || recreation == "CONDITIONAL" { row[4] = au.Red(recreation).String() } else { row[4] = recreation } table.Append(row) } } else { table.Append(row) } } table.Render() } diff(cfn, stack.Name, templateBody) log.Infof("%s %s %s %s %s:%s:%s %s\n", au.Index(255-88, "Execute change set"), au.BrightBlue(changeSetName), au.Index(255-88, "on"), au.White("⤏"), au.Magenta(stack.Name), au.Green(stack.Profile), au.Cyan(stack.Region), au.Index(255-88, "?")) log.Infof("%s\n%s", au.Gray(11, "Y to execute. Anything else to cancel."), au.Gray(11, "▶︎")) var input string fmt.Scanln(&input) input = strings.ToLower(input) matched, _ := regexp.MatchString("^(y){1}(es)?$", input) if !matched { // delete changeset and continue var deleteChangesetInput cloudformation.DeleteChangeSetInput deleteChangesetInput.ChangeSetName = createChangeSetInput.ChangeSetName deleteChangesetInput.StackName = createChangeSetInput.StackName log.Infof("%s %s\n", au.White("Deleting"), au.BrightBlue(changeSetName)) _, deleteChangeSetErr := cfn.DeleteChangeSet(&deleteChangesetInput) if deleteChangeSetErr != nil { log.Error(deleteChangeSetErr) } return } executeChangeSetInput := cloudformation.ExecuteChangeSetInput{ ChangeSetName: aws.String(changeSetName), StackName: aws.String(stack.Name), } log.Infof("%s %s %s %s:%s\n", au.White("Executing"), au.BrightBlue(changeSetName), au.White("⤏"), au.Magenta(stack.Name), au.Cyan(stack.Region)) _, executeChangeSetErr := cfn.ExecuteChangeSet(&executeChangeSetInput) if executeChangeSetErr != nil { log.Fatal(executeChangeSetErr) } if flags.DeploySave || flags.DeployWait { log.Infof("%s", au.Gray(11, " Waiting for stack...")) switch changeSetType { case "UPDATE": cfn.WaitUntilStackUpdateCompleteWithContext(context.Background(), &describeStacksInput, waitOption) case "CREATE": cfn.WaitUntilStackCreateCompleteWithContext(context.Background(), &describeStacksInput, waitOption) } log.Check()
if flags.DeploySave { saveErr := saveStackOutputs(buildInstance, stack) if saveErr != nil { log.Fatal(saveErr)
random_line_split
http.go
.InterfacesTotal[i].In, prevtotals[i].In), DeltaOut: bps(s.InterfacesTotal[i].Out, prevtotals[i].Out), } } sort.Sort(interfaceOrder(ifs)) return ifs } func(s state) cpudelta() sigar.CpuList { prev := s.PREVCPU if len(prev.List) == 0 { return s.RAWCPU } // cls := s.RAWCPU cls := sigar.CpuList{List: make([]sigar.Cpu, len(s.RAWCPU.List)) } copy(cls.List, s.RAWCPU.List) for i := range cls.List { cls.List[i].User -= prev.List[i].User cls.List[i].Nice -= prev.List[i].Nice cls.List[i].Sys -= prev.List[i].Sys cls.List[i].Idle -= prev.List[i].Idle } sort.Sort(cpuOrder(cls.List)) return cls } func(s state) CPU() types.CPU { sum := sigar.Cpu{} cls := s.cpudelta() c := types.CPU{List: make([]types.CPU, len(cls.List))} for i, cp := range cls.List { total := cp.User + cp.Nice + cp.Sys + cp.Idle user := percent(cp.User, total) sys := percent(cp.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.List[i].N = i c.List[i].User, c.List[i].AttrUser = user, textAttr_colorPercent(user) c.List[i].Sys, c.List[i].AttrSys = sys, textAttr_colorPercent(sys) c.List[i].Idle, c.List[i].AttrIdle = idle, textAttr_colorPercent(100 - idle) sum.User += cp.User + cp.Nice sum.Sys += cp.Sys sum.Idle += cp.Idle } total := sum.User + sum.Sys + sum.Idle // + sum.Nice user := percent(sum.User, total) sys := percent(sum.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.N = len(cls.List) c.User, c.AttrUser = user, textAttr_colorPercent(user) c.Sys, c.AttrSys = sys, textAttr_colorPercent(sys) c.Idle, c.AttrIdle = idle, textAttr_colorPercent(100 - idle) return c } func textAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"text-" + colorPercent(p) + "\"") } func labelAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"label label-" + colorPercent(p) + "\"") } func colorPercent(p uint) string { if p > 90 { return "danger" } if p > 80 { return "warning" } if p > 20 { return "info" } return "success" } type memory struct { Total string Used string Free string UsePercent string AttrUsePercent template.HTMLAttr `json:"-"` } type diskInfo struct { DevName string Total uint64 Used uint64 Avail uint64 UsePercent float64 Inodes uint64 Iused uint64 Ifree uint64 IusePercent float64 DirName string } func valuesSet(req *http.Request, base url.Values, pname string, bimap types.Biseqmap) types.SEQ { if params, ok := req.Form[pname]; ok && len(params) > 0 { if seq, ok := bimap.STRING2SEQ[params[0]]; ok { base.Set(pname, params[0]) return seq } } return bimap.Default_seq } func
(disks []diskInfo, seq types.SEQ) []types.DiskData { sort.Stable(diskOrder{ disks: disks, seq: seq, reverse: _DFBIMAP.SEQ2REVERSE[seq], }) var dd []types.DiskData for _, disk := range disks { total, approxtotal := humanBandback(disk.Total) used, approxused := humanBandback(disk.Used) itotal, approxitotal := humanBandback(disk.Inodes) iused, approxiused := humanBandback(disk.Iused) short := "" if len(disk.DevName) > 10 { short = disk.DevName[:10] } dd = append(dd, types.DiskData{ DiskName: disk.DevName, ShortDiskName: short, Total: total, Used: used, Avail: humanB(disk.Avail), UsePercent: formatPercent(approxused, approxtotal), Inodes: itotal, Iused: iused, Ifree: humanB(disk.Ifree), IusePercent: formatPercent(approxiused, approxitotal), DirName: disk.DirName, AttrUsePercent: labelAttr_colorPercent(percent(approxused, approxtotal)), AttrIusePercent: labelAttr_colorPercent(percent(approxiused, approxitotal)), }) } return dd } var _DFBIMAP = types.Seq2bimap(DFFS, // the default seq for ordering types.Seq2string{ DFFS: "fs", DFSIZE: "size", DFUSED: "used", DFAVAIL: "avail", DFMP: "mp", }, []types.SEQ{ DFFS, DFMP, }) var _PSBIMAP = types.Seq2bimap(PSPID, // the default seq for ordering types.Seq2string{ PSPID: "pid", PSPRI: "pri", PSNICE: "nice", PSSIZE: "size", PSRES: "res", PSTIME: "time", PSNAME: "name", PSUID: "user", }, []types.SEQ{ PSNAME, PSUID, }) func username(uids map[uint]string, uid uint) string { if s, ok := uids[uid]; ok { return s } s := fmt.Sprintf("%d", uid) if usr, err := user.LookupId(s); err == nil { s = usr.Username } uids[uid] = s return s } func orderProc(procs []types.ProcInfo, seq types.SEQ) []types.ProcData { sort.Sort(procOrder{ // not sort.Stable procs: procs, seq: seq, reverse: _PSBIMAP.SEQ2REVERSE[seq], }) if len(procs) > 20 { procs = procs[:20] } uids := map[uint]string{} var list []types.ProcData for _, proc := range procs { list = append(list, types.ProcData{ PID: proc.PID, Priority: proc.Priority, Nice: proc.Nice, Time: formatTime(proc.Time), Name: proc.Name, User: username(uids, proc.Uid), Size: humanB(proc.Size), Resident: humanB(proc.Resident), }) } return list } type state struct { About about System system RAWCPU sigar.CpuList PREVCPU sigar.CpuList RAM memory Swap memory DiskList []diskInfo ProcList []types.ProcInfo InterfacesTotal []InterfaceTotal PrevInterfacesTotal []InterfaceTotal } type Page struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces types.Interfaces DISTRIB string HTTP_HOST string } type pageUpdate struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces []types.DeltaInterface } var stateLock sync.Mutex var lastState state func reset_prev() { stateLock.Lock() defer stateLock.Unlock() lastState.PrevInterfacesTotal = []InterfaceTotal{} lastState.PREVCPU.List = []sigar.Cpu{} } func collect() { // state stateLock.Lock() defer stateLock.Unlock() prev_ifstotal := lastState.InterfacesTotal prev_cpu := lastState.RAWCPU ifs, ip := NewInterfaces() about := getAbout() about.IP = ip lastState = state{
orderDisk
identifier_name
http.go
(s.InterfacesTotal[i].In, prevtotals[i].In), DeltaOut: bps(s.InterfacesTotal[i].Out, prevtotals[i].Out), } } sort.Sort(interfaceOrder(ifs)) return ifs } func(s state) cpudelta() sigar.CpuList { prev := s.PREVCPU if len(prev.List) == 0 { return s.RAWCPU } // cls := s.RAWCPU cls := sigar.CpuList{List: make([]sigar.Cpu, len(s.RAWCPU.List)) } copy(cls.List, s.RAWCPU.List) for i := range cls.List { cls.List[i].User -= prev.List[i].User cls.List[i].Nice -= prev.List[i].Nice cls.List[i].Sys -= prev.List[i].Sys cls.List[i].Idle -= prev.List[i].Idle } sort.Sort(cpuOrder(cls.List)) return cls } func(s state) CPU() types.CPU { sum := sigar.Cpu{} cls := s.cpudelta() c := types.CPU{List: make([]types.CPU, len(cls.List))} for i, cp := range cls.List { total := cp.User + cp.Nice + cp.Sys + cp.Idle user := percent(cp.User, total) sys := percent(cp.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.List[i].N = i c.List[i].User, c.List[i].AttrUser = user, textAttr_colorPercent(user) c.List[i].Sys, c.List[i].AttrSys = sys, textAttr_colorPercent(sys) c.List[i].Idle, c.List[i].AttrIdle = idle, textAttr_colorPercent(100 - idle) sum.User += cp.User + cp.Nice sum.Sys += cp.Sys sum.Idle += cp.Idle } total := sum.User + sum.Sys + sum.Idle // + sum.Nice user := percent(sum.User, total) sys := percent(sum.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.N = len(cls.List) c.User, c.AttrUser = user, textAttr_colorPercent(user) c.Sys, c.AttrSys = sys, textAttr_colorPercent(sys) c.Idle, c.AttrIdle = idle, textAttr_colorPercent(100 - idle) return c } func textAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"text-" + colorPercent(p) + "\"") } func labelAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"label label-" + colorPercent(p) + "\"") } func colorPercent(p uint) string { if p > 90 { return "danger" } if p > 80 { return "warning" } if p > 20 { return "info" } return "success" } type memory struct { Total string Used string Free string UsePercent string AttrUsePercent template.HTMLAttr `json:"-"` } type diskInfo struct { DevName string Total uint64 Used uint64 Avail uint64 UsePercent float64 Inodes uint64 Iused uint64 Ifree uint64 IusePercent float64 DirName string } func valuesSet(req *http.Request, base url.Values, pname string, bimap types.Biseqmap) types.SEQ { if params, ok := req.Form[pname]; ok && len(params) > 0 { if seq, ok := bimap.STRING2SEQ[params[0]]; ok { base.Set(pname, params[0]) return seq } } return bimap.Default_seq } func orderDisk(disks []diskInfo, seq types.SEQ) []types.DiskData { sort.Stable(diskOrder{ disks: disks, seq: seq, reverse: _DFBIMAP.SEQ2REVERSE[seq], }) var dd []types.DiskData for _, disk := range disks { total, approxtotal := humanBandback(disk.Total) used, approxused := humanBandback(disk.Used) itotal, approxitotal := humanBandback(disk.Inodes) iused, approxiused := humanBandback(disk.Iused) short := "" if len(disk.DevName) > 10 { short = disk.DevName[:10] } dd = append(dd, types.DiskData{ DiskName: disk.DevName, ShortDiskName: short, Total: total, Used: used, Avail: humanB(disk.Avail), UsePercent: formatPercent(approxused, approxtotal), Inodes: itotal, Iused: iused, Ifree: humanB(disk.Ifree), IusePercent: formatPercent(approxiused, approxitotal), DirName: disk.DirName, AttrUsePercent: labelAttr_colorPercent(percent(approxused, approxtotal)), AttrIusePercent: labelAttr_colorPercent(percent(approxiused, approxitotal)), }) } return dd } var _DFBIMAP = types.Seq2bimap(DFFS, // the default seq for ordering types.Seq2string{ DFFS: "fs", DFSIZE: "size", DFUSED: "used", DFAVAIL: "avail", DFMP: "mp", }, []types.SEQ{ DFFS, DFMP, }) var _PSBIMAP = types.Seq2bimap(PSPID, // the default seq for ordering types.Seq2string{ PSPID: "pid", PSPRI: "pri", PSNICE: "nice", PSSIZE: "size", PSRES: "res", PSTIME: "time", PSNAME: "name", PSUID: "user", }, []types.SEQ{ PSNAME, PSUID, }) func username(uids map[uint]string, uid uint) string { if s, ok := uids[uid]; ok { return s } s := fmt.Sprintf("%d", uid) if usr, err := user.LookupId(s); err == nil { s = usr.Username } uids[uid] = s return s } func orderProc(procs []types.ProcInfo, seq types.SEQ) []types.ProcData { sort.Sort(procOrder{ // not sort.Stable procs: procs, seq: seq, reverse: _PSBIMAP.SEQ2REVERSE[seq], }) if len(procs) > 20 { procs = procs[:20] } uids := map[uint]string{} var list []types.ProcData for _, proc := range procs { list = append(list, types.ProcData{ PID: proc.PID, Priority: proc.Priority, Nice: proc.Nice, Time: formatTime(proc.Time), Name: proc.Name, User: username(uids, proc.Uid), Size: humanB(proc.Size), Resident: humanB(proc.Resident), }) } return list } type state struct { About about System system RAWCPU sigar.CpuList PREVCPU sigar.CpuList RAM memory Swap memory DiskList []diskInfo ProcList []types.ProcInfo InterfacesTotal []InterfaceTotal PrevInterfacesTotal []InterfaceTotal } type Page struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces types.Interfaces DISTRIB string HTTP_HOST string } type pageUpdate struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces []types.DeltaInterface }
stateLock.Lock() defer stateLock.Unlock() lastState.PrevInterfacesTotal = []InterfaceTotal{} lastState.PREVCPU.List = []sigar.Cpu{} } func collect() { // state stateLock.Lock() defer stateLock.Unlock() prev_ifstotal := lastState.InterfacesTotal prev_cpu := lastState.RAWCPU ifs, ip := NewInterfaces() about := getAbout() about.IP = ip lastState = state{
var stateLock sync.Mutex var lastState state func reset_prev() {
random_line_split
http.go
.InterfacesTotal[i].In, prevtotals[i].In), DeltaOut: bps(s.InterfacesTotal[i].Out, prevtotals[i].Out), } } sort.Sort(interfaceOrder(ifs)) return ifs } func(s state) cpudelta() sigar.CpuList { prev := s.PREVCPU if len(prev.List) == 0 { return s.RAWCPU } // cls := s.RAWCPU cls := sigar.CpuList{List: make([]sigar.Cpu, len(s.RAWCPU.List)) } copy(cls.List, s.RAWCPU.List) for i := range cls.List { cls.List[i].User -= prev.List[i].User cls.List[i].Nice -= prev.List[i].Nice cls.List[i].Sys -= prev.List[i].Sys cls.List[i].Idle -= prev.List[i].Idle } sort.Sort(cpuOrder(cls.List)) return cls } func(s state) CPU() types.CPU
sum.User += cp.User + cp.Nice sum.Sys += cp.Sys sum.Idle += cp.Idle } total := sum.User + sum.Sys + sum.Idle // + sum.Nice user := percent(sum.User, total) sys := percent(sum.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.N = len(cls.List) c.User, c.AttrUser = user, textAttr_colorPercent(user) c.Sys, c.AttrSys = sys, textAttr_colorPercent(sys) c.Idle, c.AttrIdle = idle, textAttr_colorPercent(100 - idle) return c } func textAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"text-" + colorPercent(p) + "\"") } func labelAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"label label-" + colorPercent(p) + "\"") } func colorPercent(p uint) string { if p > 90 { return "danger" } if p > 80 { return "warning" } if p > 20 { return "info" } return "success" } type memory struct { Total string Used string Free string UsePercent string AttrUsePercent template.HTMLAttr `json:"-"` } type diskInfo struct { DevName string Total uint64 Used uint64 Avail uint64 UsePercent float64 Inodes uint64 Iused uint64 Ifree uint64 IusePercent float64 DirName string } func valuesSet(req *http.Request, base url.Values, pname string, bimap types.Biseqmap) types.SEQ { if params, ok := req.Form[pname]; ok && len(params) > 0 { if seq, ok := bimap.STRING2SEQ[params[0]]; ok { base.Set(pname, params[0]) return seq } } return bimap.Default_seq } func orderDisk(disks []diskInfo, seq types.SEQ) []types.DiskData { sort.Stable(diskOrder{ disks: disks, seq: seq, reverse: _DFBIMAP.SEQ2REVERSE[seq], }) var dd []types.DiskData for _, disk := range disks { total, approxtotal := humanBandback(disk.Total) used, approxused := humanBandback(disk.Used) itotal, approxitotal := humanBandback(disk.Inodes) iused, approxiused := humanBandback(disk.Iused) short := "" if len(disk.DevName) > 10 { short = disk.DevName[:10] } dd = append(dd, types.DiskData{ DiskName: disk.DevName, ShortDiskName: short, Total: total, Used: used, Avail: humanB(disk.Avail), UsePercent: formatPercent(approxused, approxtotal), Inodes: itotal, Iused: iused, Ifree: humanB(disk.Ifree), IusePercent: formatPercent(approxiused, approxitotal), DirName: disk.DirName, AttrUsePercent: labelAttr_colorPercent(percent(approxused, approxtotal)), AttrIusePercent: labelAttr_colorPercent(percent(approxiused, approxitotal)), }) } return dd } var _DFBIMAP = types.Seq2bimap(DFFS, // the default seq for ordering types.Seq2string{ DFFS: "fs", DFSIZE: "size", DFUSED: "used", DFAVAIL: "avail", DFMP: "mp", }, []types.SEQ{ DFFS, DFMP, }) var _PSBIMAP = types.Seq2bimap(PSPID, // the default seq for ordering types.Seq2string{ PSPID: "pid", PSPRI: "pri", PSNICE: "nice", PSSIZE: "size", PSRES: "res", PSTIME: "time", PSNAME: "name", PSUID: "user", }, []types.SEQ{ PSNAME, PSUID, }) func username(uids map[uint]string, uid uint) string { if s, ok := uids[uid]; ok { return s } s := fmt.Sprintf("%d", uid) if usr, err := user.LookupId(s); err == nil { s = usr.Username } uids[uid] = s return s } func orderProc(procs []types.ProcInfo, seq types.SEQ) []types.ProcData { sort.Sort(procOrder{ // not sort.Stable procs: procs, seq: seq, reverse: _PSBIMAP.SEQ2REVERSE[seq], }) if len(procs) > 20 { procs = procs[:20] } uids := map[uint]string{} var list []types.ProcData for _, proc := range procs { list = append(list, types.ProcData{ PID: proc.PID, Priority: proc.Priority, Nice: proc.Nice, Time: formatTime(proc.Time), Name: proc.Name, User: username(uids, proc.Uid), Size: humanB(proc.Size), Resident: humanB(proc.Resident), }) } return list } type state struct { About about System system RAWCPU sigar.CpuList PREVCPU sigar.CpuList RAM memory Swap memory DiskList []diskInfo ProcList []types.ProcInfo InterfacesTotal []InterfaceTotal PrevInterfacesTotal []InterfaceTotal } type Page struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces types.Interfaces DISTRIB string HTTP_HOST string } type pageUpdate struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces []types.DeltaInterface } var stateLock sync.Mutex var lastState state func reset_prev() { stateLock.Lock() defer stateLock.Unlock() lastState.PrevInterfacesTotal = []InterfaceTotal{} lastState.PREVCPU.List = []sigar.Cpu{} } func collect() { // state stateLock.Lock() defer stateLock.Unlock() prev_ifstotal := lastState.InterfacesTotal prev_cpu := lastState.RAWCPU ifs, ip := NewInterfaces() about := getAbout() about.IP = ip lastState = state
{ sum := sigar.Cpu{} cls := s.cpudelta() c := types.CPU{List: make([]types.CPU, len(cls.List))} for i, cp := range cls.List { total := cp.User + cp.Nice + cp.Sys + cp.Idle user := percent(cp.User, total) sys := percent(cp.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.List[i].N = i c.List[i].User, c.List[i].AttrUser = user, textAttr_colorPercent(user) c.List[i].Sys, c.List[i].AttrSys = sys, textAttr_colorPercent(sys) c.List[i].Idle, c.List[i].AttrIdle = idle, textAttr_colorPercent(100 - idle)
identifier_body
http.go
.InterfacesTotal[i].In, prevtotals[i].In), DeltaOut: bps(s.InterfacesTotal[i].Out, prevtotals[i].Out), } } sort.Sort(interfaceOrder(ifs)) return ifs } func(s state) cpudelta() sigar.CpuList { prev := s.PREVCPU if len(prev.List) == 0 { return s.RAWCPU } // cls := s.RAWCPU cls := sigar.CpuList{List: make([]sigar.Cpu, len(s.RAWCPU.List)) } copy(cls.List, s.RAWCPU.List) for i := range cls.List { cls.List[i].User -= prev.List[i].User cls.List[i].Nice -= prev.List[i].Nice cls.List[i].Sys -= prev.List[i].Sys cls.List[i].Idle -= prev.List[i].Idle } sort.Sort(cpuOrder(cls.List)) return cls } func(s state) CPU() types.CPU { sum := sigar.Cpu{} cls := s.cpudelta() c := types.CPU{List: make([]types.CPU, len(cls.List))} for i, cp := range cls.List { total := cp.User + cp.Nice + cp.Sys + cp.Idle user := percent(cp.User, total) sys := percent(cp.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.List[i].N = i c.List[i].User, c.List[i].AttrUser = user, textAttr_colorPercent(user) c.List[i].Sys, c.List[i].AttrSys = sys, textAttr_colorPercent(sys) c.List[i].Idle, c.List[i].AttrIdle = idle, textAttr_colorPercent(100 - idle) sum.User += cp.User + cp.Nice sum.Sys += cp.Sys sum.Idle += cp.Idle } total := sum.User + sum.Sys + sum.Idle // + sum.Nice user := percent(sum.User, total) sys := percent(sum.Sys, total) idle := uint(0) if user + sys < 100 { idle = 100 - user - sys } c.N = len(cls.List) c.User, c.AttrUser = user, textAttr_colorPercent(user) c.Sys, c.AttrSys = sys, textAttr_colorPercent(sys) c.Idle, c.AttrIdle = idle, textAttr_colorPercent(100 - idle) return c } func textAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"text-" + colorPercent(p) + "\"") } func labelAttr_colorPercent(p uint) template.HTMLAttr { return template.HTMLAttr(" class=\"label label-" + colorPercent(p) + "\"") } func colorPercent(p uint) string { if p > 90 { return "danger" } if p > 80 { return "warning" } if p > 20 { return "info" } return "success" } type memory struct { Total string Used string Free string UsePercent string AttrUsePercent template.HTMLAttr `json:"-"` } type diskInfo struct { DevName string Total uint64 Used uint64 Avail uint64 UsePercent float64 Inodes uint64 Iused uint64 Ifree uint64 IusePercent float64 DirName string } func valuesSet(req *http.Request, base url.Values, pname string, bimap types.Biseqmap) types.SEQ { if params, ok := req.Form[pname]; ok && len(params) > 0 { if seq, ok := bimap.STRING2SEQ[params[0]]; ok { base.Set(pname, params[0]) return seq } } return bimap.Default_seq } func orderDisk(disks []diskInfo, seq types.SEQ) []types.DiskData { sort.Stable(diskOrder{ disks: disks, seq: seq, reverse: _DFBIMAP.SEQ2REVERSE[seq], }) var dd []types.DiskData for _, disk := range disks
Iused: iused, Ifree: humanB(disk.Ifree), IusePercent: formatPercent(approxiused, approxitotal), DirName: disk.DirName, AttrUsePercent: labelAttr_colorPercent(percent(approxused, approxtotal)), AttrIusePercent: labelAttr_colorPercent(percent(approxiused, approxitotal)), }) } return dd } var _DFBIMAP = types.Seq2bimap(DFFS, // the default seq for ordering types.Seq2string{ DFFS: "fs", DFSIZE: "size", DFUSED: "used", DFAVAIL: "avail", DFMP: "mp", }, []types.SEQ{ DFFS, DFMP, }) var _PSBIMAP = types.Seq2bimap(PSPID, // the default seq for ordering types.Seq2string{ PSPID: "pid", PSPRI: "pri", PSNICE: "nice", PSSIZE: "size", PSRES: "res", PSTIME: "time", PSNAME: "name", PSUID: "user", }, []types.SEQ{ PSNAME, PSUID, }) func username(uids map[uint]string, uid uint) string { if s, ok := uids[uid]; ok { return s } s := fmt.Sprintf("%d", uid) if usr, err := user.LookupId(s); err == nil { s = usr.Username } uids[uid] = s return s } func orderProc(procs []types.ProcInfo, seq types.SEQ) []types.ProcData { sort.Sort(procOrder{ // not sort.Stable procs: procs, seq: seq, reverse: _PSBIMAP.SEQ2REVERSE[seq], }) if len(procs) > 20 { procs = procs[:20] } uids := map[uint]string{} var list []types.ProcData for _, proc := range procs { list = append(list, types.ProcData{ PID: proc.PID, Priority: proc.Priority, Nice: proc.Nice, Time: formatTime(proc.Time), Name: proc.Name, User: username(uids, proc.Uid), Size: humanB(proc.Size), Resident: humanB(proc.Resident), }) } return list } type state struct { About about System system RAWCPU sigar.CpuList PREVCPU sigar.CpuList RAM memory Swap memory DiskList []diskInfo ProcList []types.ProcInfo InterfacesTotal []InterfaceTotal PrevInterfacesTotal []InterfaceTotal } type Page struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces types.Interfaces DISTRIB string HTTP_HOST string } type pageUpdate struct { About about System system CPU types.CPU RAM memory Swap memory DiskTable DiskTable ProcTable ProcTable Interfaces []types.DeltaInterface } var stateLock sync.Mutex var lastState state func reset_prev() { stateLock.Lock() defer stateLock.Unlock() lastState.PrevInterfacesTotal = []InterfaceTotal{} lastState.PREVCPU.List = []sigar.Cpu{} } func collect() { // state stateLock.Lock() defer stateLock.Unlock() prev_ifstotal := lastState.InterfacesTotal prev_cpu := lastState.RAWCPU ifs, ip := NewInterfaces() about := getAbout() about.IP = ip lastState = state{
{ total, approxtotal := humanBandback(disk.Total) used, approxused := humanBandback(disk.Used) itotal, approxitotal := humanBandback(disk.Inodes) iused, approxiused := humanBandback(disk.Iused) short := "" if len(disk.DevName) > 10 { short = disk.DevName[:10] } dd = append(dd, types.DiskData{ DiskName: disk.DevName, ShortDiskName: short, Total: total, Used: used, Avail: humanB(disk.Avail), UsePercent: formatPercent(approxused, approxtotal), Inodes: itotal,
conditional_block
prohack-github.py
df[3865:] test=test.drop("y", axis = 1) test_res= test.copy() # %% [markdown] # ### Checking how many galaxies are there and how many of them are distinct. # # - There are **181** distinct galaxies on the training set and **172** on the test set. # # - On overall they each galaxy has **20** samples on the training set and **5** on the test set. # # - **Some galaxies on the training set does not exist on the test set.** # # - **Galaxy 126** has only one sample. I discard it on the training phase # # As far as I know, the world bank has **182** members (countries) in 2000s (IBRD). Each distinct galaxy may represent a country in real life. Every sample for a galaxy may represent the properties of the country at a time (galactic year). # %% train_gal=set(train["galaxy"]) s=0 for x in train_gal: s=s+len(train.loc[train['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(train_gal))) print("Average samples per galaxy: {}".format(s/len(train_gal))) # %% test_gal=set(test["galaxy"]) s=0 for x in test_gal: s=s+len(test.loc[test['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(test_gal))) print("Average samples per galaxy: {}".format(s/len(test_gal))) # %% [markdown] # #### Number of samples and features # Train set: 3865 # # Test set: 890 # # Features: 79 # %% print("Train vector: " + str(train.shape)) print("Test vector: " + str(test.shape)) # %% [markdown] # ## Methods for Cross-validating Training Data # # - I trained **a model for exery distinct galaxy** in the training set (180) except the one from 126th galaxy as it has only one sample. # # - I used **features with top x correlation** with respect to y (target variable) galaxy specific. (x is found by trying different values [20,25,30,40,50,60,70]) # # - Missing values are filled with the galaxy specific 'mean' of the data. (Median can be used alternatively.) # # - **Train and test sets are not mixed for both imputation and standardization.** # # - Standard Scaler is used to standardize data. # # - Gradient Boosted Regression is used as a model. # %% def cross_validation_loop(data,cor): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(cor).index data=data[columns] # imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(data) # data=imp.transform(data) scaler = StandardScaler().fit(data) data = scaler.transform(data) xgb1 = XGBRegressor( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, objective='reg:squarederror', colsample_bytree=0.8, nthread=4, scale_pos_weight=1, seed=42) estimator = XGBRegressor(n_estimators=300) #estimator = GradientBoostingRegressor(n_estimators=300) cv_results = cross_validate(estimator, data, labels, cv=5, scoring='neg_root_mean_squared_error') error=np.mean(cv_results['test_score']) return error # %% [markdown] # #### Code for cross-validating a model for every galaxy # # I return the mean of the cross-validation scores disregarding the differences of their sample sizes. # %% train_gal=set(train["galaxy"]) train_gal.remove(126) def loop_train(cor): errors=[] for gal in tqdm(train_gal): index = train.index[train['galaxy'] == gal] data = train.loc[index] errors.append(cross_validation_loop(data,cor)) return np.mean(errors) # %% [markdown] # #### Checking which correlation threshold gives better value # # The model performs best when the threshold is 20 with RMSE of 0.0063 # %% cor=[20,25,30,40,50,60,70,80] errors=[] for x in cor: print
%% print(errors) # [-0.005510409192904806, -0.005474700678841418, -0.005478204236398942, -0.005493891458843025, -0.005485265856592613, -0.005493237060981963, -0.005493713846323645, -0.0055068515842603225] # %% [markdown] # ## Making predictions on the test data # # - Similar methodology is used to fill the missing value and standardization. # - The best covariance threshold in the cross validation, 20, is used. # %% def test_loop(data, test_data): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(20).index train_labels= labels train_data=data[columns] test_data= test_data[columns] imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(train_data) train_data=imp.transform(train_data) test_data=imp.transform(test_data) scaler = StandardScaler().fit(train_data) train_data = scaler.transform(train_data) test_data = scaler.transform(test_data) model = GradientBoostingRegressor(n_estimators=300) model.fit(train_data, train_labels) predictions = model.predict(test_data) return predictions # %% [markdown] # #### Sorting samples with respect to their unique galaxy type. # %% test=test_res test=test.sort_values(by=['galaxy']) test_pred = pd.DataFrame(0, index=np.arange(len(test)), columns=["predicted_y"]) # %% [markdown] # #### Looping over all galaxy types in the test set and making predictions. # %% i=0 for gal in test_gal: count=len(test.loc[test['galaxy'] == gal]) index = train.index[train['galaxy'] == gal] data = train.loc[index] pred=test_loop(data,test.loc[test['galaxy']==gal]) test_pred.loc[i:i+count-1,'predicted_y'] = pred i=i+count # %% [markdown] # #### Sorting samples with respect to the index. # %% test["predicted_y"]=test_pred.to_numpy() test.sort_index(inplace=True) predictions = test["predicted_y"] # %% [markdown] # ## Discussion 1 # # - With this approach, we are **not using 8 galaxies in the training set as they are not in the test set.** (Almost 160 samples) # # - A better approach should use them as well. # # - According to our theory, every galaxy represent a country and samples are its properties at a time (maybe galactic year represents time). # # - Some countries may have missing values as they may have joined IBRD late. This may be organizers decision as well. Filling missing values with regression can improve performance. # # - World Bank categorizes countries by both region and income: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups # # 7 regions: East Asia and Pacific, Europe and Central Asia, Latin America & the Caribbean, Middle East and North Africa, North America, South Asia, Sub-Saharan Africa # # 4 income groups: Low-income economies, Lower-middle-income economies, Upper-middle-income economies, High-income economies # # - Clustering galaxies may excel the performance of the model. I would try both clustering galaxies to either 4 or 7 clusters. Then try making imputation/training with respect to every cluster. # # This code is a summary of what we have done. We also analyzed RMSE for cross-validation for per galaxy. # # Galaxies: {128, 2, 4, 5, 133, 11, 140, 147, 153, 154, 3
("cor: ",x) errors.append(loop_train(x)) #
conditional_block
prohack-github.py
[train['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(train_gal))) print("Average samples per galaxy: {}".format(s/len(train_gal))) # %% test_gal=set(test["galaxy"]) s=0 for x in test_gal: s=s+len(test.loc[test['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(test_gal))) print("Average samples per galaxy: {}".format(s/len(test_gal))) # %% [markdown] # #### Number of samples and features # Train set: 3865 # # Test set: 890 # # Features: 79 # %% print("Train vector: " + str(train.shape)) print("Test vector: " + str(test.shape)) # %% [markdown] # ## Methods for Cross-validating Training Data # # - I trained **a model for exery distinct galaxy** in the training set (180) except the one from 126th galaxy as it has only one sample. # # - I used **features with top x correlation** with respect to y (target variable) galaxy specific. (x is found by trying different values [20,25,30,40,50,60,70]) # # - Missing values are filled with the galaxy specific 'mean' of the data. (Median can be used alternatively.) # # - **Train and test sets are not mixed for both imputation and standardization.** # # - Standard Scaler is used to standardize data. # # - Gradient Boosted Regression is used as a model. # %% def cross_validation_loop(data,cor): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(cor).index data=data[columns] # imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(data) # data=imp.transform(data) scaler = StandardScaler().fit(data) data = scaler.transform(data) xgb1 = XGBRegressor( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, objective='reg:squarederror', colsample_bytree=0.8, nthread=4, scale_pos_weight=1, seed=42) estimator = XGBRegressor(n_estimators=300) #estimator = GradientBoostingRegressor(n_estimators=300) cv_results = cross_validate(estimator, data, labels, cv=5, scoring='neg_root_mean_squared_error') error=np.mean(cv_results['test_score']) return error # %% [markdown] # #### Code for cross-validating a model for every galaxy # # I return the mean of the cross-validation scores disregarding the differences of their sample sizes. # %% train_gal=set(train["galaxy"]) train_gal.remove(126) def loop_train(cor): errors=[] for gal in tqdm(train_gal): index = train.index[train['galaxy'] == gal] data = train.loc[index] errors.append(cross_validation_loop(data,cor)) return np.mean(errors) # %% [markdown] # #### Checking which correlation threshold gives better value # # The model performs best when the threshold is 20 with RMSE of 0.0063 # %% cor=[20,25,30,40,50,60,70,80] errors=[] for x in cor: print("cor: ",x) errors.append(loop_train(x)) # %% print(errors) # [-0.005510409192904806, -0.005474700678841418, -0.005478204236398942, -0.005493891458843025, -0.005485265856592613, -0.005493237060981963, -0.005493713846323645, -0.0055068515842603225] # %% [markdown] # ## Making predictions on the test data # # - Similar methodology is used to fill the missing value and standardization. # - The best covariance threshold in the cross validation, 20, is used. # %% def test_loop(data, test_data): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(20).index train_labels= labels train_data=data[columns] test_data= test_data[columns] imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(train_data) train_data=imp.transform(train_data) test_data=imp.transform(test_data) scaler = StandardScaler().fit(train_data) train_data = scaler.transform(train_data) test_data = scaler.transform(test_data) model = GradientBoostingRegressor(n_estimators=300) model.fit(train_data, train_labels) predictions = model.predict(test_data) return predictions # %% [markdown] # #### Sorting samples with respect to their unique galaxy type. # %% test=test_res test=test.sort_values(by=['galaxy']) test_pred = pd.DataFrame(0, index=np.arange(len(test)), columns=["predicted_y"]) # %% [markdown] # #### Looping over all galaxy types in the test set and making predictions. # %% i=0 for gal in test_gal: count=len(test.loc[test['galaxy'] == gal]) index = train.index[train['galaxy'] == gal] data = train.loc[index] pred=test_loop(data,test.loc[test['galaxy']==gal]) test_pred.loc[i:i+count-1,'predicted_y'] = pred i=i+count # %% [markdown] # #### Sorting samples with respect to the index. # %% test["predicted_y"]=test_pred.to_numpy() test.sort_index(inplace=True) predictions = test["predicted_y"] # %% [markdown] # ## Discussion 1 # # - With this approach, we are **not using 8 galaxies in the training set as they are not in the test set.** (Almost 160 samples) # # - A better approach should use them as well. # # - According to our theory, every galaxy represent a country and samples are its properties at a time (maybe galactic year represents time). # # - Some countries may have missing values as they may have joined IBRD late. This may be organizers decision as well. Filling missing values with regression can improve performance. # # - World Bank categorizes countries by both region and income: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups # # 7 regions: East Asia and Pacific, Europe and Central Asia, Latin America & the Caribbean, Middle East and North Africa, North America, South Asia, Sub-Saharan Africa # # 4 income groups: Low-income economies, Lower-middle-income economies, Upper-middle-income economies, High-income economies # # - Clustering galaxies may excel the performance of the model. I would try both clustering galaxies to either 4 or 7 clusters. Then try making imputation/training with respect to every cluster. # # This code is a summary of what we have done. We also analyzed RMSE for cross-validation for per galaxy. # # Galaxies: {128, 2, 4, 5, 133, 11, 140, 147, 153, 154, 34, 35, 40, 43, 55, 64, 76, 78, 83, 100, 101, 102, 107, 108, 119} have RMSE over 0.008. # # The list gives them in order, 128th having 0.008559 and 119th having 0.034926. # # - Fine tuning these problematic galaxies with low cross-validation scores can excel the performance of the model # %% [markdown] # ## Optimization part # # - Ideally giving 100 to top 500 samples with highest p^2 values should optimize the likely increase. # - However, as the predictions can be faulty, this approach would result with lower Leaderboard Score.
# # E.g: If the original p^2 value is higher than the predicted p^2, it will increase the error as we are directly giving it 0. #
random_line_split
prohack-github.py
[3865:] test=test.drop("y", axis = 1) test_res= test.copy() # %% [markdown] # ### Checking how many galaxies are there and how many of them are distinct. # # - There are **181** distinct galaxies on the training set and **172** on the test set. # # - On overall they each galaxy has **20** samples on the training set and **5** on the test set. # # - **Some galaxies on the training set does not exist on the test set.** # # - **Galaxy 126** has only one sample. I discard it on the training phase # # As far as I know, the world bank has **182** members (countries) in 2000s (IBRD). Each distinct galaxy may represent a country in real life. Every sample for a galaxy may represent the properties of the country at a time (galactic year). # %% train_gal=set(train["galaxy"]) s=0 for x in train_gal: s=s+len(train.loc[train['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(train_gal))) print("Average samples per galaxy: {}".format(s/len(train_gal))) # %% test_gal=set(test["galaxy"]) s=0 for x in test_gal: s=s+len(test.loc[test['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(test_gal))) print("Average samples per galaxy: {}".format(s/len(test_gal))) # %% [markdown] # #### Number of samples and features # Train set: 3865 # # Test set: 890 # # Features: 79 # %% print("Train vector: " + str(train.shape)) print("Test vector: " + str(test.shape)) # %% [markdown] # ## Methods for Cross-validating Training Data # # - I trained **a model for exery distinct galaxy** in the training set (180) except the one from 126th galaxy as it has only one sample. # # - I used **features with top x correlation** with respect to y (target variable) galaxy specific. (x is found by trying different values [20,25,30,40,50,60,70]) # # - Missing values are filled with the galaxy specific 'mean' of the data. (Median can be used alternatively.) # # - **Train and test sets are not mixed for both imputation and standardization.** # # - Standard Scaler is used to standardize data. # # - Gradient Boosted Regression is used as a model. # %% def cross_validation_loop(data,cor): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(cor).index data=data[columns] # imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(data) # data=imp.transform(data) scaler = StandardScaler().fit(data) data = scaler.transform(data) xgb1 = XGBRegressor( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, objective='reg:squarederror', colsample_bytree=0.8, nthread=4, scale_pos_weight=1, seed=42) estimator = XGBRegressor(n_estimators=300) #estimator = GradientBoostingRegressor(n_estimators=300) cv_results = cross_validate(estimator, data, labels, cv=5, scoring='neg_root_mean_squared_error') error=np.mean(cv_results['test_score']) return error # %% [markdown] # #### Code for cross-validating a model for every galaxy # # I return the mean of the cross-validation scores disregarding the differences of their sample sizes. # %% train_gal=set(train["galaxy"]) train_gal.remove(126) def loop_
: errors=[] for gal in tqdm(train_gal): index = train.index[train['galaxy'] == gal] data = train.loc[index] errors.append(cross_validation_loop(data,cor)) return np.mean(errors) # %% [markdown] # #### Checking which correlation threshold gives better value # # The model performs best when the threshold is 20 with RMSE of 0.0063 # %% cor=[20,25,30,40,50,60,70,80] errors=[] for x in cor: print("cor: ",x) errors.append(loop_train(x)) # %% print(errors) # [-0.005510409192904806, -0.005474700678841418, -0.005478204236398942, -0.005493891458843025, -0.005485265856592613, -0.005493237060981963, -0.005493713846323645, -0.0055068515842603225] # %% [markdown] # ## Making predictions on the test data # # - Similar methodology is used to fill the missing value and standardization. # - The best covariance threshold in the cross validation, 20, is used. # %% def test_loop(data, test_data): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(20).index train_labels= labels train_data=data[columns] test_data= test_data[columns] imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(train_data) train_data=imp.transform(train_data) test_data=imp.transform(test_data) scaler = StandardScaler().fit(train_data) train_data = scaler.transform(train_data) test_data = scaler.transform(test_data) model = GradientBoostingRegressor(n_estimators=300) model.fit(train_data, train_labels) predictions = model.predict(test_data) return predictions # %% [markdown] # #### Sorting samples with respect to their unique galaxy type. # %% test=test_res test=test.sort_values(by=['galaxy']) test_pred = pd.DataFrame(0, index=np.arange(len(test)), columns=["predicted_y"]) # %% [markdown] # #### Looping over all galaxy types in the test set and making predictions. # %% i=0 for gal in test_gal: count=len(test.loc[test['galaxy'] == gal]) index = train.index[train['galaxy'] == gal] data = train.loc[index] pred=test_loop(data,test.loc[test['galaxy']==gal]) test_pred.loc[i:i+count-1,'predicted_y'] = pred i=i+count # %% [markdown] # #### Sorting samples with respect to the index. # %% test["predicted_y"]=test_pred.to_numpy() test.sort_index(inplace=True) predictions = test["predicted_y"] # %% [markdown] # ## Discussion 1 # # - With this approach, we are **not using 8 galaxies in the training set as they are not in the test set.** (Almost 160 samples) # # - A better approach should use them as well. # # - According to our theory, every galaxy represent a country and samples are its properties at a time (maybe galactic year represents time). # # - Some countries may have missing values as they may have joined IBRD late. This may be organizers decision as well. Filling missing values with regression can improve performance. # # - World Bank categorizes countries by both region and income: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups # # 7 regions: East Asia and Pacific, Europe and Central Asia, Latin America & the Caribbean, Middle East and North Africa, North America, South Asia, Sub-Saharan Africa # # 4 income groups: Low-income economies, Lower-middle-income economies, Upper-middle-income economies, High-income economies # # - Clustering galaxies may excel the performance of the model. I would try both clustering galaxies to either 4 or 7 clusters. Then try making imputation/training with respect to every cluster. # # This code is a summary of what we have done. We also analyzed RMSE for cross-validation for per galaxy. # # Galaxies: {128, 2, 4, 5, 133, 11, 140, 147, 153, 154,
train(cor)
identifier_name
prohack-github.py
[3865:] test=test.drop("y", axis = 1) test_res= test.copy() # %% [markdown] # ### Checking how many galaxies are there and how many of them are distinct. # # - There are **181** distinct galaxies on the training set and **172** on the test set. # # - On overall they each galaxy has **20** samples on the training set and **5** on the test set. # # - **Some galaxies on the training set does not exist on the test set.** # # - **Galaxy 126** has only one sample. I discard it on the training phase # # As far as I know, the world bank has **182** members (countries) in 2000s (IBRD). Each distinct galaxy may represent a country in real life. Every sample for a galaxy may represent the properties of the country at a time (galactic year). # %% train_gal=set(train["galaxy"]) s=0 for x in train_gal: s=s+len(train.loc[train['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(train_gal))) print("Average samples per galaxy: {}".format(s/len(train_gal))) # %% test_gal=set(test["galaxy"]) s=0 for x in test_gal: s=s+len(test.loc[test['galaxy'] == x]) print("Total distinct galaxies: {}".format(len(test_gal))) print("Average samples per galaxy: {}".format(s/len(test_gal))) # %% [markdown] # #### Number of samples and features # Train set: 3865 # # Test set: 890 # # Features: 79 # %% print("Train vector: " + str(train.shape)) print("Test vector: " + str(test.shape)) # %% [markdown] # ## Methods for Cross-validating Training Data # # - I trained **a model for exery distinct galaxy** in the training set (180) except the one from 126th galaxy as it has only one sample. # # - I used **features with top x correlation** with respect to y (target variable) galaxy specific. (x is found by trying different values [20,25,30,40,50,60,70]) # # - Missing values are filled with the galaxy specific 'mean' of the data. (Median can be used alternatively.) # # - **Train and test sets are not mixed for both imputation and standardization.** # # - Standard Scaler is used to standardize data. # # - Gradient Boosted Regression is used as a model. # %% def cross_validation_loop(data,cor): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(cor).index data=data[columns] # imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(data) # data=imp.transform(data) scaler = StandardScaler().fit(data) data = scaler.transform(data) xgb1 = XGBRegressor( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, objective='reg:squarederror', colsample_bytree=0.8, nthread=4, scale_pos_weight=1, seed=42) estimator = XGBRegressor(n_estimators=300) #estimator = GradientBoostingRegressor(n_estimators=300) cv_results = cross_validate(estimator, data, labels, cv=5, scoring='neg_root_mean_squared_error') error=np.mean(cv_results['test_score']) return error # %% [markdown] # #### Code for cross-validating a model for every galaxy # # I return the mean of the cross-validation scores disregarding the differences of their sample sizes. # %% train_gal=set(train["galaxy"]) train_gal.remove(126) def loop_train(cor): error
% [markdown] # #### Checking which correlation threshold gives better value # # The model performs best when the threshold is 20 with RMSE of 0.0063 # %% cor=[20,25,30,40,50,60,70,80] errors=[] for x in cor: print("cor: ",x) errors.append(loop_train(x)) # %% print(errors) # [-0.005510409192904806, -0.005474700678841418, -0.005478204236398942, -0.005493891458843025, -0.005485265856592613, -0.005493237060981963, -0.005493713846323645, -0.0055068515842603225] # %% [markdown] # ## Making predictions on the test data # # - Similar methodology is used to fill the missing value and standardization. # - The best covariance threshold in the cross validation, 20, is used. # %% def test_loop(data, test_data): labels= data['y'] data=data.drop('galaxy', axis=1) data=data.drop('y', axis=1) correlation=abs(data.corrwith(labels)) columns=correlation.nlargest(20).index train_labels= labels train_data=data[columns] test_data= test_data[columns] imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(train_data) train_data=imp.transform(train_data) test_data=imp.transform(test_data) scaler = StandardScaler().fit(train_data) train_data = scaler.transform(train_data) test_data = scaler.transform(test_data) model = GradientBoostingRegressor(n_estimators=300) model.fit(train_data, train_labels) predictions = model.predict(test_data) return predictions # %% [markdown] # #### Sorting samples with respect to their unique galaxy type. # %% test=test_res test=test.sort_values(by=['galaxy']) test_pred = pd.DataFrame(0, index=np.arange(len(test)), columns=["predicted_y"]) # %% [markdown] # #### Looping over all galaxy types in the test set and making predictions. # %% i=0 for gal in test_gal: count=len(test.loc[test['galaxy'] == gal]) index = train.index[train['galaxy'] == gal] data = train.loc[index] pred=test_loop(data,test.loc[test['galaxy']==gal]) test_pred.loc[i:i+count-1,'predicted_y'] = pred i=i+count # %% [markdown] # #### Sorting samples with respect to the index. # %% test["predicted_y"]=test_pred.to_numpy() test.sort_index(inplace=True) predictions = test["predicted_y"] # %% [markdown] # ## Discussion 1 # # - With this approach, we are **not using 8 galaxies in the training set as they are not in the test set.** (Almost 160 samples) # # - A better approach should use them as well. # # - According to our theory, every galaxy represent a country and samples are its properties at a time (maybe galactic year represents time). # # - Some countries may have missing values as they may have joined IBRD late. This may be organizers decision as well. Filling missing values with regression can improve performance. # # - World Bank categorizes countries by both region and income: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups # # 7 regions: East Asia and Pacific, Europe and Central Asia, Latin America & the Caribbean, Middle East and North Africa, North America, South Asia, Sub-Saharan Africa # # 4 income groups: Low-income economies, Lower-middle-income economies, Upper-middle-income economies, High-income economies # # - Clustering galaxies may excel the performance of the model. I would try both clustering galaxies to either 4 or 7 clusters. Then try making imputation/training with respect to every cluster. # # This code is a summary of what we have done. We also analyzed RMSE for cross-validation for per galaxy. # # Galaxies: {128, 2, 4, 5, 133, 11, 140, 147, 153, 154,
s=[] for gal in tqdm(train_gal): index = train.index[train['galaxy'] == gal] data = train.loc[index] errors.append(cross_validation_loop(data,cor)) return np.mean(errors) # %
identifier_body
myRansac.py
] ) is None: continue new_d = time.strptime( lstr[0], '%Y/%m/%d' ) if new_d < BS_DATE: continue b = float( lstr[idx] ) data.append( [lstr[0], b] ) return data, csv_name def GetCleanData( data_x, data_y ): i = 0 j = 0 data_out = [] while i < len( data_x ) and j < len( data_y ): item_x = data_x[i] item_y = data_y[j] tx = time.strptime( item_x[0], '%Y/%m/%d' ) ty = time.strptime( item_y[0], '%Y/%m/%d' ) if tx < ty: i += 1 continue if tx > ty: j += 1 continue data_out.append([item_x[1], item_y[1] ]) i += 1 j += 1 #end of while loop return data_out def log_msg( str = '' ): if str == '': return time_string = time.strftime( "%Y-%m-%d %X", time.localtime()) with open( LOG_FILE,'a' ) as log_file: log_file.write( time_string + ': ' + str + '\r\n' ) return #fit model parameters to data using the RANSAC algorithm #This implementation written from pseudocode found at #http://en.wikipedia.org/w/index.php?title=RANSAC&oldid=116358182 #Given: # data - a set of observed data points # 可观测数据点集 # model - a model that can be fitted to data points # # n - the minimum number of data values required to fit the model # 拟合模型所需的最小数据点数目 # k - the maximum number of iterations allowed in the algorithm # 最大允许迭代次数 # t - a threshold value for determining when a data point fits a model # 确认某一数据点是否符合模型的阈值 # d - the number of close data values required to assert that a model fits well to data #Return: # bestfit - model parameters which best fit the data (or nil if no good model is found) def ransac(data,model,n,k,t,d): iterations = 0 bestfit = None besterr = numpy.inf best_inlier_idxs = None best_d = d while iterations < k: maybe_idxs, test_idxs = random_partition(n,data.shape[0]) maybeinliers = data[maybe_idxs,:] test_points = data[test_idxs] maybemodel = model.fit(maybeinliers) test_err = model.get_error( test_points, maybemodel) also_idxs = test_idxs[test_err < t] # select indices of rows with accepted points alsoinliers = data[also_idxs,:] if len(alsoinliers) > d: betterdata = numpy.concatenate( (maybeinliers, alsoinliers) ) bettermodel = model.fit(betterdata) better_errs = model.get_error( betterdata, bettermodel) thiserr = numpy.mean( better_errs ) this_d = len(alsoinliers) if this_d > best_d: best_d = this_d bestfit = bettermodel besterr = thiserr best_inlier_idxs = numpy.concatenate( (maybe_idxs, also_idxs) ) iterations+=1 if bestfit is None: log_msg("Did not meet fit acceptance criteria") return bestfit, {'inliers':best_inlier_idxs, 'lenth': best_d} #return n random rows of data (and also the other len(data)-n rows) def random_partition(n,n_data): all_idxs = numpy.arange( n_data ) numpy.random.shuffle(all_idxs) idxs1 = all_idxs[:n] idxs2 = all_idxs[n:] return idxs1, idxs2 #linear system solved using linear least squares #This class serves as an example that fulfills the model interface #needed by the ransac() function. class LinearLeastSquaresModel: def __init__(self,input_columns,output_columns,debug=False): self.input_columns = input_columns self.output_columns = output_columns self.debug = debug def fit(self, data): A0 = numpy.vstack([data[:,i] for i in self.input_columns])[0] A = numpy.vstack([A0, numpy.ones(len(A0))]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T x,resids,rank,s = numpy.linalg.lstsq(A,B) return x def get_error( self, data, model): A = numpy.vstack([data[:,i] for i in self.input_columns]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T #B_fit = numpy.dot(A,model) B_fit = A * model[0][0] + model[1][0] err_per_point = numpy.sum((B-B_fit)**2,axis=1) # sum squared error per row return err_per_point class qqExmail: def __init__(self): self.user = 'zsb@cuteguide.cn' self.passwd = 'zhou111Qt'
str = 'FYI: This mail is sent from a Ransac dev\r\n' str += 'Which IP addr is %s'%my_ip[0] txt = MIMEText(str) message.attach(txt) if self.tag is not None: message['Subject'] = Header(self.tag,'utf-8') if self.user is not None: message['From'] = Header('RansacDev<%s>'%self.user, 'utf-8') if len(self.to_list) > 0: message['To'] = Header(';'.join(self.to_list), 'utf-8') if len(self.cc_list) > 0: message['Cc'] = Header(';'.join(self.cc_list), 'utf-8') if self.doc: fn = os.path.basename( self.doc ) with open(self.doc,'rb') as f: doc = MIMEText(f.read(), 'base64', 'utf-8') doc["Content-Type"] = 'application/octet-stream' doc["Content-Disposition"] = 'attachment; filename="%s"'%fn message.attach(doc) return message.as_string() if __name__=='__main__': CONFIG_FILE = 'ransac.conf' try: #Get configur ations form .config file config = ConfigParser() config.read( CONFIG_FILE ) rs_n = config.getint( 'RANSAC', 'MIN_NUM' ) rs_k = config.getint( 'RANSAC', 'MAX_ITR' ) t_str = config.get( 'RANSAC', 'THRES' ) rs_t = float( t_str ) rs_d = config.getint( 'RANSAC', 'N_CLOSE' ) I_STR = config.get( 'RANSAC', 'I_CONST' ) I_CONST = float( I_STR ) LOCAL_PATH = config.get( 'RANSAC', 'DATA_PATH' ) BASE_FILE = config.get( 'RANSAC', 'BASE_FILE' ) BASE_DATE = config.get( 'RANSAC', 'BASE_DATE' ) BS_DATE = time.strptime( BASE_DATE, '%Y/%m/%d' ) except Exception as e: exit(1) LOG_FILE = LOCAL_PATH + 'log' + time.strftime( '%y%m%d.log', time.localtime()) n_inputs = 1 n_outputs = 1 fx = LOCAL_PATH + BASE_FILE dataX, nameX = GetDataFromCSV( fx ) file_list = os.popen( 'ls %s*.txt'%LOCAL_PATH ).readlines() lstResult = [] for fn in file_list: File_Y = fn.rstrip('\n') if File_Y == fx: continue dataY, nameY = GetDataFromCSV( File_Y ) dataXY = GetCleanData( dataX, dataY ) if len(dataXY) < 2*rs_d: continue all_data = numpy.array( dataXY ) dx = all_data[:,0] mx = dx.mean() if mx
self.to_list = ['sunber.chou@qq.com'] self.cc_list = ['zhousongbo@hanmingtech.com'] self.tag = 'Finally, Ransac get result!' self.doc = None return def send(self): ret = True try: mail_host = smtplib.SMTP_SSL('smtp.exmail.qq.com', port=465) mail_host.login(self.user,self.passwd) receiver = self.to_list + self.cc_list mail_host.sendmail(self.user, receiver, self.get_attach()) mail_host.close() except Exception as e: ret = False return ret def get_attach(self): message = MIMEMultipart() my_ip = os.popen('hostname -I').readlines()
identifier_body
myRansac.py
fits well to data #Return: # bestfit - model parameters which best fit the data (or nil if no good model is found) def ransac(data,model,n,k,t,d): iterations = 0 bestfit = None besterr = numpy.inf best_inlier_idxs = None best_d = d while iterations < k: maybe_idxs, test_idxs = random_partition(n,data.shape[0]) maybeinliers = data[maybe_idxs,:] test_points = data[test_idxs] maybemodel = model.fit(maybeinliers) test_err = model.get_error( test_points, maybemodel) also_idxs = test_idxs[test_err < t] # select indices of rows with accepted points alsoinliers = data[also_idxs,:] if len(alsoinliers) > d: betterdata = numpy.concatenate( (maybeinliers, alsoinliers) ) bettermodel = model.fit(betterdata) better_errs = model.get_error( betterdata, bettermodel) thiserr = numpy.mean( better_errs ) this_d = len(alsoinliers) if this_d > best_d: best_d = this_d bestfit = bettermodel besterr = thiserr best_inlier_idxs = numpy.concatenate( (maybe_idxs, also_idxs) ) iterations+=1 if bestfit is None: log_msg("Did not meet fit acceptance criteria") return bestfit, {'inliers':best_inlier_idxs, 'lenth': best_d} #return n random rows of data (and also the other len(data)-n rows) def random_partition(n,n_data): all_idxs = numpy.arange( n_data ) numpy.random.shuffle(all_idxs) idxs1 = all_idxs[:n] idxs2 = all_idxs[n:] return idxs1, idxs2 #linear system solved using linear least squares #This class serves as an example that fulfills the model interface #needed by the ransac() function. class LinearLeastSquaresModel: def __init__(self,input_columns,output_columns,debug=False): self.input_columns = input_columns self.output_columns = output_columns self.debug = debug def fit(self, data): A0 = numpy.vstack([data[:,i] for i in self.input_columns])[0] A = numpy.vstack([A0, numpy.ones(len(A0))]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T x,resids,rank,s = numpy.linalg.lstsq(A,B) return x def get_error( self, data, model): A = numpy.vstack([data[:,i] for i in self.input_columns]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T #B_fit = numpy.dot(A,model) B_fit = A * model[0][0] + model[1][0] err_per_point = numpy.sum((B-B_fit)**2,axis=1) # sum squared error per row return err_per_point class qqExmail: def __init__(self): self.user = 'zsb@cuteguide.cn' self.passwd = 'zhou111Qt' self.to_list = ['sunber.chou@qq.com'] self.cc_list = ['zhousongbo@hanmingtech.com'] self.tag = 'Finally, Ransac get result!' self.doc = None return def send(self): ret = True try: mail_host = smtplib.SMTP_SSL('smtp.exmail.qq.com', port=465) mail_host.login(self.user,self.passwd) receiver = self.to_list + self.cc_list mail_host.sendmail(self.user, receiver, self.get_attach()) mail_host.close() except Exception as e: ret = False return ret def get_attach(self): message = MIMEMultipart() my_ip = os.popen('hostname -I').readlines() str = 'FYI: This mail is sent from a Ransac dev\r\n' str += 'Which IP addr is %s'%my_ip[0] txt = MIMEText(str) message.attach(txt) if self.tag is not None: message['Subject'] = Header(self.tag,'utf-8') if self.user is not None: message['From'] = Header('RansacDev<%s>'%self.user, 'utf-8') if len(self.to_list) > 0: message['To'] = Header(';'.join(self.to_list), 'utf-8') if len(self.cc_list) > 0: message['Cc'] = Header(';'.join(self.cc_list), 'utf-8') if self.doc: fn = os.path.basename( self.doc ) with open(self.doc,'rb') as f: doc = MIMEText(f.read(), 'base64', 'utf-8') doc["Content-Type"] = 'application/octet-stream' doc["Content-Disposition"] = 'attachment; filename="%s"'%fn message.attach(doc) return message.as_string() if __name__=='__main__': CONFIG_FILE = 'ransac.conf' try: #Get configurations form .config file config = ConfigParser() config.read( CONFIG_FILE ) rs_n = config.getint( 'RANSAC', 'MIN_NUM' ) rs_k = config.getint( 'RANSAC', 'MAX_ITR' ) t_str = config.get( 'RANSAC', 'THRES' ) rs_t = float( t_str ) rs_d = config.getint( 'RANSAC', 'N_CLOSE' ) I_STR = config.get( 'RANSAC', 'I_CONST' ) I_CONST = float( I_STR ) LOCAL_PATH = config.get( 'RANSAC', 'DATA_PATH' ) BASE_FILE = config.get( 'RANSAC', 'BASE_FILE' ) BASE_DATE = config.get( 'RANSAC', 'BASE_DATE' ) BS_DATE = time.strptime( BASE_DATE, '%Y/%m/%d' ) except Exception as e: exit(1) LOG_FILE = LOCAL_PATH + 'log' + time.strftime( '%y%m%d.log', time.localtime()) n_inputs = 1 n_outputs = 1 fx = LOCAL_PATH + BASE_FILE dataX, nameX = GetDataFromCSV( fx ) file_list = os.popen( 'ls %s*.txt'%LOCAL_PATH ).readlines() lstResult = [] for fn in file_list: File_Y = fn.rstrip('\n') if File_Y == fx: continue dataY, nameY = GetDataFromCSV( File_Y ) dataXY = GetCleanData( dataX, dataY ) if len(dataXY) < 2*rs_d: continue all_data = numpy.array( dataXY ) dx = all_data[:,0] mx = dx.mean() if mx == 0: log_msg( 'mean x is zero' ) break dx = (dx - mx )/mx dy = all_data[:,1] my = dy.mean() if my == 0: log_msg( 'mean y is zero' ) continue dy = (dy - my)/my all_data = numpy.vstack(( dx, dy )).T input_columns = range(n_inputs) # the first columns of the array output_columns = [n_inputs+i for i in range(n_outputs)] # the last columns of the array model = LinearLeastSquaresModel(input_columns,output_columns,debug=False) log_msg( 'Deal with %s.'%File_Y ) # run RANSAC algorithm ransac_fit, ransac_data = ransac( all_data, model, rs_n, rs_k, rs_t, rs_d ) # misc. parameters if ransac_fit is None: continue ransac_value = ransac_fit[0,0] ransac_rest = ransac_fit[1,0] r_idx = os.path.basename( File_Y )[ :-4] fnResult = LOCAL_PATH + 'o' + r_idx + '.csv' item = [r_idx, dx.size, nameY, ransac_value, ransac_rest, ransac_data['lenth']] r_dta = float( 0 ) with open( fnResult, 'w' ) as fpResult: for i in range( dx.size ): tmp = dy[i]-dx[i] * ransac_value-ransac_rest r_dta = r_dta * ( 1-I_CONST ) + tmp * I_CONST fpResult.write( '%.6f, %.6f, %.6f, %.6f\r\n'%( dx[i], dy[i], tmp, r_dta )) item.append( tmp ) item.append( r_dta ) lstResult.append( item ) #End to 'for' loop lstResult.sort(key=lambda x:x[7], reverse = True )
fnList = LOCAL_PATH + 'A_result.txt' with open( fnList, 'w', encoding='utf-8') as fw_p:
random_line_split
myRansac.py
[idx] ) is None: continue new_d = time.strptime( lstr[0], '%Y/%m/%d' ) if new_d < BS_DATE: continue b = float( lstr[idx] ) data.append( [lstr[0], b] ) return data, csv_name def GetC
ta_x, data_y ): i = 0 j = 0 data_out = [] while i < len( data_x ) and j < len( data_y ): item_x = data_x[i] item_y = data_y[j] tx = time.strptime( item_x[0], '%Y/%m/%d' ) ty = time.strptime( item_y[0], '%Y/%m/%d' ) if tx < ty: i += 1 continue if tx > ty: j += 1 continue data_out.append([item_x[1], item_y[1] ]) i += 1 j += 1 #end of while loop return data_out def log_msg( str = '' ): if str == '': return time_string = time.strftime( "%Y-%m-%d %X", time.localtime()) with open( LOG_FILE,'a' ) as log_file: log_file.write( time_string + ': ' + str + '\r\n' ) return #fit model parameters to data using the RANSAC algorithm #This implementation written from pseudocode found at #http://en.wikipedia.org/w/index.php?title=RANSAC&oldid=116358182 #Given: # data - a set of observed data points # 可观测数据点集 # model - a model that can be fitted to data points # # n - the minimum number of data values required to fit the model # 拟合模型所需的最小数据点数目 # k - the maximum number of iterations allowed in the algorithm # 最大允许迭代次数 # t - a threshold value for determining when a data point fits a model # 确认某一数据点是否符合模型的阈值 # d - the number of close data values required to assert that a model fits well to data #Return: # bestfit - model parameters which best fit the data (or nil if no good model is found) def ransac(data,model,n,k,t,d): iterations = 0 bestfit = None besterr = numpy.inf best_inlier_idxs = None best_d = d while iterations < k: maybe_idxs, test_idxs = random_partition(n,data.shape[0]) maybeinliers = data[maybe_idxs,:] test_points = data[test_idxs] maybemodel = model.fit(maybeinliers) test_err = model.get_error( test_points, maybemodel) also_idxs = test_idxs[test_err < t] # select indices of rows with accepted points alsoinliers = data[also_idxs,:] if len(alsoinliers) > d: betterdata = numpy.concatenate( (maybeinliers, alsoinliers) ) bettermodel = model.fit(betterdata) better_errs = model.get_error( betterdata, bettermodel) thiserr = numpy.mean( better_errs ) this_d = len(alsoinliers) if this_d > best_d: best_d = this_d bestfit = bettermodel besterr = thiserr best_inlier_idxs = numpy.concatenate( (maybe_idxs, also_idxs) ) iterations+=1 if bestfit is None: log_msg("Did not meet fit acceptance criteria") return bestfit, {'inliers':best_inlier_idxs, 'lenth': best_d} #return n random rows of data (and also the other len(data)-n rows) def random_partition(n,n_data): all_idxs = numpy.arange( n_data ) numpy.random.shuffle(all_idxs) idxs1 = all_idxs[:n] idxs2 = all_idxs[n:] return idxs1, idxs2 #linear system solved using linear least squares #This class serves as an example that fulfills the model interface #needed by the ransac() function. class LinearLeastSquaresModel: def __init__(self,input_columns,output_columns,debug=False): self.input_columns = input_columns self.output_columns = output_columns self.debug = debug def fit(self, data): A0 = numpy.vstack([data[:,i] for i in self.input_columns])[0] A = numpy.vstack([A0, numpy.ones(len(A0))]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T x,resids,rank,s = numpy.linalg.lstsq(A,B) return x def get_error( self, data, model): A = numpy.vstack([data[:,i] for i in self.input_columns]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T #B_fit = numpy.dot(A,model) B_fit = A * model[0][0] + model[1][0] err_per_point = numpy.sum((B-B_fit)**2,axis=1) # sum squared error per row return err_per_point class qqExmail: def __init__(self): self.user = 'zsb@cuteguide.cn' self.passwd = 'zhou111Qt' self.to_list = ['sunber.chou@qq.com'] self.cc_list = ['zhousongbo@hanmingtech.com'] self.tag = 'Finally, Ransac get result!' self.doc = None return def send(self): ret = True try: mail_host = smtplib.SMTP_SSL('smtp.exmail.qq.com', port=465) mail_host.login(self.user,self.passwd) receiver = self.to_list + self.cc_list mail_host.sendmail(self.user, receiver, self.get_attach()) mail_host.close() except Exception as e: ret = False return ret def get_attach(self): message = MIMEMultipart() my_ip = os.popen('hostname -I').readlines() str = 'FYI: This mail is sent from a Ransac dev\r\n' str += 'Which IP addr is %s'%my_ip[0] txt = MIMEText(str) message.attach(txt) if self.tag is not None: message['Subject'] = Header(self.tag,'utf-8') if self.user is not None: message['From'] = Header('RansacDev<%s>'%self.user, 'utf-8') if len(self.to_list) > 0: message['To'] = Header(';'.join(self.to_list), 'utf-8') if len(self.cc_list) > 0: message['Cc'] = Header(';'.join(self.cc_list), 'utf-8') if self.doc: fn = os.path.basename( self.doc ) with open(self.doc,'rb') as f: doc = MIMEText(f.read(), 'base64', 'utf-8') doc["Content-Type"] = 'application/octet-stream' doc["Content-Disposition"] = 'attachment; filename="%s"'%fn message.attach(doc) return message.as_string() if __name__=='__main__': CONFIG_FILE = 'ransac.conf' try: #Get configurations form .config file config = ConfigParser() config.read( CONFIG_FILE ) rs_n = config.getint( 'RANSAC', 'MIN_NUM' ) rs_k = config.getint( 'RANSAC', 'MAX_ITR' ) t_str = config.get( 'RANSAC', 'THRES' ) rs_t = float( t_str ) rs_d = config.getint( 'RANSAC', 'N_CLOSE' ) I_STR = config.get( 'RANSAC', 'I_CONST' ) I_CONST = float( I_STR ) LOCAL_PATH = config.get( 'RANSAC', 'DATA_PATH' ) BASE_FILE = config.get( 'RANSAC', 'BASE_FILE' ) BASE_DATE = config.get( 'RANSAC', 'BASE_DATE' ) BS_DATE = time.strptime( BASE_DATE, '%Y/%m/%d' ) except Exception as e: exit(1) LOG_FILE = LOCAL_PATH + 'log' + time.strftime( '%y%m%d.log', time.localtime()) n_inputs = 1 n_outputs = 1 fx = LOCAL_PATH + BASE_FILE dataX, nameX = GetDataFromCSV( fx ) file_list = os.popen( 'ls %s*.txt'%LOCAL_PATH ).readlines() lstResult = [] for fn in file_list: File_Y = fn.rstrip('\n') if File_Y == fx: continue dataY, nameY = GetDataFromCSV( File_Y ) dataXY = GetCleanData( dataX, dataY ) if len(dataXY) < 2*rs_d: continue all_data = numpy.array( dataXY ) dx = all_data[:,0] mx = dx.mean() if mx ==
leanData( da
identifier_name
myRansac.py
[idx] ) is None: continue new_d = time.strptime( lstr[0], '%Y/%m/%d' ) if new_d < BS_DATE: continue b = float( lstr[idx] ) data.append( [lstr[0], b] ) return data, csv_name def GetCleanData( data_x, data_y ): i = 0 j = 0 data_out = [] while i < len( data_x ) and j < len( data_y ): item_x = data_x[i] item_y = data_y[j] tx = time.strptime( item_x[0], '%Y/%m/%d' ) ty = time.strptime( item_y[0], '%Y/%m/%d' ) if tx < ty: i += 1 continue if tx > ty: j += 1 continue data_out.append([item_x[1], item_y[1] ]) i += 1 j += 1 #end of while loop return data_out def log_msg( str = '' ): if str == '': return time_string = time.strftime( "%Y-%m-%d %X", time.localtime()) with open( LOG_FILE,'a' ) as log_file: log_file.write( time_string + ': ' + str + '\r\n' ) return #fit model parameters to data using the RANSAC algorithm #This implementation written from pseudocode found at #http://en.wikipedia.org/w/index.php?title=RANSAC&oldid=116358182 #Given: # data - a set of observed data points # 可观测数据点集 # model - a model that can be fitted to data points # # n - the minimum number of data values required to fit the model # 拟合模型所需的最小数据点数目 # k - the maximum number of iterations allowed in the algorithm # 最大允许迭代次数 # t - a threshold value for determining when a data point fits a model # 确认某一数据点是否符合模型的阈值 # d - the number of close data values required to assert that a model fits well to data #Return: # bestfit - model parameters which best fit the data (or nil if no good model is found) def ransac(data,model,n,k,t,d): iterations = 0 bestfit = None besterr = numpy.inf best_inlier_idxs = None best_d = d while iterations < k: maybe_idxs, test_idxs = random_partition(n,data.shape[0]) maybeinliers = data[maybe_idxs,:] test_points = data[test_idxs] maybemodel = model.fit(maybeinliers) test_err = model.get_error( test_points, maybemodel) also_idxs = test_idxs[test_err < t] # select indices of rows with accepted points alsoinliers = data[also_idxs,:] if len(alsoinliers) > d: betterdata = numpy.concatenate( (maybeinliers, alsoinliers) ) bettermodel = model.fit(betterdata) better_errs = model.get_error( betterdata, bettermodel) thiserr = numpy.mean( better_errs ) this_d = len(alsoinliers) if this_d > best_d: best_d = this_d bestfit = bettermodel besterr = thiserr best_inlier_idxs = numpy.concatenate( (maybe_idxs, also_idxs) ) iterations+=1 if bestfit is None: log_msg("Did not meet fit acceptance criteria") return bestfit, {'inliers':best_inlier_idxs, 'lenth': best_d} #return n random rows of data (and also the other len(data)-n rows) def random_partition(n,n_data): all_idxs = numpy.arange( n_data ) numpy.random.shuffle(all_idxs) idxs1 = all_idxs[:n] idxs2 = all_idxs[n:] return idxs1, idxs2 #linear system solved using linear least squares #This class serves as an example that fulfills the model interface #needed by the ransac() function. class LinearLeastSquaresModel: def __init__(self,input_columns,output_columns,debug=False): self.input_columns = input_columns self.output_columns = output_columns self.debug = debug def fit(self, data): A0 = numpy.vstack([data[:,i] for i in self.input_columns])[0] A = numpy.vstack([A0, numpy.ones(len(A0))]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T x,resids,rank,s = numpy.linalg.lstsq(A,B) return x def get_error( self, data, model): A = numpy.vstack([data[:,i] for i in self.input_columns]).T B = numpy.vstack([data[:,i] for i in self.output_columns]).T #B_fit = numpy.dot(A,model) B_fit = A * model[0][0] + model[1][0] err_per_point = numpy.sum((B-B_fit)**2,axis=1) # sum squared error per row return err_per_point class qqExmail: def __init__(self): self.user = 'zsb@cuteguide.cn' self.passwd = 'zhou111Qt' self.to_list = ['sunber.chou@qq.com'] self.cc_list = ['zhousongbo@hanmingtech.com'] self.tag = 'Finally, Ransac get result!' self.doc = None return def send(self): ret = True try: mail_host = smtplib.SMTP_SSL('smtp.exmail.qq.com', port=465) mail_host.login(self.user,self.passwd) receiver = self.to_list + self.cc_list mail_host.sendmail(self.user, receiver, self.get_attach()) mail_host.close() except Exception as e: ret = False return ret def get_attach(self): message = MIMEMultipart() my_ip = os.popen('hostname -I').readlines() str = 'FYI: This mail is sent from a Ransac dev\r\n' str += 'Which IP addr is %s'%my_ip[0] txt = MIMEText(str) message.attach(txt) if self.tag is not None: message['Subject'] = Header(self.tag,'utf-8') if self.user is not None: message['From'] = Header('RansacDev<%s>'%self.user, 'utf-8') if len(self.to_list) > 0: message['To'] = Header(';'.join(self.to_list), 'utf-8') if len(self.cc_list) > 0:
), 'utf-8') if self.doc: fn = os.path.basename( self.doc ) with open(self.doc,'rb') as f: doc = MIMEText(f.read(), 'base64', 'utf-8') doc["Content-Type"] = 'application/octet-stream' doc["Content-Disposition"] = 'attachment; filename="%s"'%fn message.attach(doc) return message.as_string() if __name__=='__main__': CONFIG_FILE = 'ransac.conf' try: #Get configurations form .config file config = ConfigParser() config.read( CONFIG_FILE ) rs_n = config.getint( 'RANSAC', 'MIN_NUM' ) rs_k = config.getint( 'RANSAC', 'MAX_ITR' ) t_str = config.get( 'RANSAC', 'THRES' ) rs_t = float( t_str ) rs_d = config.getint( 'RANSAC', 'N_CLOSE' ) I_STR = config.get( 'RANSAC', 'I_CONST' ) I_CONST = float( I_STR ) LOCAL_PATH = config.get( 'RANSAC', 'DATA_PATH' ) BASE_FILE = config.get( 'RANSAC', 'BASE_FILE' ) BASE_DATE = config.get( 'RANSAC', 'BASE_DATE' ) BS_DATE = time.strptime( BASE_DATE, '%Y/%m/%d' ) except Exception as e: exit(1) LOG_FILE = LOCAL_PATH + 'log' + time.strftime( '%y%m%d.log', time.localtime()) n_inputs = 1 n_outputs = 1 fx = LOCAL_PATH + BASE_FILE dataX, nameX = GetDataFromCSV( fx ) file_list = os.popen( 'ls %s*.txt'%LOCAL_PATH ).readlines() lstResult = [] for fn in file_list: File_Y = fn.rstrip('\n') if File_Y == fx: continue dataY, nameY = GetDataFromCSV( File_Y ) dataXY = GetCleanData( dataX, dataY ) if len(dataXY) < 2*rs_d: continue all_data = numpy.array( dataXY ) dx = all_data[:,0] mx = dx.mean() if mx ==
message['Cc'] = Header(';'.join(self.cc_list
conditional_block
3DMain.js
*/ function setScreen(n, data, projManager, projectId, currentLayerObjList) { planArr = data; if (n == 1) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("s1 s2 s3 s4").addClass("hide"); $("#earthDiv0").removeClass("hide").addClass("s1"); for (var i = parent.earthArray.length - 1; i > 0; i--) { parent.earthArray[i].Suicide(); parent.earthArray.pop(); } if(bollonArr&&bollonArr.length>0){ for(var i=0;i<bollonArr.length;i++){ if( bollonArr[i].Guid!=""){ bollonArr[i].DestroyObject(); } } } bollonArr = []; $("#earthDiv2, #earthDiv1").empty(); document.getElementById("earthDiv0").style.width="100%"; document.getElementById("earthDiv0").style.height="100%"; } else if (n == 2) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("hide s1 s2 s3 s4"); //第一个球往左缩小 //$("#earthDiv0").addClass("s2");//此行代码有时不起作用 div并没有缩小 因此采用下面两行代码强行设置宽高比例! document.getElementById("earthDiv0").style.width="50%"; document.getElementById("earthDiv0").style.height="100%"; document.getElementById("earthDiv1").style.width="50%"; document.getElementById("earthDiv1").style.height="100%"; //第二个球加载在右边 $("#earthDiv1").addClass("s2"); //隐藏第三个球 $("#earthDiv2").addClass("hide"); createEarth("earth1", document.getElementById("earthDiv1"), data, projManager, projectId, currentLayerObjList); } else if (n == 3) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("hide s1 s2 s4").addClass("s3"); document.getElementById("earthDiv0").style.width="33.3%"; document.getElementById("earthDiv0").style.height="100%"; document.getElementById("earthDiv1").style.width="33.3%"; document.getElementById("earthDiv1").style.height="100%"; document.getElementById("earthDiv2").style.width="33.3%"; document.getElementById("earthDiv2").style.height="100%"; createEarth("earth1", document.getElementById("earthDiv1"), data, projManager, projectId, currentLayerObjList, true); } }; function createEarth3(id, div, data, projManager, projectId, currentLayerObjList){ var earth = document.createElement("object"); earth.id = id; earth.name = id; earth.classid = "CLSID:EA3EA17C-5724-4104-94D8-4EECBD352964"; earth.style.width = "100%"; earth.style.height = "100%"; div.appendChild(earth); earth.Event.OnCreateEarth = function (searth) { earth.Event.OnCreateEarth = function () {}; parent.earthArray.push(searth); searth.Event.OnDocumentChanged = function (){ searth.Event.OnDocumentChanged = function (){}; //先隐藏所有的图层 只显示数据库图层 if(parent.currentPrjGuid){ var layer = searth.LayerManager.LayerList; if(layer){ var childCount = layer.GetChildCount(); for (var i = 0; i < childCount; i++) { var childLayer = layer.GetChildAt(i); if (childLayer.Guid == parent.currentPrjGuid) { childLayer.Visibility = false; } } } } //这里面就可以获取到earth.LayerManager 及其下属的属性与方法 if(data && data.length){ //searth加载数据 var thirdId = data[2].id; var xzId = parent.parcelLayerGuid2; //parent.planLayerIDs; if(thirdId == xzId){ //说明是现状 parent.loadXZLayers(true, earth2); }else{ //说明是方案 setTimeout(function(){ //earth1 加载方案2图层 var layerIDs = projManager.getLayerIdsByPlanId(thirdId); parent.applyRecords(true, layerIDs, earth2, parent.parcelLayerGuid, false); },400); } } //cy 20150508 加 shareDigLayer(searth); var pose = getPose(parent.earth); searth.GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); }; searth.Load(CITYPLAN_config.server.ip, CITYPLAN_config.server.screen); // searth.Environment.SetDatabaseLink(CITYPLAN_config.server.dataServerIP); }; } /**已看 * 共享开挖地形 * @return {[type]} [description] */ function shareDigLayer(curEarth){ //开挖图层共享 if(parent.demObj && parent.demObj.length){ var guid = curEarth.Factory.CreateGuid(); var tempDemPath = curEarth.RootPath + "temp\\terr\\terrain\\"; var rect = parent.demObj[0]; var levelMin = parent.demObj[1]; var levelMax = parent.demObj[2]; var demTempLayer = curEarth.Factory.CreateDEMLayer(guid, "TempTerrainLayer", tempDemPath, rect, levelMin, levelMax, 1000); demTempLayer.Visibility = true; curEarth.AttachObject(demTempLayer); } }; /**已看 y /**已看 /** * 根据id和div容器创建Earth对象,并返回创建的对象 * @param id * @param div */ function createEarth(id, div, data, projManager, projectId, currentLayerObjList, isThird) { var earth = document.createElement("object"); earth.id = id; earth.name = id; earth.classid = "CLSID:EA3EA17C-5724-4104-94D8-4EECBD352964"; earth.style.width = "100%"; earth.style.height = "100%"; div.appendChild(earth); earth.Event.OnCreateEarth = function (searth) { earth.Event.OnCreateEarth = function () {}; parent.earthArray.push(searth); searth.Event.OnDocumentChanged = function (){ searth.Event.OnDocumentChanged = function (){}; if(isThird){//创建第三个球 createEarth3("earth2", document.getElementById("earthDiv2"), data, projManager, projectId, currentLayerObjList); } //先隐藏所有的图层 只显示数据库图层 if(parent.currentPrjGuid){ var layer = searth.LayerManager.LayerList; if(layer){ var childCount = layer.GetChildCount(); for (var i = 0; i < childCount; i++) { var childLayer = layer.GetChildAt(i); if (childLayer.Guid == parent.currentPrjGuid) { childLayer.Visibility = false; } } } } //这里面就可以获取到earth.LayerManager 及其下属的属性与方法 //控制数据显示 if(data && data.length){ //searth加载数据 var firstId = data[0].id; var secordId = data[1].id; var xzId = parent.parcelLayerGuid2; //parent.planLayerIDs; if(firstId == xzId){ //第一个是现状 }else if(secordId == xzId){ //加载第一个方案 firstId setTimeout(function(){ projManager.showAll(projectId, firstId, true, true, false, false,true); },100); //第二个是现状 secordId 需要把现状数据库图层的都加上即可 parent.loadXZLayers(true, earth1); }else{ //两个都是方案 setTimeout(function(){ projManager.showAll(projectId, firstId, true, true, false, false,true); },100); setTimeout(function(){ //earth1 加载方案2图层 var layerIDs = projManager.getLayerIdsByPlanId(secordId); parent.applyRecords(true, layerIDs, earth1, parent.parcelLayerGuid, false); },200); } } shareDigLayer(searth); //同步视角 var pose = getPose(parent.earth); searth.GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); }; searth.Load(CITYPLAN_config.server.ip, CITYPLAN_config.server.screen); // searth.Environment.SetDatabaseLink(CITYPLAN_config.server.dataServerIP); }; } var htmlArr=[]; function showPlan
* @param n 屏幕数
random_line_split
3DMain.js
, firstId, true, true, false, false,true); },100); //第二个是现状 secordId 需要把现状数据库图层的都加上即可 parent.loadXZLayers(true, earth1); }else{ //两个都是方案 setTimeout(function(){ projManager.showAll(projectId, firstId, true, true, false, false,true); },100); setTimeout(function(){ //earth1 加载方案2图层 var layerIDs = projManager.getLayerIdsByPlanId(secordId); parent.applyRecords(true, layerIDs, earth1, parent.parcelLayerGuid, false); },200); } } shareDigLayer(searth); //同步视角 var pose = getPose(parent.earth); searth.GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); }; searth.Load(CITYPLAN_config.server.ip, CITYPLAN_config.server.screen); // searth.Environment.SetDatabaseLink(CITYPLAN_config.server.dataServerIP); }; } var htmlArr=[]; function showPlanData(data,seearth,planData){ var path = location.pathname.substring(0, location.pathname.lastIndexOf("/")); var url = location.protocol + "//" + location.hostname + path + "/html/investigate/planData.html?id="+data.id; var htmlBalloon = null; var guid = seearth.Factory.CreateGuid(); htmlBalloon = seearth.Factory.CreateHtmlBalloon(guid, "balloon"); htmlBalloon.SetScreenLocation(0,0); htmlBalloon.SetRectSize(290,290); htmlBalloon.SetIsAddMargin(true); htmlBalloon.SetIsAddBackgroundImage(true); htmlBalloon.ShowNavigate(url); bollonArr.push(htmlBalloon); seearth.Event.OnHtmlNavigateCompleted = function (htmlId){ htmlArr.push({id:htmlId,obj:htmlBalloon}); setTimeout(function(){ htmlBalloon.InvokeScript("setTranScroll", planData); },100); //earth.Event.OnHtmlNavigateCompleted = function (){}; }; seearth.Event.OnHtmlBalloonFinished = function(){ if(htmlBalloon!=null){ htmlBalloon.DestroyObject(); htmlBalloon=null; } seearth.Event.OnHtmlBalloonFinished = function(){}; } } //已看 function showIndex(tag,planData){ //earthArray if(tag){ for(var i=0;i<planArr.length;i++){ showPlanData(planArr[i], parent.earthArray[i],planData); } } else{ if(bollonArr&&bollonArr.length>0){ for(var i=0;i<bollonArr.length;i++){ if( bollonArr[i].Guid!=""){ bollonArr[i].DestroyObject(); } } } bollonArr = []; } } /* 设置联动 * @param bSync 等于true时表示联动 */ function setSync(bSync) { var i = 0; var emptyFunction = function () { }; if (bSync) { //联动 while (i < parent.earthArray.length) { parent.earthArray[i].Event.OnLBDown = setFocus(i); // 注册每个球的OnLBDown事件【左键】 parent.earthArray[i].Event.OnMBDown = setFocus(i); // 注册每个球的OnMBDown事件 【中键】 i += 1; } gotoPose(0)(); // 将其他屏定位到第一屏的位置 } else { if(bollonArr&&bollonArr.length>0){ for(var s=0;s<bollonArr.length;s++){ if(bollonArr[s].Guid&&bollonArr[s].Guid!=""){ bollonArr[s].DestroyObject(); } } } while (i < parent.earthArray.length) { // 注销每个球绑定的事件 parent.earthArray[i].Event.OnLBDown = emptyFunction; parent.earthArray[i].Event.OnMBDown = emptyFunction; parent.earthArray[i].Event.OnObserverChanged = emptyFunction; i += 1; } gotoPose(0)(); // 将其他屏定位到第一屏的位置 } } /**已看 * 设置联动 * 注册当前球的OnObserverChanged事件 * 注销其他球的OnObserverChanged事件,给其他球的OnLBDown绑定事件,似的在左键点击时称为当前球 */ function setFocus(i) { return function () { parent.earthArray[i].Event.OnObserverChanged = gotoPose(i); for (var j = 0; j < parent.earthArray.length; j++) { if (i != j) { parent.earthArray[j].Event.OnObserverChanged = function () { }; parent.earthArray[j].Event.OnLBDown = setFocus(j); parent.earthArray[j].Event.OnMBDown = setFocus(j); } } }; } /**已看 * 将所有非主球都定位到主球i的当前位置 * @param i * @return {Function} */ function gotoPose(i) { setTimeout( function () { var pose = getPose( parent.earthArray[i]); var j = 0; while (j < parent.earthArray.length) { if (j != i) { parent.earthArray[j].GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); } j += 1; } setFocus(i); },500); return function () { var pose = getPose( parent.earthArray[i]); var j = 0; while (j < parent.earthArray.length) { if (j != i) { parent.earthArray[j].GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 4); } j += 1; } setFocus(i); } } /** * 获得earthObj的当前位置 * @param earthObj * @return {Object} */ function getPose(earthObj) { var data = {}; if (earthObj) { data.longitude = earthObj.GlobeObserver.Pose.Longitude; data.latitude = earthObj.GlobeObserver.Pose.Latitude; data.altitude = earthObj.GlobeObserver.Pose.Altitude; data.heading = earthObj.GlobeObserver.Pose.heading; data.tilt = earthObj.GlobeObserver.Pose.tilt; data.roll = earthObj.GlobeObserver.Pose.roll; } return data; } /** * 功能:隐藏剖面分析图 * 参数:无 * 返回值:无 */ function hidenHtmlWindow() { seearth.ShapeCreator.Clear(); testDiv.style.top = "55%"; testDiv.style.display = "none"; htmlWin.style.display = "none"; earthDiv0.style.height = "100%"; } var chart = null; //剖面分析图对象 var POINTARR = null; //剖面分析数据集 /** * 功能:显示剖面分析图 * 参数:xCategories-X轴标注数字;serieList-剖面图数据序列数组 * 返回值:无 */ function showProfileResult(xCategories,serieList,pointArr){ var v_rate = 1.0; var v_height = document.body.clientHeight; var v_flag = testDiv.style.top; if (v_flag.indexOf("px") == -1) { v_rate = parseFloat(v_flag) * 0.01; } else { v_rate = parseInt(v_flag) / v_height; } earthDiv0.style.height = v_rate * 100.0 + "%"; testDiv.style.display = "block"; var v_htmlwin_top = v_rate * v_height + 12; htmlWin.style.top = v_htmlwin_top + "px"; var v_htmlwin_height = v_height - v_htmlwin_top; htmlWin.style.height = v_htmlwin_height + "px"; htmlWin.style.display = "block"; if(chart != null){ chart.destroy(); } chart = createChart(xCategories,serieList); POINTARR = pointArr; } /** * 功能:创建剖面分析图 * 参数:xCategories-X轴标注数字;serieList-剖面图数据序列数组 * 返回值:剖面分析图对象 */ function createChart(xCategories,serieList){ var minValue = null; var maxValue = null; for(var i=0; i<serieList.length; i++){ var dataList = serieList[i].data; for(var k=0; k<dataList.length; k++){ var dataValue = dataList[k]; if(minValue == null){ minValue = dataValue; }el
se{ if(dataValue < minValue){
conditional_block
3DMain.js
if(htmlBalloons){ htmlBalloons.DestroyObject(); htmlBalloons=null; } var geoPoint = seearth.GlobeObserver.Pick(posX,posY); var guid = seearth.Factory.CreateGuid(); htmlBalloons = seearth.Factory.CreateHtmlBalloon(guid, "balloon"); htmlBalloons.SetSphericalLocation(geoPoint.Longitude, geoPoint.Latitude, geoPoint.Altitude); htmlBalloons.SetRectSize(380, 400); var color = parseInt("0xffffff00");//0xccc0c0c0 htmlBalloons.SetTailColor(color); htmlBalloons.SetIsAddCloseButton(true); htmlBalloons.SetIsAddMargin(true); htmlBalloons.SetIsAddBackgroundImage(true); htmlBalloons.SetIsTransparence(true); htmlBalloons.SetBackgroundAlpha(0xcc); htmlBalloons.ShowHtml(html); seearth.Event.OnHtmlBalloonFinished = function(){ if(htmlBalloons!=null){ htmlBalloons.DestroyObject(); htmlBalloons=null; } seearth.Event.OnHtmlBalloonFinished = function(){}; } } /**已看 * * 设置 多屏(方案比选) * @param n 屏幕数 */ function setScreen(n, data, projManager, projectId, currentLayerObjList) { planArr = data; if (n == 1) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("s1 s2 s3 s4").addClass("hide"); $("#earthDiv0").removeClass("hide").addClass("s1"); for (var i = parent.earthArray.length - 1; i > 0; i--) { parent.earthArray[i].Suicide(); parent.earthArray.pop(); } if(bollonArr&&bollonArr.length>0){ for(var i=0;i<bollonArr.length;i++){ if( bollonArr[i].Guid!=""){ bollonArr[i].DestroyObject(); } } } bollonArr = []; $("#earthDiv2, #earthDiv1").empty(); document.getElementById("earthDiv0").style.width="100%"; document.getElementById("earthDiv0").style.height="100%"; } else if (n == 2) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("hide s1 s2 s3 s4"); //第一个球往左缩小 //$("#earthDiv0").addClass("s2");//此行代码有时不起作用 div并没有缩小 因此采用下面两行代码强行设置宽高比例! document.getElementById("earthDiv0").style.width="50%"; document.getElementById("earthDiv0").style.height="100%"; document.getElementById("earthDiv1").style.width="50%"; document.getElementById("earthDiv1").style.height="100%"; //第二个球加载在右边 $("#earthDiv1").addClass("s2"); //隐藏第三个球 $("#earthDiv2").addClass("hide"); createEarth("earth1", document.getElementById("earthDiv1"), data, projManager, projectId, currentLayerObjList); } else if (n == 3) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("hide s1 s2 s4").addClass("s3"); document.getElementById("earthDiv0").style.width="33.3%"; document.getElementById("earthDiv0").style.height="100%"; document.getElementById("earthDiv1").style.width="33.3%"; document.getElementById("earthDiv1").style.height="100%"; document.getElementById("earthDiv2").style.width="33.3%"; document.getElementById("earthDiv2").style.height="100%"; createEarth("earth1", document.getElementById("earthDiv1"), data, projManager, projectId, currentLayerObjList, true); } }; function createEarth3(id, div, data, projManager, projectId, currentLayerObjList){ var earth = document.createElement("object"); earth.id = id; earth.name = id; earth.classid = "CLSID:EA3EA17C-5724-4104-94D8-4EECBD352964"; earth.style.width = "100%"; earth.style.height = "100%"; div.appendChild(earth); earth.Event.OnCreateEarth = function (searth) { earth.Event.OnCreateEarth = function () {}; parent.earthArray.push(searth); searth.Event.OnDocumentChanged = function (){ searth.Event.OnDocumentChanged = function (){}; //先隐藏所有的图层 只显示数据库图层 if(parent.currentPrjGuid){ var layer = searth.LayerManager.LayerList; if(layer){ var childCount = layer.GetChildCount(); for (var i = 0; i < childCount; i++) { var childLayer = layer.GetChildAt(i); if (childLayer.Guid == parent.currentPrjGuid) { childLayer.Visibility = false; } } } } //这里面就可以获取到earth.LayerManager 及其下属的属性与方法 if(data && data.length){ //searth加载数据 var thirdId = data[2].id; var xzId = parent.parcelLayerGuid2; //parent.planLayerIDs; if(thirdId == xzId){ //说明是现状 parent.loadXZLayers(true, earth2); }else{ //说明是方案 setTimeout(function(){ //earth1 加载方案2图层 var layerIDs = projManager.getLayerIdsByPlanId(thirdId); parent.applyRecords(true, layerIDs, earth2, parent.parcelLayerGuid, false); },400); } } //cy 20150508 加 shareDigLayer(searth); var pose = getPose(parent.earth); searth.GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); }; searth.Load(CITYPLAN_config.server.ip, CITYPLAN_config.server.screen); // searth.Environment.SetDatabaseLink(CITYPLAN_config.server.dataServerIP); }; } /**已看 * 共享开挖地形 * @return {[type]} [description] */ function shareDigLayer(curEarth){ //开挖图层共享 if(parent.demObj && parent.demObj.length){ var guid = curEarth.Factory.CreateGuid(); var tempDemPath = curEarth.RootPath + "temp\\terr\\terrain\\"; var rect = parent.demObj[0]; var levelMin = parent.demObj[1]; var levelMax = parent.demObj[2]; var demTempLayer = curEarth.Factory.CreateDEMLayer(guid, "TempTerrainLayer", tempDemPath, rect, levelMin, levelMax, 1000); demTempLayer.Visibility = true; curEarth.AttachObject(demTempLayer); } }; /**已看 y /**已看 /** * 根据id和div容器创建Earth对象,并返回创建的对象 * @param id * @param div */ function createEarth(id, div, data, projManager, projectId, currentLayerObjList, isThird) { var earth = document.createElement("object"); earth.id = id; earth.name = id; earth.classid = "CLSID:EA3EA17C-5724-4104-94D8-4EECBD352964"; earth.style.width = "100%"; earth.style.height = "100%"; div.appendChild(earth); earth.Event.OnCreateEarth = function (searth) { earth.Event.OnCreateEarth = function () {}; parent.earthArray.push(searth); searth.Event.OnDocumentChanged =
parent.htmlBalloon; var posX = parseInt(pVal.substring(pVal.indexOf("<posX>")+6, pVal.indexOf("</posX>"))); var posY = parseInt(pVal.substring(pVal.indexOf("<posY>")+6, pVal.indexOf("</posY>"))); var loaclUrl = window.location.href.substring(0, window.location.href.lastIndexOf("/")); var url = loaclUrl + "/res/content.htm"; var html = ""; html += "<html>"; html += "<bodys>"; html += "<table>"; html += "<tr><td align='right'>"; html += "<img id='dlg_close' src='" + loaclUrl + "/res/x.png'/>"; html += "</td></tr>"; html += "<tr><td>"; html += "<iframe src='" + url + "' width='320px' height='400px' border='1' frameborder='1' scrolling=auto></iframe>"; html += "</td></tr>"; html += "</table>"; //html += "<iframe src='" + url + "' width='320px' height='400px' border='1' frameborder='1' scrolling=auto></iframe>"; html += "</body>"; html += "</html>";
identifier_body
3DMain.js
缩小 因此采用下面两行代码强行设置宽高比例! document.getElementById("earthDiv0").style.width="50%"; document.getElementById("earthDiv0").style.height="100%"; document.getElementById("earthDiv1").style.width="50%"; document.getElementById("earthDiv1").style.height="100%"; //第二个球加载在右边 $("#earthDiv1").addClass("s2"); //隐藏第三个球 $("#earthDiv2").addClass("hide"); createEarth("earth1", document.getElementById("earthDiv1"), data, projManager, projectId, currentLayerObjList); } else if (n == 3) { $("#earthDiv0,#earthDiv1,#earthDiv2").removeClass("hide s1 s2 s4").addClass("s3"); document.getElementById("earthDiv0").style.width="33.3%"; document.getElementById("earthDiv0").style.height="100%"; document.getElementById("earthDiv1").style.width="33.3%"; document.getElementById("earthDiv1").style.height="100%"; document.getElementById("earthDiv2").style.width="33.3%"; document.getElementById("earthDiv2").style.height="100%"; createEarth("earth1", document.getElementById("earthDiv1"), data, projManager, projectId, currentLayerObjList, true); } }; function createEarth3(id, div, data, projManager, projectId, currentLayerObjList){ var earth = document.createElement("object"); earth.id = id; ear
; earth.classid = "CLSID:EA3EA17C-5724-4104-94D8-4EECBD352964"; earth.style.width = "100%"; earth.style.height = "100%"; div.appendChild(earth); earth.Event.OnCreateEarth = function (searth) { earth.Event.OnCreateEarth = function () {}; parent.earthArray.push(searth); searth.Event.OnDocumentChanged = function (){ searth.Event.OnDocumentChanged = function (){}; //先隐藏所有的图层 只显示数据库图层 if(parent.currentPrjGuid){ var layer = searth.LayerManager.LayerList; if(layer){ var childCount = layer.GetChildCount(); for (var i = 0; i < childCount; i++) { var childLayer = layer.GetChildAt(i); if (childLayer.Guid == parent.currentPrjGuid) { childLayer.Visibility = false; } } } } //这里面就可以获取到earth.LayerManager 及其下属的属性与方法 if(data && data.length){ //searth加载数据 var thirdId = data[2].id; var xzId = parent.parcelLayerGuid2; //parent.planLayerIDs; if(thirdId == xzId){ //说明是现状 parent.loadXZLayers(true, earth2); }else{ //说明是方案 setTimeout(function(){ //earth1 加载方案2图层 var layerIDs = projManager.getLayerIdsByPlanId(thirdId); parent.applyRecords(true, layerIDs, earth2, parent.parcelLayerGuid, false); },400); } } //cy 20150508 加 shareDigLayer(searth); var pose = getPose(parent.earth); searth.GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); }; searth.Load(CITYPLAN_config.server.ip, CITYPLAN_config.server.screen); // searth.Environment.SetDatabaseLink(CITYPLAN_config.server.dataServerIP); }; } /**已看 * 共享开挖地形 * @return {[type]} [description] */ function shareDigLayer(curEarth){ //开挖图层共享 if(parent.demObj && parent.demObj.length){ var guid = curEarth.Factory.CreateGuid(); var tempDemPath = curEarth.RootPath + "temp\\terr\\terrain\\"; var rect = parent.demObj[0]; var levelMin = parent.demObj[1]; var levelMax = parent.demObj[2]; var demTempLayer = curEarth.Factory.CreateDEMLayer(guid, "TempTerrainLayer", tempDemPath, rect, levelMin, levelMax, 1000); demTempLayer.Visibility = true; curEarth.AttachObject(demTempLayer); } }; /**已看 y /**已看 /** * 根据id和div容器创建Earth对象,并返回创建的对象 * @param id * @param div */ function createEarth(id, div, data, projManager, projectId, currentLayerObjList, isThird) { var earth = document.createElement("object"); earth.id = id; earth.name = id; earth.classid = "CLSID:EA3EA17C-5724-4104-94D8-4EECBD352964"; earth.style.width = "100%"; earth.style.height = "100%"; div.appendChild(earth); earth.Event.OnCreateEarth = function (searth) { earth.Event.OnCreateEarth = function () {}; parent.earthArray.push(searth); searth.Event.OnDocumentChanged = function (){ searth.Event.OnDocumentChanged = function (){}; if(isThird){//创建第三个球 createEarth3("earth2", document.getElementById("earthDiv2"), data, projManager, projectId, currentLayerObjList); } //先隐藏所有的图层 只显示数据库图层 if(parent.currentPrjGuid){ var layer = searth.LayerManager.LayerList; if(layer){ var childCount = layer.GetChildCount(); for (var i = 0; i < childCount; i++) { var childLayer = layer.GetChildAt(i); if (childLayer.Guid == parent.currentPrjGuid) { childLayer.Visibility = false; } } } } //这里面就可以获取到earth.LayerManager 及其下属的属性与方法 //控制数据显示 if(data && data.length){ //searth加载数据 var firstId = data[0].id; var secordId = data[1].id; var xzId = parent.parcelLayerGuid2; //parent.planLayerIDs; if(firstId == xzId){ //第一个是现状 }else if(secordId == xzId){ //加载第一个方案 firstId setTimeout(function(){ projManager.showAll(projectId, firstId, true, true, false, false,true); },100); //第二个是现状 secordId 需要把现状数据库图层的都加上即可 parent.loadXZLayers(true, earth1); }else{ //两个都是方案 setTimeout(function(){ projManager.showAll(projectId, firstId, true, true, false, false,true); },100); setTimeout(function(){ //earth1 加载方案2图层 var layerIDs = projManager.getLayerIdsByPlanId(secordId); parent.applyRecords(true, layerIDs, earth1, parent.parcelLayerGuid, false); },200); } } shareDigLayer(searth); //同步视角 var pose = getPose(parent.earth); searth.GlobeObserver.GotoLookat(pose.longitude, pose.latitude, pose.altitude, pose.heading, pose.tilt, pose.roll, 0); }; searth.Load(CITYPLAN_config.server.ip, CITYPLAN_config.server.screen); // searth.Environment.SetDatabaseLink(CITYPLAN_config.server.dataServerIP); }; } var htmlArr=[]; function showPlanData(data,seearth,planData){ var path = location.pathname.substring(0, location.pathname.lastIndexOf("/")); var url = location.protocol + "//" + location.hostname + path + "/html/investigate/planData.html?id="+data.id; var htmlBalloon = null; var guid = seearth.Factory.CreateGuid(); htmlBalloon = seearth.Factory.CreateHtmlBalloon(guid, "balloon"); htmlBalloon.SetScreenLocation(0,0); htmlBalloon.SetRectSize(290,290); htmlBalloon.SetIsAddMargin(true); htmlBalloon.SetIsAddBackgroundImage(true); htmlBalloon.ShowNavigate(url); bollonArr.push(htmlBalloon); seearth.Event.OnHtmlNavigateCompleted = function (htmlId){ htmlArr.push({id:htmlId,obj:htmlBalloon}); setTimeout(function(){ htmlBalloon.InvokeScript("setTranScroll", planData); },100); //earth.Event.OnHtmlNavigateCompleted = function (){}; }; seearth.Event.OnHtmlBalloonFinished = function(){ if(htmlBalloon!=null){ htmlBalloon.DestroyObject(); htmlBalloon=null; } seearth.Event.OnHtmlBalloonFinished = function(){}; } } //已看 function showIndex(tag,planData){ //earthArray if(tag){ for
th.name = id
identifier_name
pygit.py
list of repositories by running master_directory : str The absolute path to the directory git_exec : str The path to the git executable on the system message : str Commit message Returns -------- : Commands object """ def __str__(self): return "Commands: {}: {}".format(self.name, self.dir) def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __init__(self, repo_name, master_directory, git_exec=None, message="minor changes"): self.name = repo_name self.dir = master_directory self.git_exec = git_exec self.message = message try: os.chdir(self.dir) except (FileNotFoundError, TypeError): print("{} may have been moved.\n Run initialize() to update paths".format(self.name)) self.dir = os.getcwd() def need_attention(self): """Return True if a repo status is not exactly same as that of remote""" msg = ["not staged", "behind", "ahead", "Untracked"] status_msg = self.status() if any([each in status_msg for each in msg]): return True return False def fetch(self): """git fetch""" if self.git_exec: process = Popen([self.git_exec, "git fetch"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git fetch", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) # output, error = process.communicate() process.communicate() def status(self): """git status""" self.fetch() # always do a fetch before reporting status if self.git_exec: process = Popen([self.git_exec, " git status"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git status", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_file(self, file_name): """git add file""" stage_file = 'git add {}'.format(file_name) if self.git_exec: process = Popen([self.git_exec, stage_file], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(stage_file, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_all(self, files="."): """git add all""" files = "` ".join(files.split()) stage_file = 'git add {}'.format(files) if self.git_exec: process = Popen([self.git_exec, stage_file], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(stage_file, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) def commit(self): """git commit""" enter = input("Commit message.\nPress enter to use 'minor changes'") if enter == "": message = self.message else: message = enter # message = "` ".join(message.split()) if self.git_exec: process = Popen([self.git_exec, 'git', ' commit ', '-m ', message], stdin=PIPE, stdout=PIPE, stderr=PIPE,) else: process = Popen(['git', ' commit', ' -m ', message], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_and_commit(self): """git add followed by commit""" self.stage_all() self.commit() def push(self): """git push""" if self.git_exec: process = Popen([self.git_exec, ' git push'], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(['git push'], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str("Push completed.{}".format(str(output.decode("utf-8")))) def pull(self): """git pull""" if self.git_exec: process = Popen([self.git_exec, ' git pull'], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(['git pull'], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str("Pull completed.\n{}".format(str(output.decode("utf-8")))) def reset(self, number='1'): """git reset""" if self.git_exec: process = Popen([self.git_exec, ' git reset HEAD~', number], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(['git reset HEAD~', number], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) # def branch(self): # """Return the branch being tracked by local""" # process = Popen([self.git_exec, 'git branch -vv'], shell=True, # stdin=PIPE, stdout=PIPE, stderr=STDOUT,) # output, _ = process.communicate() # out_text = str(output.decode("utf-8")) # try: # line = [each for each in out_text.split("\n") if each.startswith("*")][0] # except IndexError: # no lines start with * # return # branch_name = re.search(r"\[origin\/(.*)\]", line) # return branch_name.group(1) def repos(): """Show all available repositories, path, and unique ID""" print("\nThe following repos are available.\n") NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) print("{:<4} {:<20} {:<}".format("Key", "| Name", "| Path")) print("******************************************") for key in INDEX_SHELF.keys(): name = INDEX_SHELF[key] print("{:<4} {:<20} {:<}".format(key, name, str(NAME_SHELF[name]))) INDEX_SHELF.close() NAME_SHELF.close() def load(input_string): # id is string """Load a repository with specified id""" NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) input_string = str(input_string) try: int(input_string) # if not coercible into an integer, then its probably a repo name rather than ID try: name = INDEX_SHELF[input_string] return Commands(name, str(NAME_SHELF[name])) except KeyError: raise Exception("That index does not exist.") except ValueError: try: return Commands(input_string, NAME_SHELF[input_string]) except KeyError: raise Exception("That repository name does not exist or is not indexed") INDEX_SHELF.close() NAME_SHELF.close() def load_multiple(*args, _all=False): """Create `commands` object for a set of repositories Parameters ------------ args : int comma-separated string values Yields --------- A list of commands objects. One for each of the entered string """ if _all: NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) for key in NAME_SHELF.keys(): yield load(key) else: for arg in args: yield load(arg) def pull(*args, _all=False): for each in load_multiple(*args, _all=_all): s = "*** {} ***\n{}".format(each.name, each.pull()) print(s) def push(*args, _all=False): for each in load_multiple(*args, _all=_all): s = "*** {} ***\n{}".format(each.name, each.push()) print(s) def all_status():
"""Write status of all repositories to file in markdown format""" print("Getting repo status.\n\nYou may be prompted for credentials...") os.chdir(STATUS_DIR) attention = "" messages = [] TIME_STAMP = datetime.now().strftime("%a_%d_%b_%Y_%H_%M_%S_%p") fname = "REPO_STATUS_@_{}.md".format(TIME_STAMP) with open(fname, 'w+') as f: f.write("# Repository status as at {}\n\n".format(TIME_STAMP)) for each in load_multiple(_all=True): name = each.name status = each.status() messages.append("## {}\n\n```cmd\n{}```\n".format(name, status)) if need_attention(status): attention += "1. {}\n".format(name)
identifier_body
pygit.py
(str(PurePath(SHELF_DIR / "MASTER_SHELF"))) MASTER_SHELF["master"] = master_directory MASTER_SHELF.close() def shelve_master_directory(master_directory, verbosity, rules): """Find and store the locations of git repos""" if master_directory: save_master(master_directory) show_verbose_output(verbosity, "Master directory set to ", master_directory, "Now Shelving") i = len(list(INDEX_SHELF.keys())) + 1 folder_paths = [x for x in Path(master_directory).iterdir() if x.is_dir()] for f in folder_paths: # log folders show_verbose_output(verbosity, f) for folder_name in folder_paths: path = Path(master_directory) / folder_name if enforce_exclusion(folder_name, verbosity): continue if match_rule(rules, path, verbosity): continue directory_absolute_path = Path(path).resolve() if is_git_repo(directory_absolute_path): if sys.platform == 'win32': name = PureWindowsPath(directory_absolute_path).parts[-1] if sys.platform == 'linux': name = PurePath(directory_absolute_path).parts[-1] show_verbose_output(verbosity, directory_absolute_path, " is a git repository *** shelving\n") NAME_SHELF[name] = directory_absolute_path INDEX_SHELF[str(i)] = name i += 1 # NAME_SHELF.close() # INDEX_SHELF.close() def shelve_simple_directory(simple_directory, verbosity): if simple_directory: i = len(list(INDEX_SHELF.keys())) + 1 for directory in simple_directory: if is_git_repo(directory): show_verbose_output(verbosity, " is a git repository *** shelving\n") if sys.platform == 'win32': name = directory.split("\\")[-1] if sys.platform == 'linux': name = directory.split("/")[-1] NAME_SHELF[name] = directory INDEX_SHELF[str(i)] = name else: show_verbose_output(verbosity, " is not a valid git repo.\nContinuing...\n") continue i += 1 def initialize(): """Initialize the data necessary for pygit to operate""" print("Initializing ...") global NAME_SHELF, INDEX_SHELF try: Path.mkdir(SHELF_DIR) except FileExistsError: shutil.rmtree(SHELF_DIR) Path.mkdir(SHELF_DIR) try: Path.mkdir(STATUS_DIR) except FileExistsError: pass NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) # Use the string representation to open path to avoid errors INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) args = get_command_line_arguments() verbosity = args.verbosity rules = args.rules shelve_git_path(args.gitPath, verbosity) shelve_master_directory(args.masterDirectory, verbosity, rules) shelve_simple_directory(args.simpleDirectory, verbosity) INDEX_SHELF.close() NAME_SHELF.close() if verbosity: print("\nIndexed git repos.\n") NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) print("Status saved in {}".format(STATUS_DIR)) print("{:<4} {:<20} {:<}".format("Key", "| Name", "| Path")) print("*********************************") for key in INDEX_SHELF.keys(): name = INDEX_SHELF[key] print("{:<4} {:<20} {:<}".format(key, name, str(NAME_SHELF[name]))) else: print("Indexing done") return def update(): """Update INDEX_SHELF""" MASTER_SHELF = shelve.open(str(PurePath(SHELF_DIR / "MASTER_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) master = MASTER_SHELF["master"] print("Master ", master) # shelve_master_directory(master, 0, "") save_master(master) i = len(list(INDEX_SHELF.keys())) + 1 folder_paths = [x for x in Path(master).iterdir() if x.is_dir()] for folder_name in folder_paths: path = Path(master) / folder_name directory_absolute_path = Path(path).resolve() if is_git_repo(directory_absolute_path): if sys.platform == 'win32': name = PureWindowsPath(directory_absolute_path).parts[-1] if sys.platform == 'linux': name = PurePath(directory_absolute_path).parts[-1] NAME_SHELF[name] = directory_absolute_path INDEX_SHELF[str(i)] = name i += 1 print("Update completed successfully") return class Commands: """Commands class Parameters ----------- repo_name : str The repository name. See list of repositories by running master_directory : str The absolute path to the directory git_exec : str The path to the git executable on the system message : str Commit message Returns -------- : Commands object """ def __str__(self): return "Commands: {}: {}".format(self.name, self.dir) def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __init__(self, repo_name, master_directory, git_exec=None, message="minor changes"): self.name = repo_name self.dir = master_directory self.git_exec = git_exec self.message = message try: os.chdir(self.dir) except (FileNotFoundError, TypeError): print("{} may have been moved.\n Run initialize() to update paths".format(self.name)) self.dir = os.getcwd() def need_attention(self): """Return True if a repo status is not exactly same as that of remote""" msg = ["not staged", "behind", "ahead", "Untracked"] status_msg = self.status() if any([each in status_msg for each in msg]): return True return False def fetch(self): """git fetch""" if self.git_exec: process = Popen([self.git_exec, "git fetch"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git fetch", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) # output, error = process.communicate() process.communicate() def status(self): """git status""" self.fetch() # always do a fetch before reporting status if self.git_exec: process = Popen([self.git_exec, " git status"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git status", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_file(self, file_name): """git add file""" stage_file = 'git add {}'.format(file_name) if self.git_exec: process = Popen([self.git_exec, stage_file], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(stage_file, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_all(self, files="."): """git add all""" files = "` ".join(files.split()) stage_file = 'git add {}'.format(files) if self.git_exec: process = Popen([self.git_exec, stage_file], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(stage_file, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) def commit(self): """git commit""" enter = input("Commit message.\nPress enter to use 'minor changes'") if enter == "": message = self.message else: message = enter # message = "` ".join(message.split()) if self.git_exec: process = Popen([self.git_exec, 'git', ' commit ', '-m ', message], stdin=PIPE, stdout=PIPE, stderr=PIPE,) else: process = Popen(['git', ' commit', ' -m ', message], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_and_commit(self): """git add followed by commit""" self.stage_all() self.commit() def push(self): """git push""" if self.git_exec:
process = Popen([self.git_exec, ' git push'], stdin=PIPE, stdout=PIPE, stderr=STDOUT,)
conditional_block
pygit.py
_DIR / "NAME_SHELF"))) master = MASTER_SHELF["master"] print("Master ", master) # shelve_master_directory(master, 0, "") save_master(master) i = len(list(INDEX_SHELF.keys())) + 1 folder_paths = [x for x in Path(master).iterdir() if x.is_dir()] for folder_name in folder_paths: path = Path(master) / folder_name directory_absolute_path = Path(path).resolve() if is_git_repo(directory_absolute_path): if sys.platform == 'win32': name = PureWindowsPath(directory_absolute_path).parts[-1] if sys.platform == 'linux': name = PurePath(directory_absolute_path).parts[-1] NAME_SHELF[name] = directory_absolute_path INDEX_SHELF[str(i)] = name i += 1 print("Update completed successfully") return class Commands: """Commands class Parameters ----------- repo_name : str The repository name. See list of repositories by running master_directory : str The absolute path to the directory git_exec : str The path to the git executable on the system message : str Commit message Returns -------- : Commands object """ def __str__(self): return "Commands: {}: {}".format(self.name, self.dir) def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __init__(self, repo_name, master_directory, git_exec=None, message="minor changes"): self.name = repo_name self.dir = master_directory self.git_exec = git_exec self.message = message try: os.chdir(self.dir) except (FileNotFoundError, TypeError): print("{} may have been moved.\n Run initialize() to update paths".format(self.name)) self.dir = os.getcwd() def need_attention(self): """Return True if a repo status is not exactly same as that of remote""" msg = ["not staged", "behind", "ahead", "Untracked"] status_msg = self.status() if any([each in status_msg for each in msg]): return True return False def fetch(self): """git fetch""" if self.git_exec: process = Popen([self.git_exec, "git fetch"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git fetch", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) # output, error = process.communicate() process.communicate() def status(self): """git status""" self.fetch() # always do a fetch before reporting status if self.git_exec: process = Popen([self.git_exec, " git status"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git status", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_file(self, file_name): """git add file""" stage_file = 'git add {}'.format(file_name) if self.git_exec: process = Popen([self.git_exec, stage_file], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(stage_file, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_all(self, files="."): """git add all""" files = "` ".join(files.split()) stage_file = 'git add {}'.format(files) if self.git_exec: process = Popen([self.git_exec, stage_file], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(stage_file, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) def commit(self): """git commit""" enter = input("Commit message.\nPress enter to use 'minor changes'") if enter == "": message = self.message else: message = enter # message = "` ".join(message.split()) if self.git_exec: process = Popen([self.git_exec, 'git', ' commit ', '-m ', message], stdin=PIPE, stdout=PIPE, stderr=PIPE,) else: process = Popen(['git', ' commit', ' -m ', message], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str(output.decode("utf-8")) def stage_and_commit(self): """git add followed by commit""" self.stage_all() self.commit() def push(self): """git push""" if self.git_exec: process = Popen([self.git_exec, ' git push'], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(['git push'], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str("Push completed.{}".format(str(output.decode("utf-8")))) def pull(self): """git pull""" if self.git_exec: process = Popen([self.git_exec, ' git pull'], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(['git pull'], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE,) output, _ = process.communicate() return str("Pull completed.\n{}".format(str(output.decode("utf-8")))) def reset(self, number='1'): """git reset""" if self.git_exec: process = Popen([self.git_exec, ' git reset HEAD~', number], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) else: process = Popen(['git reset HEAD~', number], stdin=PIPE, stdout=PIPE, stderr=STDOUT,) output, _ = process.communicate() return str(output.decode("utf-8")) # def branch(self): # """Return the branch being tracked by local""" # process = Popen([self.git_exec, 'git branch -vv'], shell=True, # stdin=PIPE, stdout=PIPE, stderr=STDOUT,) # output, _ = process.communicate() # out_text = str(output.decode("utf-8")) # try: # line = [each for each in out_text.split("\n") if each.startswith("*")][0] # except IndexError: # no lines start with * # return # branch_name = re.search(r"\[origin\/(.*)\]", line) # return branch_name.group(1) def repos(): """Show all available repositories, path, and unique ID""" print("\nThe following repos are available.\n") NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) print("{:<4} {:<20} {:<}".format("Key", "| Name", "| Path")) print("******************************************") for key in INDEX_SHELF.keys(): name = INDEX_SHELF[key] print("{:<4} {:<20} {:<}".format(key, name, str(NAME_SHELF[name]))) INDEX_SHELF.close() NAME_SHELF.close() def load(input_string): # id is string """Load a repository with specified id""" NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) input_string = str(input_string) try: int(input_string) # if not coercible into an integer, then its probably a repo name rather than ID try: name = INDEX_SHELF[input_string] return Commands(name, str(NAME_SHELF[name])) except KeyError: raise Exception("That index does not exist.") except ValueError: try: return Commands(input_string, NAME_SHELF[input_string]) except KeyError: raise Exception("That repository name does not exist or is not indexed") INDEX_SHELF.close() NAME_SHELF.close() def load_multiple(*args, _all=False): """Create `commands` object for a set of repositories Parameters ------------ args : int comma-separated string values Yields --------- A list of commands objects. One for each of the entered string """ if _all: NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) for key in NAME_SHELF.keys(): yield load(key) else: for arg in args: yield load(arg) def pull(*args, _all=False): for each in load_multiple(*args, _all=_all): s = "*** {} ***\n{}".format(each.name, each.pull()) print(s) def
push
identifier_name
pygit.py
', '--masterDirectory', help="Full pathname to directory holding any number of git repos.") parser.add_argument('-s', '--simpleDirectory', help="A list of full pathnames to any number of individual git repos.", nargs='+') return parser.parse_args() def shelve_git_path(git_path, verbosity): """Find and store the location of git executable""" if check_git_support(): print("Your system is configured to work with git.\n") elif "git" in os.environ['PATH']: user_paths = os.environ['PATH'].split(os.pathsep) for path in user_paths: if "git-cmd.exe" in path: NAME_SHELF['GIT_WINDOWS'] = path return if "git-bash.exe" in path: NAME_SHELF['GIT_BASH'] = path return else: print("Git was not found in your system path.\nYou may need to set the location manually using the -g flag.\n") if git_path: for _, __, files in os.walk(git_path): if "git-cmd.exe" in files: NAME_SHELF['GIT_WINDOWS'] = git_path elif "git-bash.exe" in files: NAME_SHELF['GIT_BASH'] = git_path else: print("A valid git executable was not found in the directory.\n") return def enforce_exclusion(folder_name, verbosity): """Return True if a folder starts with any character in exclusion_folder_start""" exclusion_folder_start = [".", "_"] # skip folders that start with any of these characters if any([str(PurePath(folder_name)).startswith(each) for each in exclusion_folder_start]): if verbosity: show_verbose_output(verbosity, folder_name, " starts with one of ", exclusion_folder_start, " skipping\n") return True return False def match_rule(rules, path, verbosity): """Return True if a folder matches a rule in rules""" if rules: if any([rule in path for rule in rules]): show_verbose_output(verbosity, path, " matches an exclusion rule. Skipping\n") return True return False def save_master(master_directory): """Saves the location of the master directory""" global MASTER_SHELF MASTER_SHELF = shelve.open(str(PurePath(SHELF_DIR / "MASTER_SHELF"))) MASTER_SHELF["master"] = master_directory MASTER_SHELF.close() def shelve_master_directory(master_directory, verbosity, rules): """Find and store the locations of git repos""" if master_directory: save_master(master_directory) show_verbose_output(verbosity, "Master directory set to ", master_directory, "Now Shelving") i = len(list(INDEX_SHELF.keys())) + 1 folder_paths = [x for x in Path(master_directory).iterdir() if x.is_dir()] for f in folder_paths: # log folders show_verbose_output(verbosity, f) for folder_name in folder_paths: path = Path(master_directory) / folder_name if enforce_exclusion(folder_name, verbosity): continue if match_rule(rules, path, verbosity): continue directory_absolute_path = Path(path).resolve() if is_git_repo(directory_absolute_path): if sys.platform == 'win32': name = PureWindowsPath(directory_absolute_path).parts[-1] if sys.platform == 'linux': name = PurePath(directory_absolute_path).parts[-1] show_verbose_output(verbosity, directory_absolute_path, " is a git repository *** shelving\n") NAME_SHELF[name] = directory_absolute_path INDEX_SHELF[str(i)] = name i += 1 # NAME_SHELF.close() # INDEX_SHELF.close() def shelve_simple_directory(simple_directory, verbosity): if simple_directory: i = len(list(INDEX_SHELF.keys())) + 1 for directory in simple_directory: if is_git_repo(directory): show_verbose_output(verbosity, " is a git repository *** shelving\n") if sys.platform == 'win32': name = directory.split("\\")[-1] if sys.platform == 'linux': name = directory.split("/")[-1] NAME_SHELF[name] = directory INDEX_SHELF[str(i)] = name else: show_verbose_output(verbosity, " is not a valid git repo.\nContinuing...\n") continue i += 1 def initialize(): """Initialize the data necessary for pygit to operate""" print("Initializing ...") global NAME_SHELF, INDEX_SHELF try: Path.mkdir(SHELF_DIR) except FileExistsError: shutil.rmtree(SHELF_DIR) Path.mkdir(SHELF_DIR) try: Path.mkdir(STATUS_DIR) except FileExistsError: pass NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) # Use the string representation to open path to avoid errors INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) args = get_command_line_arguments() verbosity = args.verbosity rules = args.rules shelve_git_path(args.gitPath, verbosity) shelve_master_directory(args.masterDirectory, verbosity, rules) shelve_simple_directory(args.simpleDirectory, verbosity) INDEX_SHELF.close() NAME_SHELF.close() if verbosity: print("\nIndexed git repos.\n") NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) print("Status saved in {}".format(STATUS_DIR)) print("{:<4} {:<20} {:<}".format("Key", "| Name", "| Path")) print("*********************************") for key in INDEX_SHELF.keys(): name = INDEX_SHELF[key] print("{:<4} {:<20} {:<}".format(key, name, str(NAME_SHELF[name]))) else: print("Indexing done") return def update(): """Update INDEX_SHELF""" MASTER_SHELF = shelve.open(str(PurePath(SHELF_DIR / "MASTER_SHELF"))) INDEX_SHELF = shelve.open(str(PurePath(SHELF_DIR / "INDEX_SHELF"))) NAME_SHELF = shelve.open(str(PurePath(SHELF_DIR / "NAME_SHELF"))) master = MASTER_SHELF["master"] print("Master ", master) # shelve_master_directory(master, 0, "") save_master(master)
i = len(list(INDEX_SHELF.keys())) + 1 folder_paths = [x for x in Path(master).iterdir() if x.is_dir()] for folder_name in folder_paths: path = Path(master) / folder_name directory_absolute_path = Path(path).resolve() if is_git_repo(directory_absolute_path): if sys.platform == 'win32': name = PureWindowsPath(directory_absolute_path).parts[-1] if sys.platform == 'linux': name = PurePath(directory_absolute_path).parts[-1] NAME_SHELF[name] = directory_absolute_path INDEX_SHELF[str(i)] = name i += 1 print("Update completed successfully") return class Commands: """Commands class Parameters ----------- repo_name : str The repository name. See list of repositories by running master_directory : str The absolute path to the directory git_exec : str The path to the git executable on the system message : str Commit message Returns -------- : Commands object """ def __str__(self): return "Commands: {}: {}".format(self.name, self.dir) def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __init__(self, repo_name, master_directory, git_exec=None, message="minor changes"): self.name = repo_name self.dir = master_directory self.git_exec = git_exec self.message = message try: os.chdir(self.dir) except (FileNotFoundError, TypeError): print("{} may have been moved.\n Run initialize() to update paths".format(self.name)) self.dir = os.getcwd() def need_attention(self): """Return True if a repo status is not exactly same as that of remote""" msg = ["not staged", "behind", "ahead", "Untracked"] status_msg = self.status() if any([each in status_msg for each in msg]): return True return False def fetch(self): """git fetch""" if self.git_exec: process = Popen([self.git_exec, "git fetch"], stdin=PIPE, stdout=PIPE, stderr=STDOUT) else: process = Popen("git fetch", shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) # output, error = process.communicate() process.communicate() def status(self): """git status""" self.fetch() # always do a fetch before reporting status if self.git
random_line_split
merge.go
ux.Unlock() if ETLMergeTaskPool == nil { mp, err := mpool.NewMPool("etl_merge_task", 0, mpool.NoFixed) if err != nil { return nil, err } ETLMergeTaskPool = mp } return ETLMergeTaskPool, nil } func NewMerge(ctx context.Context, opts ...MergeOption) (*Merge, error) { var err error m := &Merge{ pathBuilder: table.NewAccountDatePathBuilder(), MaxFileSize: defaultMaxFileSize, MaxMergeJobs: 1, logger: runtime.ProcessLevelRuntime().Logger().WithContext(ctx).Named(LoggerNameETLMerge), } m.ctx, m.cancelFunc = context.WithCancel(ctx) for _, opt := range opts { opt(m) } if m.mp, err = getMpool(); err != nil { return nil, err } m.validate(ctx) m.runningJobs = make(chan struct{}, m.MaxMergeJobs) return m, nil } // validate check missing init elems. Panic with has missing elems. func (m *Merge) validate(ctx context.Context) { if m.table == nil { panic(moerr.NewInternalError(ctx, "merge task missing input 'table'")) } if m.fs == nil { panic(moerr.NewInternalError(ctx, "merge task missing input 'FileService'")) } } // Start for service Loop func (m *Merge) Start(ctx context.Context, interval time.Duration) { ticker := time.NewTicker(interval) defer ticker.Stop() for { select { case <-ticker.C: m.Main(ctx) case <-m.ctx.Done(): return } } } // Stop should call only once func (m *Merge) Stop() { m.cancelFunc() } // ======================= // main logic // ======================= type FileMeta struct { FilePath string FileSize int64 } // Main do list all accounts, all dates which belong to m.table.GetName() func (m *Merge) Main(ctx context.Context) error { var files = make([]*FileMeta, 0, 1000) var totalSize int64 accounts, err := m.fs.List(ctx, "/") if err != nil { return err } if len(accounts) == 0 { m.logger.Info("merge find empty data") return nil } m.logger.Debug(fmt.Sprintf("merge task with max file: %v MB", m.MaxFileSize/mpool.MB)) for _, account := range accounts { if !account.IsDir { m.logger.Warn(fmt.Sprintf("path is not dir: %s", account.Name)) continue } // build targetPath like "${account}/logs/*/*/*/${table_name}" targetPath := m.pathBuilder.Build(account.Name, table.MergeLogTypeLogs, table.ETLParamTSAll, m.table.GetDatabase(), m.table.GetName()) // search all paths like: // 0: ${account}/logs/2023/05/31/${table_name} // 1: ${account}/logs/2023/06/01/${table_name} // 2: ... rootPaths, err := m.getAllTargetPath(ctx, targetPath) if err != nil { return err } // get all file entry for _, rootPath := range rootPaths { m.logger.Info("start merge", logutil.TableField(m.table.GetIdentify()), logutil.PathField(rootPath), zap.String("metadata.ID", m.task.Metadata.ID)) fileEntrys, err := m.fs.List(ctx, rootPath) if err != nil { // fixme: m.logger.Error() return err } files = files[:0] totalSize = 0 for _, f := range fileEntrys { filepath := path.Join(rootPath, f.Name) totalSize += f.Size files = append(files, &FileMeta{filepath, f.Size}) if totalSize > m.MaxFileSize { if err = m.doMergeFiles(ctx, files); err != nil { m.logger.Error(fmt.Sprintf("merge task meet error: %v", err)) } files = files[:0] totalSize = 0 } } if len(files) > 0 { if err = m.doMergeFiles(ctx, files); err != nil { m.logger.Warn(fmt.Sprintf("merge task meet error: %v", err)) } } } } return err } func (m *Merge) getAllTargetPath(ctx context.Context, filePath string) ([]string, error) { sep := "/" pathDir := strings.Split(filePath, sep) l := list.New() if pathDir[0] == "" { l.PushBack(sep) } else { l.PushBack(pathDir[0]) } for i := 1; i < len(pathDir); i++ { length := l.Len() for j := 0; j < length; j++ { elem := l.Remove(l.Front()) prefix := elem.(string) entries, err := m.fs.List(ctx, prefix) if err != nil { return nil, err } for _, entry := range entries { if !entry.IsDir && i+1 != len(pathDir) { continue } matched, err := path.Match(pathDir[i], entry.Name) if err != nil { return nil, err } if !matched { continue } l.PushBack(path.Join(prefix, entry.Name)) } } } length := l.Len() fileList := make([]string, 0, length) for idx := 0; idx < length; idx++ { fileList = append(fileList, l.Remove(l.Front()).(string)) } return fileList, nil } // doMergeFiles handle merge (read->write->delete) ops for all files in the target directory. // Handle the files one by one, act uploadFile and do the deletion if upload is success. // Upload the files to SQL table // Delete the files from FileService func (m *Merge) doMergeFiles(ctx context.Context, files []*FileMeta) error { ctx, span := trace.Start(ctx, "doMergeFiles") defer span.End() // Control task concurrency m.runningJobs <- struct{}{} defer func() { <-m.runningJobs }() // Step 3. do simple merge var uploadFile = func(ctx context.Context, fp *FileMeta) error { row := m.table.GetRow(ctx) defer row.Free() // open reader reader, err := newETLReader(ctx, m.table, m.fs, fp.FilePath, fp.FileSize, m.mp) if err != nil { m.logger.Error(fmt.Sprintf("merge file meet read failed: %v", err)) return err } defer reader.Close() cacheFileData := &SliceCache{} defer cacheFileData.Reset() // read all content var line []string line, err = reader.ReadLine() for ; line != nil && err == nil; line, err = reader.ReadLine() { if err = row.ParseRow(line); err != nil { m.logger.Error("pa
w) } if err != nil { m.logger.Warn("failed to read file", logutil.PathField(fp.FilePath), zap.Error(err)) return err } // sql insert if cacheFileData.Size() > 0 { if err = cacheFileData.Flush(m.table); err != nil { return err } cacheFileData.Reset() } // delete empty file or file already uploaded if cacheFileData.Size() == 0 { if err = m.fs.Delete(ctx, fp.FilePath); err != nil { m.logger.Warn("failed to delete file", zap.Error(err)) return err } } return nil } var err error for _, fp := range files { if err = uploadFile(ctx, fp); err != nil { // todo: adjust the sleep settings // Sleep 10 seconds to wait for the database to recover time.Sleep(10 * time.Second) m.logger.Error("failed to upload file to MO", logutil.TableField(m.table.GetIdentify()), logutil.PathField(fp.FilePath), zap.Error(err), ) } } logutil.Debug("upload files success", logutil.TableField(m.table.GetIdentify()), zap.Int("file count", len(files))) return err } func SubStringPrefixLimit(str string, length int) string { if length <= 0 { return "" } if len(str) < length { return str } else { return str[:length] + "..." } } type ContentReader struct { ctx context.Context path string idx int length int content [][]string logger *log.MOL
rse ETL rows failed", logutil.TableField(m.table.GetIdentify()), logutil.PathField(fp.FilePath), logutil.VarsField(SubStringPrefixLimit(fmt.Sprintf("%v", line), 102400)), ) return err } cacheFileData.Put(ro
conditional_block
merge.go
for idx := 0; idx < length; idx++ { fileList = append(fileList, l.Remove(l.Front()).(string)) } return fileList, nil } // doMergeFiles handle merge (read->write->delete) ops for all files in the target directory. // Handle the files one by one, act uploadFile and do the deletion if upload is success. // Upload the files to SQL table // Delete the files from FileService func (m *Merge) doMergeFiles(ctx context.Context, files []*FileMeta) error { ctx, span := trace.Start(ctx, "doMergeFiles") defer span.End() // Control task concurrency m.runningJobs <- struct{}{} defer func() { <-m.runningJobs }() // Step 3. do simple merge var uploadFile = func(ctx context.Context, fp *FileMeta) error { row := m.table.GetRow(ctx) defer row.Free() // open reader reader, err := newETLReader(ctx, m.table, m.fs, fp.FilePath, fp.FileSize, m.mp) if err != nil { m.logger.Error(fmt.Sprintf("merge file meet read failed: %v", err)) return err } defer reader.Close() cacheFileData := &SliceCache{} defer cacheFileData.Reset() // read all content var line []string line, err = reader.ReadLine() for ; line != nil && err == nil; line, err = reader.ReadLine() { if err = row.ParseRow(line); err != nil { m.logger.Error("parse ETL rows failed", logutil.TableField(m.table.GetIdentify()), logutil.PathField(fp.FilePath), logutil.VarsField(SubStringPrefixLimit(fmt.Sprintf("%v", line), 102400)), ) return err } cacheFileData.Put(row) } if err != nil { m.logger.Warn("failed to read file", logutil.PathField(fp.FilePath), zap.Error(err)) return err } // sql insert if cacheFileData.Size() > 0 { if err = cacheFileData.Flush(m.table); err != nil { return err } cacheFileData.Reset() } // delete empty file or file already uploaded if cacheFileData.Size() == 0 { if err = m.fs.Delete(ctx, fp.FilePath); err != nil { m.logger.Warn("failed to delete file", zap.Error(err)) return err } } return nil } var err error for _, fp := range files { if err = uploadFile(ctx, fp); err != nil { // todo: adjust the sleep settings // Sleep 10 seconds to wait for the database to recover time.Sleep(10 * time.Second) m.logger.Error("failed to upload file to MO", logutil.TableField(m.table.GetIdentify()), logutil.PathField(fp.FilePath), zap.Error(err), ) } } logutil.Debug("upload files success", logutil.TableField(m.table.GetIdentify()), zap.Int("file count", len(files))) return err } func SubStringPrefixLimit(str string, length int) string { if length <= 0 { return "" } if len(str) < length { return str } else { return str[:length] + "..." } } type ContentReader struct { ctx context.Context path string idx int length int content [][]string logger *log.MOLogger reader *simdcsv.Reader raw io.ReadCloser } // BatchReadRows ~= 20MB rawlog file has about 3700+ rows const BatchReadRows = 4000 func NewContentReader(ctx context.Context, path string, reader *simdcsv.Reader, raw io.ReadCloser) *ContentReader { logger := runtime.ProcessLevelRuntime().Logger().WithContext(ctx).Named(LoggerNameContentReader) return &ContentReader{ ctx: ctx, path: path, length: 0, content: make([][]string, BatchReadRows), logger: logger, reader: reader, raw: raw, } } func (s *ContentReader) ReadLine() ([]string, error) { if s.idx == s.length && s.reader != nil { var cnt int var err error s.content, cnt, err = s.reader.Read(BatchReadRows, s.ctx, s.content) if err != nil { return nil, err } else if s.content == nil { s.logger.Error("ContentReader.ReadLine.nil", logutil.PathField(s.path), zap.Bool("nil", s.content == nil), zap.Error(s.ctx.Err()), zap.Bool("SupportedCPU", simdcsv.SupportedCPU()), ) return nil, moerr.NewInternalError(s.ctx, "read files meet context Done") } if cnt < BatchReadRows { //s.reader.Close() // DO NOT call, because it is a forever loop with empty op. s.reader = nil s.raw.Close() s.raw = nil s.logger.Debug("ContentReader.ReadLine.EOF", logutil.PathField(s.path), zap.Int("rows", cnt)) } s.idx = 0 s.length = cnt s.logger.Debug("ContentReader.ReadLine", logutil.PathField(s.path), zap.Int("rows", cnt), zap.Bool("SupportedCPU", simdcsv.SupportedCPU()), ) } if s.idx < s.length { idx := s.idx s.idx++ if s.content == nil || len(s.content) == 0 { s.logger.Error("ContentReader.ReadLine.nil", logutil.PathField(s.path), zap.Bool("nil", s.content == nil), zap.Int("cached", len(s.content)), zap.Int("idx", idx), zap.Bool("SupportedCPU", simdcsv.SupportedCPU()), ) } return s.content[idx], nil } return nil, nil } func (s *ContentReader) ReadRow(row *table.Row) error { panic("NOT implement") } func (s *ContentReader) Close() { capLen := cap(s.content) s.content = s.content[:capLen] for idx := range s.content { s.content[idx] = nil } if s.raw != nil { _ = s.raw.Close() s.raw = nil } } func newETLReader(ctx context.Context, tbl *table.Table, fs fileservice.FileService, path string, size int64, mp *mpool.MPool) (ETLReader, error) { if strings.LastIndex(path, table.CsvExtension) > 0 { return NewCSVReader(ctx, fs, path) } else if strings.LastIndex(path, table.TaeExtension) > 0 { r, err := etl.NewTaeReader(ctx, tbl, path, size, fs, mp) if err != nil { r.Close() return nil, err } _, err = r.ReadAll(ctx) if err != nil { r.Close() return nil, err } return r, nil } else { panic("NOT Implements") } } // NewCSVReader create new csv reader. // success case return: ok_reader, nil error // failed case return: nil_reader, error func NewCSVReader(ctx context.Context, fs fileservice.FileService, path string) (ETLReader, error) { // external.ReadFile var reader io.ReadCloser vec := fileservice.IOVector{ FilePath: path, Entries: []fileservice.IOEntry{ 0: { Offset: 0, Size: -1, ReadCloserForRead: &reader, }, }, } // open file reader if err := fs.Read(ctx, &vec); err != nil { return nil, err } // parse csv content simdCsvReader := simdcsv.NewReaderWithOptions(reader, table.CommonCsvOptions.FieldTerminator, '#', true, true) // return content Reader return NewContentReader(ctx, path, simdCsvReader, reader), nil } type Cache interface { Put(*table.Row) Size() int64 Flush(*table.Table) error Reset() IsEmpty() bool } type SliceCache struct { m [][]string size int64 } func (c *SliceCache) Flush(tbl *table.Table) error { _, err := db_holder.WriteRowRecords(c.m, tbl, MAX_MERGE_INSERT_TIME) c.Reset() return err } func (c *SliceCache) Reset() { for idx := range c.m { c.m[idx] = nil } c.m = c.m[:0] c.size = 0 } func (c *SliceCache) IsEmpty() bool { return len(c.m) == 0 } func (c *SliceCache) Put(r *table.Row) { c.m = append(c.m, r.GetCsvStrings()) c.size += r.Size() } func (c *SliceCache) Size() int64 { return c.size } func LongRunETLMerge(ctx cont
ext.Context, ta
identifier_name
merge.go
} } length := l.Len() fileList := make([]string, 0, length) for idx := 0; idx < length; idx++ { fileList = append(fileList, l.Remove(l.Front()).(string)) } return fileList, nil } // doMergeFiles handle merge (read->write->delete) ops for all files in the target directory. // Handle the files one by one, act uploadFile and do the deletion if upload is success. // Upload the files to SQL table // Delete the files from FileService func (m *Merge) doMergeFiles(ctx context.Context, files []*FileMeta) error { ctx, span := trace.Start(ctx, "doMergeFiles") defer span.End() // Control task concurrency m.runningJobs <- struct{}{} defer func() { <-m.runningJobs }() // Step 3. do simple merge var uploadFile = func(ctx context.Context, fp *FileMeta) error { row := m.table.GetRow(ctx) defer row.Free() // open reader reader, err := newETLReader(ctx, m.table, m.fs, fp.FilePath, fp.FileSize, m.mp) if err != nil { m.logger.Error(fmt.Sprintf("merge file meet read failed: %v", err)) return err } defer reader.Close() cacheFileData := &SliceCache{} defer cacheFileData.Reset() // read all content var line []string line, err = reader.ReadLine() for ; line != nil && err == nil; line, err = reader.ReadLine() { if err = row.ParseRow(line); err != nil { m.logger.Error("parse ETL rows failed", logutil.TableField(m.table.GetIdentify()), logutil.PathField(fp.FilePath), logutil.VarsField(SubStringPrefixLimit(fmt.Sprintf("%v", line), 102400)), ) return err } cacheFileData.Put(row) } if err != nil { m.logger.Warn("failed to read file", logutil.PathField(fp.FilePath), zap.Error(err)) return err } // sql insert if cacheFileData.Size() > 0 { if err = cacheFileData.Flush(m.table); err != nil { return err } cacheFileData.Reset() } // delete empty file or file already uploaded if cacheFileData.Size() == 0 { if err = m.fs.Delete(ctx, fp.FilePath); err != nil { m.logger.Warn("failed to delete file", zap.Error(err)) return err } } return nil } var err error for _, fp := range files { if err = uploadFile(ctx, fp); err != nil { // todo: adjust the sleep settings // Sleep 10 seconds to wait for the database to recover time.Sleep(10 * time.Second) m.logger.Error("failed to upload file to MO", logutil.TableField(m.table.GetIdentify()), logutil.PathField(fp.FilePath), zap.Error(err), ) } } logutil.Debug("upload files success", logutil.TableField(m.table.GetIdentify()), zap.Int("file count", len(files))) return err } func SubStringPrefixLimit(str string, length int) string { if length <= 0 { return "" } if len(str) < length { return str } else { return str[:length] + "..." } } type ContentReader struct { ctx context.Context path string idx int length int content [][]string logger *log.MOLogger reader *simdcsv.Reader raw io.ReadCloser } // BatchReadRows ~= 20MB rawlog file has about 3700+ rows const BatchReadRows = 4000 func NewContentReader(ctx context.Context, path string, reader *simdcsv.Reader, raw io.ReadCloser) *ContentReader { logger := runtime.ProcessLevelRuntime().Logger().WithContext(ctx).Named(LoggerNameContentReader) return &ContentReader{ ctx: ctx, path: path, length: 0, content: make([][]string, BatchReadRows), logger: logger, reader: reader, raw: raw, } } func (s *ContentReader) ReadLine() ([]string, error) { if s.idx == s.length && s.reader != nil { var cnt int var err error s.content, cnt, err = s.reader.Read(BatchReadRows, s.ctx, s.content) if err != nil { return nil, err } else if s.content == nil { s.logger.Error("ContentReader.ReadLine.nil", logutil.PathField(s.path), zap.Bool("nil", s.content == nil), zap.Error(s.ctx.Err()), zap.Bool("SupportedCPU", simdcsv.SupportedCPU()), ) return nil, moerr.NewInternalError(s.ctx, "read files meet context Done") } if cnt < BatchReadRows { //s.reader.Close() // DO NOT call, because it is a forever loop with empty op. s.reader = nil s.raw.Close() s.raw = nil s.logger.Debug("ContentReader.ReadLine.EOF", logutil.PathField(s.path), zap.Int("rows", cnt)) } s.idx = 0 s.length = cnt s.logger.Debug("ContentReader.ReadLine", logutil.PathField(s.path), zap.Int("rows", cnt), zap.Bool("SupportedCPU", simdcsv.SupportedCPU()), ) } if s.idx < s.length { idx := s.idx s.idx++ if s.content == nil || len(s.content) == 0 { s.logger.Error("ContentReader.ReadLine.nil", logutil.PathField(s.path), zap.Bool("nil", s.content == nil), zap.Int("cached", len(s.content)), zap.Int("idx", idx), zap.Bool("SupportedCPU", simdcsv.SupportedCPU()), ) } return s.content[idx], nil } return nil, nil } func (s *ContentReader) ReadRow(row *table.Row) error { panic("NOT implement") } func (s *ContentReader) Close() { capLen := cap(s.content) s.content = s.content[:capLen] for idx := range s.content { s.content[idx] = nil } if s.raw != nil { _ = s.raw.Close() s.raw = nil } } func newETLReader(ctx context.Context, tbl *table.Table, fs fileservice.FileService, path string, size int64, mp *mpool.MPool) (ETLReader, error) { if strings.LastIndex(path, table.CsvExtension) > 0 { return NewCSVReader(ctx, fs, path) } else if strings.LastIndex(path, table.TaeExtension) > 0 { r, err := etl.NewTaeReader(ctx, tbl, path, size, fs, mp) if err != nil { r.Close() return nil, err } _, err = r.ReadAll(ctx) if err != nil { r.Close() return nil, err } return r, nil } else { panic("NOT Implements") } } // NewCSVReader create new csv reader. // success case return: ok_reader, nil error // failed case return: nil_reader, error func NewCSVReader(ctx context.Context, fs fileservice.FileService, path string) (ETLReader, error) { // external.ReadFile var reader io.ReadCloser vec := fileservice.IOVector{ FilePath: path, Entries: []fileservice.IOEntry{ 0: { Offset: 0, Size: -1, ReadCloserForRead: &reader, }, }, } // open file reader if err := fs.Read(ctx, &vec); err != nil { return nil, err } // parse csv content simdCsvReader := simdcsv.NewReaderWithOptions(reader, table.CommonCsvOptions.FieldTerminator, '#', true, true) // return content Reader return NewContentReader(ctx, path, simdCsvReader, reader), nil } type Cache interface { Put(*table.Row) Size() int64 Flush(*table.Table) error Reset() IsEmpty() bool } type SliceCache struct { m [][]string size int64 } func (c *SliceCache) Flush(tbl *table.Table) error { _, err := db_holder.WriteRowRecords(c.m, tbl, MAX_MERGE_INSERT_TIME) c.Reset() return err } func (c *SliceCache) Reset() { for idx := range c.m { c.m[idx] = nil } c.m = c.m[:0] c.size = 0 } func (c *SliceCache) IsEmpty() bool { return len(c.m) == 0 } func (c *SliceCache) Put(r *table.Row) { c.m = append(c.m, r.G
etCsvStrings()) c.size += r.Size() } func (c *SliceCache) S
identifier_body
merge.go
const LoggerNameContentReader = "ETLContentReader" const MAX_MERGE_INSERT_TIME = 10 * time.Second const defaultMaxFileSize = 32 * mpool.MB // ======================== // handle merge // ======================== // Merge like a compaction, merge input files into one/two/... files. // - NewMergeService init merge as service, with serviceInited to avoid multi init. // - MergeTaskExecutorFactory drive by Cron TaskService. // - NewMerge handle merge obj init. // - Merge.Start() as service loop, trigger Merge.Main() // - Merge.Main() handle main job. // 1. foreach account, build `rootPath` with tuple {account, date, Table } // 2. call Merge.doMergeFiles() with all files in `rootPath`, do merge job // // - Merge.doMergeFiles handle one job flow: read each file, merge in cache, write into file. type Merge struct { task task.Task // set by WithTask table *table.Table // set by WithTable fs fileservice.FileService // set by WithFileService pathBuilder table.PathBuilder // const as table.NewAccountDatePathBuilder() // MaxFileSize the total filesize to trigger doMergeFiles(),default: 32 MB // Deprecated MaxFileSize int64 // set by WithMaxFileSize // MaxMergeJobs 允许进行的 Merge 的任务个数,default: 1 MaxMergeJobs int64 // set by WithMaxMergeJobs // logger logger *log.MOLogger // mp for TAEReader if needed. mp *mpool.MPool // runningJobs control task concurrency, init with MaxMergeJobs cnt runningJobs chan struct{} // flow ctrl ctx context.Context cancelFunc context.CancelFunc } type MergeOption func(*Merge) func (opt MergeOption) Apply(m *Merge) { opt(m) } func WithTask(task task.Task) MergeOption { return MergeOption(func(m *Merge) { m.task = task }) } func WithTable(tbl *table.Table) MergeOption { return MergeOption(func(m *Merge) { m.table = tbl }) } func WithFileService(fs fileservice.FileService) MergeOption { return MergeOption(func(m *Merge) { m.fs = fs }) } func WithMaxFileSize(filesize int64) MergeOption { return MergeOption(func(m *Merge) { m.MaxFileSize = filesize }) } func WithMaxMergeJobs(jobs int64) MergeOption { return MergeOption(func(m *Merge) { m.MaxMergeJobs = jobs }) } // serviceInited handle Merge as service var serviceInited uint32 func NewMergeService(ctx context.Context, opts ...MergeOption) (*Merge, bool, error) { // fix multi-init in standalone if !atomic.CompareAndSwapUint32(&serviceInited, 0, 1) { return nil, true, nil } m, err := NewMerge(ctx, opts...) return m, false, err } var poolMux sync.Mutex var ETLMergeTaskPool *mpool.MPool func getMpool() (*mpool.MPool, error) { poolMux.Lock() defer poolMux.Unlock() if ETLMergeTaskPool == nil { mp, err := mpool.NewMPool("etl_merge_task", 0, mpool.NoFixed) if err != nil { return nil, err } ETLMergeTaskPool = mp } return ETLMergeTaskPool, nil } func NewMerge(ctx context.Context, opts ...MergeOption) (*Merge, error) { var err error m := &Merge{ pathBuilder: table.NewAccountDatePathBuilder(), MaxFileSize: defaultMaxFileSize, MaxMergeJobs: 1, logger: runtime.ProcessLevelRuntime().Logger().WithContext(ctx).Named(LoggerNameETLMerge), } m.ctx, m.cancelFunc = context.WithCancel(ctx) for _, opt := range opts { opt(m) } if m.mp, err = getMpool(); err != nil { return nil, err } m.validate(ctx) m.runningJobs = make(chan struct{}, m.MaxMergeJobs) return m, nil } // validate check missing init elems. Panic with has missing elems. func (m *Merge) validate(ctx context.Context) { if m.table == nil { panic(moerr.NewInternalError(ctx, "merge task missing input 'table'")) } if m.fs == nil { panic(moerr.NewInternalError(ctx, "merge task missing input 'FileService'")) } } // Start for service Loop func (m *Merge) Start(ctx context.Context, interval time.Duration) { ticker := time.NewTicker(interval) defer ticker.Stop() for { select { case <-ticker.C: m.Main(ctx) case <-m.ctx.Done(): return } } } // Stop should call only once func (m *Merge) Stop() { m.cancelFunc() } // ======================= // main logic // ======================= type FileMeta struct { FilePath string FileSize int64 } // Main do list all accounts, all dates which belong to m.table.GetName() func (m *Merge) Main(ctx context.Context) error { var files = make([]*FileMeta, 0, 1000) var totalSize int64 accounts, err := m.fs.List(ctx, "/") if err != nil { return err } if len(accounts) == 0 { m.logger.Info("merge find empty data") return nil } m.logger.Debug(fmt.Sprintf("merge task with max file: %v MB", m.MaxFileSize/mpool.MB)) for _, account := range accounts { if !account.IsDir { m.logger.Warn(fmt.Sprintf("path is not dir: %s", account.Name)) continue } // build targetPath like "${account}/logs/*/*/*/${table_name}" targetPath := m.pathBuilder.Build(account.Name, table.MergeLogTypeLogs, table.ETLParamTSAll, m.table.GetDatabase(), m.table.GetName()) // search all paths like: // 0: ${account}/logs/2023/05/31/${table_name} // 1: ${account}/logs/2023/06/01/${table_name} // 2: ... rootPaths, err := m.getAllTargetPath(ctx, targetPath) if err != nil { return err } // get all file entry for _, rootPath := range rootPaths { m.logger.Info("start merge", logutil.TableField(m.table.GetIdentify()), logutil.PathField(rootPath), zap.String("metadata.ID", m.task.Metadata.ID)) fileEntrys, err := m.fs.List(ctx, rootPath) if err != nil { // fixme: m.logger.Error() return err } files = files[:0] totalSize = 0 for _, f := range fileEntrys { filepath := path.Join(rootPath, f.Name) totalSize += f.Size files = append(files, &FileMeta{filepath, f.Size}) if totalSize > m.MaxFileSize { if err = m.doMergeFiles(ctx, files); err != nil { m.logger.Error(fmt.Sprintf("merge task meet error: %v", err)) } files = files[:0] totalSize = 0 } } if len(files) > 0 { if err = m.doMergeFiles(ctx, files); err != nil { m.logger.Warn(fmt.Sprintf("merge task meet error: %v", err)) } } } } return err } func (m *Merge) getAllTargetPath(ctx context.Context, filePath string) ([]string, error) { sep := "/" pathDir := strings.Split(filePath, sep) l := list.New() if pathDir[0] == "" { l.PushBack(sep) } else { l.PushBack(pathDir[0]) } for i := 1; i < len(pathDir); i++ { length := l.Len() for j := 0; j < length; j++ { elem := l.Remove(l.Front()) prefix := elem.(string) entries, err := m.fs.List(ctx, prefix) if err != nil { return nil, err } for _, entry := range entries { if !entry.IsDir && i+1 != len(pathDir) { continue } matched, err := path.Match(pathDir[i], entry.Name) if err != nil { return nil, err } if !matched { continue } l.PushBack(path.Join(prefix, entry.Name)) } } } length := l.Len() fileList := make([]string, 0, length) for idx := 0; idx < length; idx++ { fileList = append(fileList, l.Remove(l.Front()).(string)) } return fileList, nil } // doMergeFiles handle merge (read->write->delete) ops for all files in the target directory. // Handle the files one
) const LoggerNameETLMerge = "ETLMerge"
random_line_split
pg_v6.x.x.js
// `Function` types exised in this file, cause of they come from another // untyped npm lib. /* Cause of <flow 0.36 did not support export type very well, // so copy the types from pg-pool // https://github.com/flowtype/flow-typed/issues/16 // https://github.com/facebook/flow/commit/843389f89c69516506213e298096a14867a45061 const Pool = require('pg-pool'); import type { PgPoolConfig, PoolConnectCallback, DoneCallback, PoolClient } from 'pg-pool'; */ // ------------- copy from 'pg-pool' ------------>> /* * PgPoolConfig's properties are passed unchanged to both * the node-postgres Client constructor and the node-pool constructor * allowing you to fully configure the behavior of both * node-pool (https://github.com/coopernurse/node-pool) */ declare type PgPoolConfig = { // node-pool ---------------- name: string, create: Function, destroy: Function, max: number, min: number, refreshIdle: boolean, idleTimeoutMillis: number, reapIntervalMillis: number, returnToHead: boolean, priorityRange: number, validate: Function, validateAsync: Function, log: Function, // node-postgres Client ------ //database user's name user: string, //name of database to connect database: string, //database user's password password: string, //database port port: number, // database host. defaults to localhost host?: string, // whether to try SSL/TLS to connect to server. default value: false ssl?: boolean, // name displayed in the pg_stat_activity view and included in CSV log entries // default value: process.env.PGAPPNAME application_name?: string, // fallback value for the application_name configuration parameter // default value: false fallback_application_name?: string, // pg-pool Client: mixed, Promise: mixed, onCreate: Function, }; /* * Not extends from Client, cause some of Client's functions(ex: connect and end) * should not be used by PoolClient (which returned from Pool.connect). */ declare type PoolClient = { release(error?: mixed): void, query: ( (query: QueryConfig|string, callback?: QueryCallback) => Query ) & ( (text: string, values: Array<any>, callback?: QueryCallback) => Query ), on: ((event: 'drain', listener: () => void) => events$EventEmitter )& ((event: 'error', listener: (err: PG_ERROR) => void) => events$EventEmitter )& ((event: 'notification', listener: (message: any) => void) => events$EventEmitter )& ((event: 'notice', listener: (message: any) => void) => events$EventEmitter )& ((event: 'end', listener: () => void) => events$EventEmitter ), } declare type PoolConnectCallback = (error: PG_ERROR|null, client: PoolClient|null, done: DoneCallback) => void; declare type DoneCallback = (error?: mixed) => void; // https://github.com/facebook/flow/blob/master/lib/node.js#L581 // on() returns a events$EventEmitter declare class Pool extends events$EventEmitter { constructor(options: $Shape<PgPoolConfig>, Client?: Class<Client>): void; connect(cb?: PoolConnectCallback): Promise<PoolClient>; take(cb?: PoolConnectCallback): Promise<PoolClient>; end(cb?: DoneCallback): Promise<void>; // Note: not like the pg's Client, the Pool.query return a Promise, // not a Thenable Query which Client returned. // And there is a flow(<0.34) issue here, when Array<mixed>, // the overloading will not work query: ( (query: QueryConfig|string, callback?: QueryCallback) => Promise<ResultSet> ) & ( (text: string, values: Array<any>, callback?: QueryCallback) => Promise<ResultSet>); /* flow issue: https://github.com/facebook/flow/issues/2423 * When this fixed, this overloading can be used. */ /* on: ((event: 'connect', listener: (client: PoolClient) => void) => events$EventEmitter )& ((event: 'acquire', listener: (client: PoolClient) => void) => events$EventEmitter )& ((event: "error", listener: (err: PG_ERROR) => void) => events$EventEmitter )& ((event: string, listener: Function) => events$EventEmitter); */ } // <<------------- copy from 'pg-pool' ------------------------------ // error declare type PG_ERROR = { name: string, length: number, severity: string, code: string, detail: string|void, hint: string|void, position: string|void, internalPosition: string|void, internalQuery: string|void, where: string|void, schema: string|void, table: string|void, column: string|void, dataType: string|void, constraint: string|void, file: string|void, line: string|void, routine: string|void }; declare type ClientConfig = { //database user's name user?: string, //name of database to connect database?: string, //database user's password password?: string, //database port port?: number, // database host. defaults to localhost host?: string, // whether to try SSL/TLS to connect to server. default value: false ssl?: boolean, // name displayed in the pg_stat_activity view and included in CSV log entries // default value: process.env.PGAPPNAME application_name?: string, // fallback value for the application_name configuration parameter // default value: false fallback_application_name?: string, } declare type Row = { [key: string]: mixed, }; declare type ResultSet = { command: string, rowCount: number, oid: number, rows: Array<Row>, }; declare type ResultBuilder = { command: string, rowCount: number, oid: number, rows: Array<Row>, addRow: (row: Row) => void, }; declare type QueryConfig = { name?: string, text: string, values?: any[], }; declare type QueryCallback = (err: PG_ERROR|null, result: ResultSet|void) => void; declare type ClientConnectCallback = (err: PG_ERROR|null, client: Client|void) => void; /* * lib/query.js * Query extends from EventEmitter in source code. * but in Flow there is no multiple extends. * And in Flow await is a `declare function $await<T>(p: Promise<T> | T): T;` * seems can not resolve a Thenable's value type directly * so `Query extends Promise` to make thing temporarily work. * like this: * const q = client.query('select * from some'); * q.on('row',cb); // Event * const result = await q; // or await * * ToDo: should find a better way. */ declare class Query extends Promise<ResultSet> { then<U>( onFulfill?: ?((value: ResultSet) => Promise<U> | U), onReject?: ?((error: PG_ERROR) => Promise<U> | U) ): Promise<U>; // Because then and catch return a Promise, // .then.catch will lose catch's type information PG_ERROR. catch<U>( onReject?: ?((error: PG_ERROR) => Promise<U> | U) ): Promise<U>; on : ((event: 'row', listener: (row: Row, result: ResultBuilder) => void) => events$EventEmitter )& ((event: 'end', listener: (result: ResultBuilder) => void) => events$EventEmitter )& ((event: 'error', listener: (err: PG_ERROR) => void) => events$EventEmitter ); } /* * lib/client.js * Note: not extends from EventEmitter, for This Type returned by on(). * Flow's EventEmitter force return a EventEmitter in on(). * ToDo: Not sure in on() if return events$EventEmitter or this will be more suitable * return this will restrict event to given literial when chain on().on().on(). * return a events$EventEmitter will fallback to raw EventEmitter, when chains */ declare class Client { constructor(config?: string | ClientConfig): void; connect(callback?: ClientConnectCallback):void; end(): void; escapeLiteral(str: string): string; escapeIdentifier(str: string): string; query: ( (query: QueryConfig|string, callback?: QueryCallback) =>
random_line_split
domaintools.py
- mesh using marching cubes - calculate volume and area of domains using mesh ''' def __init__(self,coords,fields, density_field_index=0, density_threshold = 0.5): ''' Define and calculate useful variables for DomainAnalysis routines ''' self.__coords = coords self.__fields = fields self.__density_field_index = density_field_index self.__density_threshold = density_threshold self.__ndim = len(coords.shape) - 1 self.__Nx = coords.shape[:self.__ndim] self.__nfields = fields.shape[self.__ndim] self.__M = np.prod(self.__Nx) # assume box starts at (0,0,0) and ends at (lx,ly,lz) if not np.all(self.__coords.ravel()[0:self.__ndim] == np.zeros(self.__ndim)): raise ValueError("coords[0,0,0] != (0,0,0)") if self.__ndim == 2: #self.__boxl = tuple(self.__coords[-1,-1] + self.__coords[1,1]) #self.__boxh = tuple(np.array(self.__boxl)*0.5) self.__gridspacing = (self.__coords[1,0][0], self.__coords[0,1][1]) self.__hvoxel = np.array([coords[1,0],coords[0,1]]) elif self.__ndim == 3: #self.__boxl = tuple(self.__coords[-1,-1,-1] + self.__coords[1,1,1]) #self.__boxh = tuple(np.array(self.__boxl)*0.5) self.__gridspacing = (self.__coords[1,0,0][0], self.__coords[0,1,0][1], self.__coords[0,0,1][2]) self.__hvoxel = np.array([coords[1,0,0],coords[0,1,0],coords[0,0,1]]) self.__hcell = self.__hvoxel * self.__Nx self.__volvoxel = np.linalg.det(self.__hvoxel) assert (np.abs(self.__volvoxel - np.linalg.det(self.__hcell) / self.__M) < 1e-5), "Volume of voxel != (Volume of cell / n voxels). This should be true!" self.__boxl = tuple(np.sqrt(np.sum(np.square(self.__hcell),axis=1))) self.__boxh = tuple(np.array(self.__boxl)*0.5) # check if orthorhombic self.__orthorhombic = True hnorm = self.__hcell / np.linalg.norm(self.__hcell, axis=0) if self.__ndim == 2 and np.dot(hnorm[0],hnorm[1]) != 0: self.__orthorhombic = False elif self.__ndim == 3 : if np.dot(hnorm[0],[1,0,0]) != 0 or np.dot(hnorm[1],[0,1,0]) != 0 or np.dot(hnorm[2],[0,0,1]) != 0: self.__orthorhombic = False print("Warning! Cell is not orthorhombic. This code was written for orthorhombic cells and non-orthorhombic support is in progress. So be careful, and check that the code is doing what you think it should!") # check if density field is reasonable between 0-1, if not throw warning if self.__ndim == 2: mindensity= np.min(self.__fields[:,:,self.__density_field_index]) maxdensity= np.max(self.__fields[:,:,self.__density_field_index]) elif self.__ndim == 3: mindensity= np.min(self.__fields[:,:,:,self.__density_field_index]) maxdensity= np.max(self.__fields[:,:,:,self.__density_field_index]) if maxdensity > 1.0 or mindensity < 0.0: print("Warning: The density field is not between 0-1 (min: {}, max: {}). The specified threshold of {} might be inappropriate.".format(mindensity,maxdensity,self.__density_threshold)) self.__needToIndexDomains = True def setDensityThreshold(density_threshold): self.__density_threshold = density_threshold # if changing the Density threshold, will need to index domains again self.__needToIndexDomains = True def getNdim(self): return self.__ndim def getBoxl(self): return self.__boxl def getVolVoxel(self): return self.__volvoxel def getDomainStats(self, useMesh=True, plotMesh=False,outputMesh=False,add_periodic_domains=False, applyPBC=True): ''' Calculate properties of each of the domains return com, surface_area, volume, IQ if useMesh == True, calculate a isosurface mesh to calculate the volumes and areas. This is very accurate, but can have issues creating a good mesh if domains are poorly defined (as in certain CL systems) (Specifically the issue is if two domains are only separated by a single grid point. When this happens, the border around the domain belongs to two domains simultaneously and my current burning algorithm throws an error. I use the border around a domain when applying PBC's to make sure a domain is continuous. Eventually I might think of a better algorithm that will be robust to this edge case... ) useMesh == False uses the less accurate approach of summing over the voxels to get the volume and area the volume is still pretty accurate, the area...well, I'm not even going to implement it since in CL I only want volume add periodic domains = true adds a center for mass at each of the locations for each periodic domain ''' if useMesh and not self.__orthorhombic: print("Warning: computing volume/area using mesh, but cell is not orthorhombic. This will lead to errors in the surface areas calculation of the domains") # create boolean selector from density fields for region definition if self.__ndim == 2: isdomain_array = (self.__fields[:,:,self.__density_field_index] > self.__density_threshold) elif self.__ndim == 3: isdomain_array = (self.__fields[:,:,:,self.__density_field_index] > self.__density_threshold) # FIXME, things break for non-cubic boxes. It must have to do with the vtk vs numpy indexing # identify domains if self.__needToIndexDomains: self.__regionID = None # initially empty, created in computeRegionIDs self.__ndomains = self.identifyAndIndexDomains(isdomain_array) else: print("Note: Using cached domain ID's") #nstats = 1+ 3*getCenter + getArea + getVol + getIQ #stats = np.zeros((self.__ndomains,nstats)) com = np.zeros((self.__ndomains, self.__ndim)) surface_area = np.zeros(self.__ndomains) volume = np.zeros(self.__ndomains) IQ = np.zeros(self.__ndomains) #for each domain for idomain in range(0,self.__ndomains): # calc center of domain com[idomain,:] = self.calcDomainCOM(idomain+1,units='coord') if useMesh: if self.__ndim == 2: # mesh domain contours,density_centered = self.meshSingleDomain(idomain+1,wrap_before_mesh=applyPBC) assert (len(contours) == 1), "The contour should only be one curve, if not the area and volume calculations will be completely wrong!" # get surface area (perimeter) and volume (area) surface_area[idomain] = self.contour_perimeter(contours[0]) volume[idomain] = self.contour_area(contours[0]) if plotMesh: # draw surface behind the mesh self.plotContours2D(contours,filename="mesh.{}.png".format(idomain+1),surface=density_centered) # dont draw surface behind the mesh #self.plotContours2D(contours,filename="mesh.{}.png".format(idomain+1)) if self.__ndim == 3: # mesh domain verts, faces, normals, values = self.meshSingleDomain(idomain+1,wrap_before_mesh=applyPBC) # get surface area, volume and isoperimetric quotient surface_area[idomain] = measure.mesh_surface_area(verts, faces) volume[idomain] = self.mesh_volume(verts,faces) if plotMesh: self.plotMesh3D(verts,faces, filename="mesh.{}.png".format(idomain+1)) if outputMesh: self.writeMesh(verts,faces,fileprefix="mesh.{}.".format(idomain+1)) IQ[idomain] = self.calcIQ(surface_area[idomain], volume[idomain]) else: surface_area[idomain] = -1.0 #FIXME surface_area is currently not calculated if no mesh volume[idomain] = self
random_line_split
domaintools.py
entire domain is continuous (ie not split across boundaries) 2) Grab a little margin around each domain (the domain's "border") so that marching cubes can interpolate. The border is computed in identifyAndIndexDomains(). 3) Mesh the domain using marching cubes ''' isdomain = (self.__regionID == idomain) #isborder = (self.__borderID == idomain) isborder = np.zeros(self.__Nx,dtype=np.bool) # convert to tuple to correctly set indicies of isborder isborder[tuple(self.__regionBorder[idomain-1])] = True if self.__ndim == 2: alldensity = self.__fields[:,:, self.__density_field_index] elif self.__ndim == 3: alldensity = self.__fields[:,:,:, self.__density_field_index] # center box and properties around center of mass (so that domains don't cross pbc) # np.roll is the key function here # if domains percolate then this will break com_box = self.calcDomainCOM(idomain,units='box') com_coord = self.calcDomainCOM(idomain,units='coord') #coords_tmp = np.copy(self.__coords) for i in range(self.__ndim): shift = int(0.5*self.__Nx[i] - com_box[i]) isdomain = np.roll(isdomain,shift,axis=i) isborder = np.roll(isborder,shift,axis=i) #coords_tmp = np.roll(coords_tmp,shift,axis=i) alldensity = np.roll(alldensity,shift,axis=i) # isolate the domain of interest isdomain_or_isborder = isdomain + isborder # since both bool, sum is the union of the two fields mydensity = np.zeros(self.__Nx) mydensity[isdomain_or_isborder] = alldensity[isdomain_or_isborder] # #tmp =mydensity[:,:,:,np.newaxis] #viz.writeVTK('test.vtk',self.__coords,tmp) # plot for debugging # import sys # sys.path.append('/home/trent/Documents/college/polymers/ResearchTools/plot/') # sys.path.append('../../') # import PolyFTS_to_VTK # AllCoords = np.reshape(coords_tmp,(self.__M, self.__ndim)) # AllCoords = AllCoords.T # tmp = np.ravel(isdomain) # tmp = np.resize(tmp,(1,len(tmp))) # PolyFTS_to_VTK.writeVTK("isdomain.vtk", self.__Nx, True, self.__M, AllCoords,tmp) # tmp = np.ravel(isborder) # tmp = np.resize(tmp,(1,len(tmp))) # PolyFTS_to_VTK.writeVTK("isborder.vtk", self.__Nx, True, self.__M, AllCoords,tmp) # tmp = np.ravel(mydensity) # tmp = np.resize(tmp,(1,len(tmp))) # PolyFTS_to_VTK.writeVTK("mydensity.vtk", self.__Nx, True, self.__M, AllCoords,tmp) # mesh! (using scikit-image) if self.__ndim == 2: # calculate contours in 'box' units contours = measure.find_contours(mydensity, self.__density_threshold) # convert 'box' units to 'coords' units (this is key for non-orthorhombic cells) for i,c in enumerate(contours): contours[i] = np.array((np.mat(self.__hvoxel).T * np.mat(c).T).T) return contours,alldensity elif self.__ndim == 3: #from skimage import measure #verts, faces, normals, values = measure.marching_cubes_lewiner(mydensity, self.__density_threshold, spacing = self.__gridspacing) # do not use spacing=self.__gridspacing, let marching cubes calculate verticies in 'box' units (0,Nx) verts, faces, normals, values = measure.marching_cubes_lewiner(mydensity, self.__density_threshold) # convert 'box' units to 'coords' units (this is key for non-orthorhombic cells) for i,v in enumerate(verts): verts[i] = np.array((np.mat(self.__hvoxel).T * np.mat(v).T).T) n = normals[i] normals[i] = np.array((np.mat(self.__hvoxel).T * np.mat(n).T).T) return verts, faces, normals, values, alldensity else: raise ValueError("Meshing makes no sense in 1 dimension!") def contour_perimeter(self,contour): '''calculate perimeter of contour by suming up the line-segment lengths ''' assert (np.all(contour[0] == contour[-1])), "Contour must be closed! (1st point == last point)" #TODO vectorize this for loop p = 0.0 n=contour.shape[0] for i in range(n-1): v = contour[i+1] - contour[i] p += np.sqrt(np.square(v).sum()) return p def contour_area(self,contour): ''' Calculate area of shape enclosed in contour similar to calculating mesh volume use trick from http://geomalgorithms.com/a01-_area.html ''' assert (np.all(contour[0] == contour[-1])), "Contour must be closed! (1st point == last point)" #TODO vectorize this for loop area = 0.0 n=contour.shape[0] for i in range(n-1): area += np.cross(contour[i],contour[i+1]) return 0.5*np.abs(area) def mesh_volume(self, verts, faces): '''calculate volume of a mesh, using cross product trick ''' actual_verts = verts[faces] v0 = actual_verts[:,0,:] v1 = actual_verts[:,1,:] v2 = actual_verts[:,2,:] # TODO: dont do the volume rescaling here, instead change the actual position of "verts" in getDomainStats my scaling each vert position by h (or something along these lines) # introduce factor to scale the volume if non-orthorhombic box # this is because the mesh is generated assuming a if self.__orthorhombic: factor=1.0 else: factor = self.__volvoxel / np.prod(self.__gridspacing) # 1/6 \sum v0 \cdot (v1 x v2) return factor * 1.0/6.0 * np.abs( (v0*np.cross(v1,v2)).sum(axis=1).sum() ) def voxel_volume(self,idomain): ''' Get volume of idomain using voxels ''' #v_voxel = np.prod(self.__gridspacing) # volume of single voxel v_voxel = self.__volvoxel n_voxel = np.sum(self.__regionID == idomain) # number of voxels in ith domain return v_voxel*n_voxel def writeContours(self, contours,filename): ''' write contours to data files The format is built for using the gnuplot command "plot 'file' index 0 u 1:2" Each individual contor is plotted in two x,y columns Each contour is separated by two new lines (see gnuplot "index" for explanation) ''' with open(filename,'wb') as f: f.write(b"# NContours = %d\n" % len(contours)) for contour in contours: #np.savetxt(f,contour,footer='\n',comments='') np.savetxt(f,contour) f.write(b"\n\n") def plotContours2D(self, contours, surface=None, filename=None): ''' Plot a mesh from marching squares ''' import matplotlib.pyplot as plt # Display the image and plot all contours found fig, ax = plt.subplots() ax.set_aspect(1) if surface is not None: x = np.arange(self.__Nx[0]) y = np.arange(self.__Nx[1]) xx,yy = np.meshgrid(x,y) # nice one-liner to rotate all of xx and yy using hvoxel xxrot,yyrot = np.einsum('ji, mni -> jmn', self.__hvoxel.T, np.dstack([xx, yy])) # using pcolormesh allows us to use non-orthorhombic boxes im=ax.pcolormesh(xxrot,yyrot,surface.T) fig.colorbar(im,ax=ax) # imshow only worked for orthorhombic boxes #ax.imshow(surface.T, interpolation='nearest') for n, contour in enumerate(contours): ax.plot(contour[:, 0], contour[:, 1], linewidth=2, color='k',ls='--',marker='o') #ax.axis('image') #ax.set_xticks([]) #ax.set_yticks([]) if not filename: plt.show() else:
plt.show() plt.savefig(filename)
conditional_block
domaintools.py
volume = np.zeros(self.__ndomains) IQ = np.zeros(self.__ndomains) #for each domain for idomain in range(0,self.__ndomains): # calc center of domain com[idomain,:] = self.calcDomainCOM(idomain+1,units='coord') if useMesh: if self.__ndim == 2: # mesh domain contours,density_centered = self.meshSingleDomain(idomain+1,wrap_before_mesh=applyPBC) assert (len(contours) == 1), "The contour should only be one curve, if not the area and volume calculations will be completely wrong!" # get surface area (perimeter) and volume (area) surface_area[idomain] = self.contour_perimeter(contours[0]) volume[idomain] = self.contour_area(contours[0]) if plotMesh: # draw surface behind the mesh self.plotContours2D(contours,filename="mesh.{}.png".format(idomain+1),surface=density_centered) # dont draw surface behind the mesh #self.plotContours2D(contours,filename="mesh.{}.png".format(idomain+1)) if self.__ndim == 3: # mesh domain verts, faces, normals, values = self.meshSingleDomain(idomain+1,wrap_before_mesh=applyPBC) # get surface area, volume and isoperimetric quotient surface_area[idomain] = measure.mesh_surface_area(verts, faces) volume[idomain] = self.mesh_volume(verts,faces) if plotMesh: self.plotMesh3D(verts,faces, filename="mesh.{}.png".format(idomain+1)) if outputMesh: self.writeMesh(verts,faces,fileprefix="mesh.{}.".format(idomain+1)) IQ[idomain] = self.calcIQ(surface_area[idomain], volume[idomain]) else: surface_area[idomain] = -1.0 #FIXME surface_area is currently not calculated if no mesh volume[idomain] = self.voxel_volume(idomain+1) # get volume from voxels IQ[idomain] = 0.0 if add_periodic_domains: for idomain in range(1,self.__ndomains+1): extracom = self.pbc_domain_locs(idomain,com[idomain-1]) if extracom: com = np.concatenate((com,extracom)) extra_num = len(extracom) IQ = np.concatenate((IQ,[IQ[idomain-1]]*extra_num)) surface_area = np.concatenate((surface_area,[surface_area[idomain-1]]*extra_num)) volume = np.concatenate((volume,[volume[idomain-1]]*extra_num)) return self.__ndomains, com, surface_area, volume, IQ def
(self, area, vol): '''returns isoperimetric coefficient. 1 for perfect circle or sphere, less for other shapes note that in 2d "area" is actually perimeter, and "vol" is actually area This difference didn't seem to warrant a completely different method though ''' if self.__ndim == 2: return 4.0*np.pi*vol / (area * area) elif self.__ndim == 3: return 36.0*np.pi * vol*vol / (area * area * area) def meshAllDomains(self,datafile=None,plotfile=None): ''' Mesh all domains using marching cubes or marching squares Options: - Save plot of mesh to plotfile if specified - save mesh data to file if specified ''' if self.__ndim == 2: mydensity = self.__fields[:,:, self.__density_field_index] # calculate contours in 'box' units contours = measure.find_contours(mydensity, self.__density_threshold) # convert 'box' units to 'coords' units (this is key for non-orthorhombic cells) for i,c in enumerate(contours): contours[i] = np.array((np.mat(self.__hvoxel).T * np.mat(c).T).T) # this is old, only works for orthorhombic cells # need to scale contours to be in terms of 'coords' dimensions #for c in contours: # c /= self.__Nx # c *= self.__boxl if datafile: self.writeContours(contours,datafile) if plotfile: self.plotContours2D(contours,surface=mydensity,filename=plotfile) return contours elif self.__ndim == 3: mydensity = self.__fields[:,:,:, self.__density_field_index] #verts, faces, normals, values = measure.marching_cubes_lewiner(mydensity, self.__density_threshold, spacing = self.__gridspacing) # do not use spacing=self.__gridspacing, let marching cubes calculate verticies in 'box' units (0,Nx) verts, faces, normals, values = measure.marching_cubes_lewiner(mydensity, self.__density_threshold) # convert 'box' units to 'coords' units (this is key for non-orthorhombic cells) for i,v in enumerate(verts): verts[i] = np.array((np.mat(self.__hvoxel).T * np.mat(v).T).T) n = normals[i] normals[i] = np.array((np.mat(self.__hvoxel).T * np.mat(n).T).T) print('Warning: Rotating verts and normals from "box" units to "coords" units is untested! Check this before proceeding!') pdb.set_trace() if datafile: raise NotImplementedError("Support for writing 3D mesh not implemented") if plotfile: self.plotMesh3D(verts,faces,filename=plotfile) return verts,faces, normals, values def meshSingleDomain(self,idomain, wrap_before_mesh=True): ''' Function to: 1) apply PBC to the domains so that an entire domain is continuous (ie not split across boundaries) 2) Grab a little margin around each domain (the domain's "border") so that marching cubes can interpolate. The border is computed in identifyAndIndexDomains(). 3) Mesh the domain using marching cubes ''' isdomain = (self.__regionID == idomain) #isborder = (self.__borderID == idomain) isborder = np.zeros(self.__Nx,dtype=np.bool) # convert to tuple to correctly set indicies of isborder isborder[tuple(self.__regionBorder[idomain-1])] = True if self.__ndim == 2: alldensity = self.__fields[:,:, self.__density_field_index] elif self.__ndim == 3: alldensity = self.__fields[:,:,:, self.__density_field_index] # center box and properties around center of mass (so that domains don't cross pbc) # np.roll is the key function here # if domains percolate then this will break com_box = self.calcDomainCOM(idomain,units='box') com_coord = self.calcDomainCOM(idomain,units='coord') #coords_tmp = np.copy(self.__coords) for i in range(self.__ndim): shift = int(0.5*self.__Nx[i] - com_box[i]) isdomain = np.roll(isdomain,shift,axis=i) isborder = np.roll(isborder,shift,axis=i) #coords_tmp = np.roll(coords_tmp,shift,axis=i) alldensity = np.roll(alldensity,shift,axis=i) # isolate the domain of interest isdomain_or_isborder = isdomain + isborder # since both bool, sum is the union of the two fields mydensity = np.zeros(self.__Nx) mydensity[isdomain_or_isborder] = alldensity[isdomain_or_isborder] # #tmp =mydensity[:,:,:,np.newaxis] #viz.writeVTK('test.vtk',self.__coords,tmp) # plot for debugging # import sys # sys.path.append('/home/trent/Documents/college/polymers/ResearchTools/plot/') # sys.path.append('../../') # import PolyFTS_to_VTK # AllCoords = np.reshape(coords_tmp,(self.__M, self.__ndim)) # AllCoords = AllCoords.T # tmp = np.ravel(isdomain) # tmp = np.resize(tmp,(1,len(tmp))) # PolyFTS_to_VTK.writeVTK("isdomain.vtk", self.__Nx, True, self.__M, AllCoords,tmp) # tmp = np.ravel(isborder) # tmp = np.resize(tmp,(1,len(tmp))) # PolyFTS_to_VTK.writeVTK("isborder.vtk", self.__Nx, True, self.__M, AllCoords,tmp) # tmp = np.ravel(mydensity) # tmp = np.resize(tmp,(1,len(tmp))) # PolyFTS_to_VTK.writeVTK("mydensity.vtk", self.__Nx, True, self.__M, AllCoords,tmp) # mesh! (using scikit-image) if self.__ndim ==
calcIQ
identifier_name
domaintools.py
ax = fig.add_subplot(111, projection='3d') # Fancy indexing: `verts[faces]` to generate a collection of triangles mesh = Poly3DCollection(verts[faces]) mesh.set_edgecolor('k') ax.add_collection3d(mesh) ax.set_xlim(0, self.__boxl[0]) ax.set_ylim(0, self.__boxl[1]) ax.set_zlim(0, self.__boxl[2]) plt.tight_layout() if not filename: plt.show() else: plt.savefig(filename) plt.close() def writeMesh(self,verts,faces,fileprefix="mesh."): '''save mesh to a file''' np.savetxt(fileprefix + "verts.dat",verts,header='Autogenerated mesh file. Contains x y z positions of each vertex' ) np.savetxt(fileprefix + "faces.dat",faces, header='Autogenerated mesh file. Contains vertex indicies of each triangle in mesh') def calcDomainCOM(self,idomain, units='box'): ''' given a domain index, apply PBC and return the center of mass Can return result in 'box' units (0 to Nx) or in 'coord' units (0 to boxl) ''' isdomain = (self.__regionID == idomain) N = np.sum(isdomain) indicies = np.transpose(np.nonzero(isdomain)) coords = np.zeros((N,self.__ndim)) #TODO could I do this without for loop? (will be faster) for i in range(N): index = tuple(indicies[i]) if units == "box": coord = index + self.__image_flags[index] * self.__Nx elif units == "coord": coord = self.__coords[index] + self.__image_flags[index] * self.__boxl else: raise ValueError("Invalid units entry of \'%s\'" % units) coords[i] = coord # now average in order to get center of the domain (each point weighted evenly) return np.average(coords,axis=0) def identifyAndIndexDomains(self, isdomain_array): ''' This function populates the regionID member variable if regionID == 0, it is the continuous domain points with regionID == i, correspond to the ith domain Also sets - image_flags (which PBC a domain belongs to) and - isborder (whether a grid is adjacent to a domain) ''' # if regionID == -1, it has not been visited self.__regionID = np.full(self.__Nx,-1,dtype=np.int32); # image_flags are only for the domains themselves, the image flags of the border are not needed self.__image_flags = np.zeros(list(self.__Nx) + [self.__ndim]) ###self.__borderID = np.full(self.__Nx,0,dtype=np.int32); self.__regionBorder = [[]] region_number = 1; #this is where the recursive magic happens for i in np.ndindex(self.__Nx): if (self.__regionID[i] == -1): if (isdomain_array[i]): current_image_flag = np.zeros(self.__ndim) self.spread_region(i, region_number, isdomain_array,current_image_flag); self.__regionBorder.append([]) region_number += 1; else: # note - dont assign borders here, this is acomplished inside of spread_region() self.__regionID[i] = 0; self.__image_flags[i]= np.zeros(self.__ndim) # now cleaning up nregions = region_number-1; # remove last element from lists (should be empty) assert (self.__regionBorder[-1] == []) del self.__regionBorder[-1] # check that lengths of region structs are correct assert (len(self.__regionBorder) == nregions) # convert border and imageflag lists to numpy arrays for i in range(nregions): self.__regionBorder[i] = np.array(self.__regionBorder[i]).transpose() # change caching flag self.__needToIndexDomains = False return nregions def spread_region(self, coord_center, region_number, isdomain_array,current_image_flag): ''' recursive function: given a point, find the neighbors of that point, for each neighbor, send back into function ''' self.__regionID[coord_center] = region_number; self.__image_flags[coord_center] = current_image_flag neighbors,neigh_image_flags = self.getNeighbors(coord_center, current_image_flag); for i in range(len(neighbors)): neighbor = neighbors[i] image_flag = tuple(neigh_image_flags[i]) if (self.__regionID[neighbor] == -1): if (isdomain_array[neighbor]): self.spread_region(neighbor, region_number, isdomain_array, image_flag); else: self.__regionID[neighbor] = 0; if self.__regionID[neighbor] == 0: # only append to list if neighbor isn't in there already if neighbor not in self.__regionBorder[region_number-1]: # must have neighbors that are domain (since spread region is only called # if coord_center is a domain). Therefore, it's a border self.__regionBorder[region_number-1].append(neighbor) # set image flags of non-domain adjacent to domain according to the domain # basically, I need the border to have the correct image flags # NOTE: image flags of borders aren't used anymore #self.__regionBorderImageFlags[region_number-1].append(image_flag) def getNeighbors(self,coord_center,center_image_flag=[]): ''' given a coord (tuple), return 1) the neighbors of that coord (also tuple) AND 2) the image_flag (which PBC) that neighbor corresponds to ''' # set default if center_image_flag == []: center_image_flag = np.zeros(self.__ndim) neighbors = []; neigh_image_flags = np.tile(center_image_flag, (2*self.__ndim,1)) for i in range(self.__ndim): coord_neigh = np.copy(coord_center) coord_neigh[i] -= 1; self.applyPBC(coord_neigh, neigh_image_flags[2*i]); neighbors.append(tuple(coord_neigh)) coord_neigh = np.copy(coord_center) coord_neigh[i] += 1 self.applyPBC(coord_neigh,neigh_image_flags[2*i+1]) neighbors.append(tuple(coord_neigh)) return neighbors, neigh_image_flags def applyPBC(self,coord,image_flag): for i in range(self.__ndim): if coord[i] >= self.__Nx[i]: coord[i] = 0 image_flag[i] += 1 if coord[i] < 0: coord[i] = self.__Nx[i] - 1 image_flag[i] -= 1 def pbc_domain_locs(self,idomain,local_com): '''This function returns the locations of the other domains on the periodic boundary. for example for a domain with its center on the corner of the box, it would return all the other box corners''' extra_com = [] domain = (self.__regionID == idomain) local_flags = self.__image_flags[domain] unique_flags = set([]) for i in range(np.shape(local_flags)[0]): unique_flags.add(tuple(local_flags[i])) unique_flags.remove((0,0,0))#remove duplicate com for flag in unique_flags: flag = np.array(flag) new_com = -1*flag*self.__boxl+local_com #find the location of the extra periodic com by adding the box length times the flag to the current com extra_com.append(new_com) num_extra = len(extra_com) return extra_com class DomainTracker: def __init__(self, boxl, vol_threshold=0.2): self.__boxl = boxl # stores max box position, (lower corner is at 0,0,0) self.__boxh = 0.5*boxl self.__ndim = len(boxl) self.__vol_threshold = vol_threshold # volume threshold below which to ignore domains, percentage self.__is_init_pos = False #self.__msd = # stores average squared displacement (averaged over all micelles) def setInitialPositions(self,ndomains, com): ''' Set initial positions of domains ''' self.__ndomains = ndomains self.__pos0 = np.copy(com) # initial position of each domain self.__pos_prev = np.copy(com) self.__imageflags = np.zeros((self.__ndomains,self.__ndim)) # which PBC image is the domain in (so that MSD can exceed the size of box) self.__sqdisp = np.zeros(self.__ndomains) # stores squared displacement of each micelle self.__is_init_pos = True def getMSD(self):
''' Returns mean squared displacement (averaged over all micelles) ''' assert(self.__is_init_pos) return np.average(self.__sqdisp)
identifier_body
BackendMapping.ts
true, draggable : true }; // チームに関するデータ private teamSetting:any = []; private teamData:any = []; private teamMarker:any = []; private teamRoot:any = []; // テンプレート private template = { filterTeam: Cmn.dir + '/mus/filterTeam.mustache', fukudashi : Cmn.dir + '/mus/fukidashi.mustache', list: Cmn.dir + '/mus/backendList.mustache' }; private category:any; private resultList:any; // ターゲット private target = { table: '#resultListBody', result: '.resultList' }; constructor() { var _t = this, div = $('#resultMap').get(0); _t.areaMap = new google.maps.Map(div, _t.mapOption); // カテゴリーデータの取得 $.ajax({ url: Cmn.dir + '/data/category.json', dataType: 'json', type: 'GET', async: false, success: (data)=>{ this.category = data; } }); this.markerBounds = new google.maps.LatLngBounds(); _t.getEntryData(); // 画像クリック $(document).on('click', '.jsClick-ModalImage', function(e){ e.preventDefault(); var file = $(this).data('image'), w = Frame.getBrowserWidth(), h = Frame.getBrowserHeight(), tag = '<img src="' + Cmn.dir + '/uploads/' + file + '" alt="">'; // TODO: ブラウザサイズに応じて画像表示領域を変更 $('#modal-contents').html(tag); $('#modal').removeClass('hide'); }); // モーダルクローズ $('#modal-bg').on('click', ()=>{ $('#modal').addClass('hide'); $('#modal-contents').html(''); }); // チームフィルタリング $(document).on('change', '#filter-team', function(){ _t.resultList.removeClass('hide'); var selected = $(this).val(); if(selected === '0'){ // すべてを表示 _t.viewTeam = ''; for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i]; obj.setVisible(true); } }else{ _t.viewTeam = selected; // 一致しないチームリストを非表示にする _t.resultList.filter(function(index){ var self = $(this), team = self.data('team'); if(team !== selected) self.addClass('hide'); }); // 一致しないチームのピンを非表示にする for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i], team = obj.team; if(team === selected){ obj.setVisible(true); }else{ obj.setVisible(false); } } } }); // 各チームのトータル件数表示ボタン $('#entryTotal-btn').on('click', (e)=>{ e.preventDefault(); $('#entryTotal-data').toggleClass('show'); }); $(document).on('click', '.jsClick-Move', function(e){ var self = $(this), lat = self.data('lat'), lng = self.data('lng'), pos = new google.maps.LatLng(lat, lng); _t.areaMap.setCenter(pos); _t.areaMap.setZoom(18); }); // 1分ごとにデータを取得(1000ms * 60s = 60000ms setInterval(()=> { _t.getEntryData(); }, 60000); // 30秒毎に時間を更新(1000ms * 10s = 10000ms setInterval(()=>{ if(this.isData === false) return false; for (var i = 0, iLen = this.resultList.length; i < iLen; i++) { var obj = $(this.resultList[i]), created = obj.find('.created'), __c = created.data('created'), _c = this.getTimeDiff(__c); created.text(_c); } }, 10000); // 5分毎に削除データの取得(1000ms * 60s * 5min = 300000ms setInterval(()=>{ $.ajax({ url: Cmn.dir + '/deleteData', dataType: 'json', type: 'GET', success: (data)=>{ if(data.status === 'success'){ _t.resultList.filter(function(index){ var self = $(this), data_id = String(self.data('id')), isRemove = data.list.indexOf(data_id); if(isRemove > -1){ // 削除データが存在する場合 self.remove(); _t.resultList.splice(index, 1); _t.marker[index].setMap(null); } }); } }, error: ()=>{}, complete: ()=>{} }); }, 300000); //300000 // 各チームの登録件数 setInterval(()=>{ // 一度トータル件数を削除 for (var i = 0, iLen = this.teamSetting.length; i < iLen; i++) { var obj = this.teamSetting[i]; obj.total = 0; } // 件数を計算 for (var n = 0, nLen = this.teamData.length; n < nLen; n++) { var obj1 = this.teamData[n], isArr = this.teamSetting.filter((elem, index, arr)=>{ return (elem.name === obj1.team) }); isArr[0].total++; } // トータル件数をセット var elem = ''; for (var j = 0, jLen = this.teamSetting.length; j < jLen; j++) { var obj2 = this.teamSetting[j]; elem += '<li>' + obj2.name + ' : ' + obj2.total + '件</li>'; } $('#entryTotal-data').html(elem); }, 10000); } /** * 登録されたデータをオフセットで取得 */ getEntryData() { $.ajax({ url : Cmn.dir + '/allData?offset=' + this.offset, dataType: 'json', type : 'GET', success : (data)=> { switch (data.status) { case 'success': this.isData = true; this.offset = data.count; this.setTeamList(data.data); break; default: break; } }, error : ()=> { }, complete: ()=> { }
/** * チームデータの格納 * @param data */ setTeamList(data) { var elem = '', count = data.length; $.get(this.template.filterTeam, (template)=> { for (var i = 0, iLen = data.length; i < iLen; i++) { var obj = data[i], data_id = 0, isArr = this.teamSetting.filter((elem, index, arr)=> { // 配列内にデータが存在するかチェック return (elem.name === obj.team) }); // 該当するチームデータが存在しない場合はチーム情報をセット if (isArr.length === 0) { var len = this.teamSetting.length, //color_code = Math.floor(Math.random() * 16777215).toString(16), color_code = this.getRandomColor(this.teamSetting), team = { name : obj.team, color: color_code, id : len, total: 0 }; this.teamSetting.push(team); data_id = len; // <select>タグに挿入 elem += Mustache.render(template, obj); } else { data_id = isArr[0].id; } obj.team_id = data_id; this.teamData.push(obj); } $('#filter-team').append(elem); this.setMarker(count); this.setList(count); }); } /** * 登録データの表示 * @param count */ setList(count){ var diff = this.teamData.length - count; // 追加データの個数を返却 $.get(this.template.list, (template)=>{ var elem = ''; for (var i = this.teamData.length - 1; i >= diff; i--) { var obj = this.teamData[i], visible = (this.viewTeam === obj.team || this.viewTeam === '') ? '' : ' hide'; obj.color = this.teamSetting[obj.team_id].color; obj.category = this.category[obj.cat]; obj.cls = visible; obj.created = this.getTimeDiff(obj.created_at); elem += Mustache.render(template, obj); } $(this.target.table).prepend(elem); this.resultList =
}); }
identifier_name
BackendMapping.ts
true, draggable : true }; // チームに関するデータ private teamSetting:any = []; private teamData:any = []; private teamMarker:any = []; private teamRoot:any = []; // テンプレート private template = { filterTeam: Cmn.dir + '/mus/filterTeam.mustache', fukudashi : Cmn.dir + '/mus/fukidashi.mustache', list: Cmn.dir + '/mus/backendList.mustache' }; private category:any; private resultList:any; // ターゲット private target = { table: '#resultListBody', result: '.resultList' }; constructor() { var _t = this, div = $('#resultMap').get(0); _t.areaMap = new google.maps.Map(div, _t.mapOption); // カテゴリーデータの取得 $.ajax({ url: Cmn.dir + '/data/category.json', dataType: 'json', type: 'GET', async: false, success: (data)=>{ this.category = data; } }); this.markerBounds = new google.maps.LatLngBounds(); _t.getEntryData(); // 画像クリック $(document).on('click', '.jsClick-ModalImage', function(e){ e.preventDefault(); var file = $(this).data('image'), w = Frame.getBrowserWidth(), h = Frame.getBrowserHeight(), tag = '<img src="' + Cmn.dir + '/uploads/' + file + '" alt="">'; // TODO: ブラウザサイズに応じて画像表示領域を変更 $('#modal-contents').html(tag); $('#modal').removeClass('hide'); }); // モーダルクローズ $('#modal-bg').on('click', ()=>{ $('#modal').addClass('hide'); $('#modal-contents').html(''); }); // チームフィルタリング $(document).on('change', '#filter-team', function(){ _t.resultList.removeClass('hide'); var selected = $(this).val(); if(selected === '0'){ // すべてを表示 _t.viewTeam = ''; for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i]; obj.setVisible(true); } }else{ _t.viewTeam = selected; // 一致しないチームリストを非表示にする _t.resultList.filter(function(index){ var self = $(this), team = self.data('team'); if(team !== selected) self.addClass('hide'); }); // 一致しないチームのピンを非表示にする for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i], team = obj.team; if(team === selected){ obj.setVisible(true); }else{ obj.setVisible(false); } } } }); // 各チームのトータル件数表示ボタン $('#entryTotal-btn').on('click', (e)=>{ e.preventDefault(); $('#entryTotal-data').toggleClass('show'); }); $(document).on('click', '.jsClick-Move', function(e){ var self = $(this), lat = self.data('lat'), lng = self.data('lng'), pos = new google.maps.LatLng(lat, lng); _t.areaMap.setCenter(pos); _t.areaMap.setZoom(18); }); // 1分ごとにデータを取得(1000ms * 60s = 60000ms setInterval(()=> { _t.getEntryData(); }, 60000); // 30秒毎に時間を更新(1000ms * 10s = 10000ms setInterval(()=>{ if(this.isData === false) return false; for (var i = 0, iLen = this.resultList.length; i < iLen; i++) { var obj = $(this.resultList[i]), created = obj.find('.created'), __c = created.data('created'), _c = this.getTimeDiff(__c); created.text(_c); } }, 10000); // 5分毎に削除データの取得(1000ms * 60s * 5min = 300000ms setInterval(()=>{ $.ajax({ url: Cmn.dir + '/deleteData', dataType: 'json', type: 'GET', success: (data)=>{ if(data.status === 'success'){ _t.resultList.filter(function(index){ var self = $(this), data_id = String(self.data('id')), isRemove = data.list.indexOf(data_id); if(isRemove > -1){ // 削除データが存在する場合 self.remove(); _t.resultList.splice(index, 1); _t.marker[index].setMap(null); } }); } }, error: ()=>{}, complete: ()=>{} }); }, 300000); //300000 // 各チームの登録件数 setInterval(()=>{ // 一度トータル件数を削除 for (var i = 0, iLen = this.teamSetting.length; i < iLen; i++) { var obj = this.teamSetting[i]; obj.total = 0; } // 件数を計算 for (var n = 0, nLen = this.teamData.length; n < nLen; n++) { var obj1 = this.teamData[n], isArr = this.teamSetting.filter((elem, index, arr)=>{ return (elem.name === obj1.team) }); isArr[0].total++; } // トータル件数をセット var elem = ''; for (var j = 0, jLen = this.teamSetting.length; j < jLen; j++) { var obj2 = this.teamSetting[j]; elem += '<li>' + obj2.name + ' : ' + obj2.total + '件</li>'; } $('#entryTotal-data').html(elem); }, 10000); } /** * 登録されたデータをオフセットで取得 */ getEntryData() { $.ajax({ url : Cmn.dir + '/allData?offset=' + this.offset, dataType: 'json', type : 'GET', success : (data)=> { switch (data.status) { case 'success': this.isData = true; this.offset = data.count; this.setTeamList(data.data); break; default: break; } }, error : ()=> { }, complete: ()=> { } }); } /** * チームデータの格納 * @param data */ setTeamList(data) { var elem = '', count = data.length; $.get(this.template.filterTeam, (template)=> { for (var i = 0, iLen = data.length; i < iLen; i++) { var obj = data[i], data_id = 0, isArr = this.teamSetting.filter((elem, index, arr)=> { // 配列内にデータが存在するかチェック return (elem.name === obj.team) }); // 該当するチームデータが存在しない場合はチーム情報をセット if (isArr.length === 0) { var len = this.teamSetting.length, //color_code = Math.floor(Math.random() * 16777215).toString(16), color_code = this.getRandomColor(this.teamSetting), team = { name : obj.team, color: color_code, id : len, total: 0 }; this.teamSetting.push(team); data_id = len; // <select>タグに挿入 elem += Mustache.render(template, obj); } else { data_id = isArr[0].id; } obj.team_id = data_id;
visible = (this.viewTeam === obj.team || this.viewTeam == = '') ? '' : ' hide'; obj.color = this.teamSetting[obj.team_id].color; obj.category = this.category[obj.cat]; obj.cls = visible; obj.created = this.getTimeDiff(obj.created_at); elem += Mustache.render(template, obj); } $(this.target.table).prepend(elem); this.resultList
this.teamData.push(obj); } $('#filter-team').append(elem); this.setMarker(count); this.setList(count); }); } /** * 登録データの表示 * @param count */ setList(count){ var diff = this.teamData.length - count; // 追加データの個数を返却 $.get(this.template.list, (template)=>{ var elem = ''; for (var i = this.teamData.length - 1; i >= diff; i--) { var obj = this.teamData[i],
conditional_block
BackendMapping.ts
true, draggable : true }; // チームに関するデータ private teamSetting:any = []; private teamData:any = []; private teamMarker:any = []; private teamRoot:any = []; // テンプレート private template = { filterTeam: Cmn.dir + '/mus/filterTeam.mustache', fukudashi : Cmn.dir + '/mus/fukidashi.mustache', list: Cmn.dir + '/mus/backendList.mustache' }; private category:any; private resultList:any; // ターゲット private target = { table: '#resultListBody', result: '.resultList' }; constructor() { var _t = this, div = $('#resultMap').get(0); _t.areaMap = new google.maps.Map(div, _t.mapOption); // カテゴリーデータの取得 $.ajax({ url: Cmn.dir + '/data/category.json', dataType: 'json', type: 'GET', async: false, success: (data)=>{ this.category = data; } }); this.markerBounds = new google.maps.LatLngBounds(); _t.getEntryData(); // 画像クリック $(document).on('click', '.jsClick-ModalImage', function(e){ e.preventDefault(); var file = $(this).data('image'), w = Frame.getBrowserWidth(), h = Frame.getBrowserHeight(), tag = '<img src="' + Cmn.dir + '/uploads/' + file + '" alt="">'; // TODO: ブラウザサイズに応じて画像表示領域を変更 $('#modal-contents').html(tag); $('#modal').removeClass('hide'); }); // モーダルクローズ $('#modal-bg').on('click', ()=>{ $('#modal').addClass('hide'); $('#modal-contents').html(''); }); // チームフィルタリング $(document).on('change', '#filter-team', function(){ _t.resultList.removeClass('hide'); var selected = $(this).val(); if(selected === '0'){ // すべてを表示 _t.viewTeam = ''; for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i]; obj.setVisible(true); } }else{ _t.viewTeam = selected; // 一致しないチームリストを非表示にする _t.resultList.filter(function(index){ var self = $(this), team = self.data('team'); if(team !== selected) self.addClass('hide'); }); // 一致しないチームのピンを非表示にする for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i], team = obj.team; if(team === selected){ obj.setVisible(true); }else{ obj.setVisible(false); } } } }); // 各チームのトータル件数表示ボタン $('#entryTotal-btn').on('click', (e)=>{ e.preventDefault(); $('#entryTotal-data').toggleClass('show'); }); $(document).on('click', '.jsClick-Move', function(e){ var self = $(this), lat = self.data('lat'), lng = self.data('lng'), pos = new google.maps.LatLng(lat, lng); _t.areaMap.setCenter(pos); _t.areaMap.setZoom(18); }); // 1分ごとにデータを取得(1000ms * 60s = 60000ms setInterval(()=> { _t.getEntryData(); }, 60000); // 30秒毎に時間を更新(1000ms * 10s = 10000ms setInterval(()=>{ if(this.isData === false) return false; for (var i = 0, iLen = this.resultList.length; i < iLen; i++) { var obj = $(this.resultList[i]), created = obj.find('.created'), __c = created.data('created'), _c = this.getTimeDiff(__c); created.text(_c); } }, 10000); // 5分毎に削除データの取得(1000ms * 60s * 5min = 300000ms setInterval(()=>{ $.ajax({ url: Cmn.dir + '/deleteData', dataType: 'json', type: 'GET', success: (data)=>{ if(data.status === 'success'){ _t.resultList.filter(function(index){ var self = $(this), data_id = String(self.data('id')), isRemove = data.list.indexOf(data_id); if(isRemove > -1){ // 削除データが存在する場合 self.remove(); _t.resultList.splice(index, 1); _t.marker[index].setMap(null); } }); } }, error: ()=>{}, complete: ()=>{} }); }, 300000); //300000 // 各チームの登録件数 setInterval(()=>{ // 一度トータル件数を削除 for (var i = 0, iLen = this.teamSetting.length; i < iLen; i++) { var obj = this.teamSetting[i]; obj.total = 0; } // 件数を計算 for (var n = 0, nLen = this.teamData.length; n < nLen; n++) { var obj1 = this.teamData[n], isArr = this.teamSetting.filter((elem, index, arr)=>{ return (elem.name === obj1.team) }); isArr[0].total++; } // トータル件数をセット var elem = ''; for (var j = 0, jLen = this.teamSetting.length; j < jLen; j++) { var obj2 = this.teamSetting[j]; elem += '<li>' + obj2.name + ' : ' + obj2.total + '件</li>'; } $('#entryTotal-data').html(elem); }, 10000); } /** * 登録されたデータをオフセットで取得 */ getEntryData() { $.ajax({ url : Cmn.dir + '/allData?offset=' + this.offset, dataType: 'json', type : 'GET', success : (data)=> { switch (data.status) { case 'success': this.isData = true; this.offset = data.count; this.setTeamList(data.data); break; default: break; } }, error : ()=> { }, complete: ()=> {
} /** * チームデータの格納 * @param data */ setTeamList(data) { var elem = '', count = data.length; $.get(this.template.filterTeam, (template)=> { for (var i = 0, iLen = data.length; i < iLen; i++) { var obj = data[i], data_id = 0, isArr = this.teamSetting.filter((elem, index, arr)=> { // 配列内にデータが存在するかチェック return (elem.name === obj.team) }); // 該当するチームデータが存在しない場合はチーム情報をセット if (isArr.length === 0) { var len = this.teamSetting.length, //color_code = Math.floor(Math.random() * 16777215).toString(16), color_code = this.getRandomColor(this.teamSetting), team = { name : obj.team, color: color_code, id : len, total: 0 }; this.teamSetting.push(team); data_id = len; // <select>タグに挿入 elem += Mustache.render(template, obj); } else { data_id = isArr[0].id; } obj.team_id = data_id; this.teamData.push(obj); } $('#filter-team').append(elem); this.setMarker(count); this.setList(count); }); } /** * 登録データの表示 * @param count */ setList(count){ var diff = this.teamData.length - count; // 追加データの個数を返却 $.get(this.template.list, (template)=>{ var elem = ''; for (var i = this.teamData.length - 1; i >= diff; i--) { var obj = this.teamData[i], visible = (this.viewTeam === obj.team || this.viewTeam === '') ? '' : ' hide'; obj.color = this.teamSetting[obj.team_id].color; obj.category = this.category[obj.cat]; obj.cls = visible; obj.created = this.getTimeDiff(obj.created_at); elem += Mustache.render(template, obj); } $(this.target.table).prepend(elem); this.resultList = $(
} });
random_line_split
BackendMapping.ts
true, draggable : true }; // チームに関するデータ private teamSetting:any = []; private teamData:any = []; private teamMarker:any = []; private teamRoot:any = []; // テンプレート private template = { filterTeam: Cmn.dir + '/mus/filterTeam.mustache', fukudashi : Cmn.dir + '/mus/fukidashi.mustache', list: Cmn.dir + '/mus/backendList.mustache' }; private category:any; private resultList:any; // ターゲット private target = { table: '#resultListBody', result: '.resultList' }; constructor() { var _t = this, div = $('#resultMap').get(0); _t.areaMap = new google.maps.Map(div, _t.mapOption); // カテゴリーデータの取得 $.ajax({ url: Cmn.dir + '/data/category.json', dataType: 'json', type: 'GET', async: false, success: (data)=>{ this.category = data; } }); this.markerBounds = new google.maps.LatLngBounds(); _t.getEntryData(); // 画像クリック $(document).on('click', '.jsClick-ModalImage', function(e){ e.preventDefault(); var file = $(this).data('image'), w = Frame.getBrowserWidth(), h = Frame.getBrowserHeight(), tag = '<img src="' + Cmn.dir + '/uploads/' + file + '" alt="">'; // TODO: ブラウザサイズに応じて画像表示領域を変更 $('#modal-contents').html(tag); $('#modal').removeClass('hide'); }); // モーダルクローズ $('#modal-bg').on('click', ()=>{ $('#modal').addClass('hide'); $('#modal-contents').html(''); }); // チームフィルタリング $(document).on('change', '#filter-team', function(){ _t.resultList.removeClass('hide'); var selected = $(this).val(); if(selected === '0'){ // すべてを表示 _t.viewTeam = ''; for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i]; obj.setVisible(true); } }else{ _t.viewTeam = selected; // 一致しないチームリストを非表示にする _t.resultList.filter(function(index){ var self = $(this), team = self.data('team'); if(team !== selected) self.addClass('hide'); }); // 一致しないチームのピンを非表示にする for (var i = 0, iLen = _t.marker.length; i < iLen; i++) { var obj = _t.marker[i], team = obj.team; if(team === selected){ obj.setVisible(true); }else{ obj.setVisible(false); } } } }); // 各チームのトータル件数表示ボタン $('#entryTotal-btn').on('click', (e)=>{ e.preventDefault(); $('#entryTotal-data').toggleClass('show'); }); $(document).on('click', '.jsClick-Move', function(e){ var self = $(this), lat = self.data('lat'), lng = self.data('lng'), pos = new google.maps.LatLng(lat, lng); _t.areaMap.setCenter(pos); _t.areaMap.setZoom(18); }); // 1分ごとにデータを取得(1000ms * 60s = 60000ms setInterval(()=> { _t.getEntryData(); }, 60000); // 30秒毎に時間を更新(1000ms * 10s = 10000ms setInterval(()=>{ if(this.isData === false) return false; for (var i = 0, iLen = this.resultList.length; i < iLen; i++) { var obj = $(this.resultList[i]), created = obj.find('.created'), __c = created.data('created'), _c = this.getTimeDiff(__c); created.text(_c); } }, 10000); // 5分毎に削除データの取得(1000ms * 60s * 5min = 300000ms setInterval(()=>{ $.ajax({ url: Cmn.dir + '/deleteData', dataType: 'json', type: 'GET', success: (data)=>{ if(data.status === 'success'){ _t.resultList.filter(function(index){ var self = $(this), data_id = String(self.data('id')), isRemove = data.list.indexOf(data_id); if(isRemove > -1){ // 削除データが存在する場合 self.remove(); _t.resultList.splice(index, 1); _t.marker[index].setMap(null); } }); } }, error: ()=>{}, complete: ()=>{} }); }, 300000); //300000 // 各チームの登録件数 setInterval(()=>{ // 一度トータル件数を削除 for (var i = 0, iLen = this.teamSetting.length; i < iLen; i++) { var obj = this.teamSetting[i]; obj.total = 0; } // 件数を計算 for (var n = 0, nLen = this.teamData.length; n < nLen; n++) { var obj1 = this.teamData[n], isArr = this.teamSetting.filter((elem, index, arr)=>{ return (elem.name === obj1.team) }); isArr[0].total++; } // トータル件数をセット var elem = ''; for (var j = 0, jLen = this.teamSetting.length; j < jLen; j++) { var obj2 = this.teamSetting[j]; elem += '<li>' + obj2.name + ' : ' + obj2.total + '件</li>'; } $('#entryTotal-data').html(elem); }, 10000); } /** * 登録されたデータをオフセットで取得 */ getEntryData() { $.ajax({ url : Cmn.dir + '/allData?offset=' + this.offset, dataType: 'json', type : 'GET', success : (data)=> { switch (data.status) { case 'success': this.isData = true; this.offset = data.count; this.setTeamList(data.data); break; default: break; } }, error : ()=> { }, complete: ()=> { } }); } /
f (isArr.length === 0) { var len = this.teamSetting.length, //color_code = Math.floor(Math.random() * 16777215).toString(16), color_code = this.getRandomColor(this.teamSetting), team = { name : obj.team, color: color_code, id : len, total: 0 }; this.teamSetting.push(team); data_id = len; // <select>タグに挿入 elem += Mustache.render(template, obj); } else { data_id = isArr[0].id; } obj.team_id = data_id; this.teamData.push(obj); } $('#filter-team').append(elem); this.setMarker(count); this.setList(count); }); } /** * 登録データの表示 * @param count */ setList(count){ var diff = this.teamData.length - count; // 追加データの個数を返却 $.get(this.template.list, (template)=>{ var elem = ''; for (var i = this.teamData.length - 1; i >= diff; i--) { var obj = this.teamData[i], visible = (this.viewTeam === obj.team || this.viewTeam === '') ? '' : ' hide'; obj.color = this.teamSetting[obj.team_id].color; obj.category = this.category[obj.cat]; obj.cls = visible; obj.created = this.getTimeDiff(obj.created_at); elem += Mustache.render(template, obj); } $(this.target.table).prepend(elem); this.resultList
** * チームデータの格納 * @param data */ setTeamList(data) { var elem = '', count = data.length; $.get(this.template.filterTeam, (template)=> { for (var i = 0, iLen = data.length; i < iLen; i++) { var obj = data[i], data_id = 0, isArr = this.teamSetting.filter((elem, index, arr)=> { // 配列内にデータが存在するかチェック return (elem.name === obj.team) }); // 該当するチームデータが存在しない場合はチーム情報をセット i
identifier_body
download_params_and_roslaunch_agent.py
ore import boto3 import yaml import rospy from markov import utils_parse_model_metadata from markov.utils import force_list from markov.constants import DEFAULT_COLOR from markov.architecture.constants import Input from markov.utils import get_boto_config from markov.log_handler.constants import (SIMAPP_EVENT_ERROR_CODE_400, SIMAPP_EVENT_ERROR_CODE_500, SIMAPP_SIMULATION_WORKER_EXCEPTION) from markov.log_handler.logger import Logger from markov.log_handler.exception_handler import log_and_exit LOG = Logger(__name__, logging.INFO).get_logger() # Pass a list with 2 values for CAR_COLOR, MODEL_S3_BUCKET, MODEL_S3_PREFIX, MODEL_METADATA_FILE_S3_KEY for multicar CAR_COLOR_YAML_KEY = "CAR_COLOR" RACE_TYPE_YAML_KEY = "RACE_TYPE" HEAD_TO_MODEL_RACE_TYPE = "HEAD_TO_MODEL" TIME_TRIAL_RACE_TYPE = "TIME_TRIAL" MODEL_S3_BUCKET_YAML_KEY = "MODEL_S3_BUCKET" MODEL_S3_PREFIX_YAML_KEY = "MODEL_S3_PREFIX" MODEL_METADATA_FILE_S3_YAML_KEY = "MODEL_METADATA_FILE_S3_KEY" # Amount of time to wait to guarantee that RoboMaker's network configuration is ready. WAIT_FOR_ROBOMAKER_TIME = 10 def main(): """ Main function for downloading yaml params """ try: # parse argument s3_region = sys.argv[1] s3_bucket = sys.argv[2] s3_prefix = sys.argv[3] s3_yaml_name = sys.argv[4] launch_name = sys.argv[5] # create boto3 session/client and download yaml/json file session = boto3.session.Session() s3_endpoint_url = os.environ.get("S3_ENDPOINT_URL", None) if s3_endpoint_url is not None: LOG.info('Endpoint URL {}'.format(s3_endpoint_url)) rospy.set_param('S3_ENDPOINT_URL', s3_endpoint_url) else: # create boto3 session/client and download yaml/json file ec2_client = session.client('ec2', s3_region) LOG.info('Checking internet connection...') response = ec2_client.describe_vpcs() if not response['Vpcs']: log_and_exit("No VPC attached to instance", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) LOG.info('Verified internet connection') s3_client = session.client('s3', region_name=s3_region, endpoint_url=s3_endpoint_url, config=get_boto_config()) yaml_key = os.path.normpath(os.path.join(s3_prefix, s3_yaml_name)) local_yaml_path = os.path.abspath(os.path.join(os.getcwd(), s3_yaml_name)) s3_client.download_file(Bucket=s3_bucket, Key=yaml_key, Filename=local_yaml_path) # Get values passed in yaml files. Default values are for backward compatibility and for single racecar racing default_yaml_values = {RACE_TYPE_YAML_KEY: TIME_TRIAL_RACE_TYPE, MODEL_S3_BUCKET_YAML_KEY: s3_bucket, MODEL_S3_PREFIX_YAML_KEY: s3_prefix, CAR_COLOR_YAML_KEY: DEFAULT_COLOR, MODEL_METADATA_FILE_S3_YAML_KEY: None} yaml_dict = get_yaml_dict(local_yaml_path) yaml_values = get_yaml_values(yaml_dict, default_yaml_values) # Forcing the yaml parameter to list force_list_params = [MODEL_METADATA_FILE_S3_YAML_KEY, MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, CAR_COLOR_YAML_KEY] for params in force_list_params: yaml_values[params] = force_list(yaml_values[params]) # Populate the model_metadata_s3_key values to handle both training and evaluation for all race_formats if None in yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY]: # MODEL_METADATA_FILE_S3_KEY not passed as part of yaml file ==> This happens during evaluation # Assume model_metadata.json is present in the s3_prefix/model/ folder yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY] = list() for s3_prefix in yaml_values[MODEL_S3_PREFIX_YAML_KEY]: yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY].append(os.path.join(s3_prefix, 'model/model_metadata.json')) # Set multicar value if its a head to model racetype multicar = yaml_values[RACE_TYPE_YAML_KEY] == HEAD_TO_MODEL_RACE_TYPE # Validate the yaml values validate_yaml_values(yaml_values, multicar) # List of racecar names that should include second camera while launching racecars_with_stereo_cameras = list() # List of racecar names that should include lidar while launching racecars_with_lidars = list() # List of SimApp versions simapp_versions = list() for agent_index, model_s3_bucket in enumerate(yaml_values[MODEL_S3_BUCKET_YAML_KEY]): racecar_name = 'racecar_'+str(agent_index) if len(yaml_values[MODEL_S3_BUCKET_YAML_KEY]) > 1 else 'racecar' # Make a local folder with the racecar name to download the model_metadata.json if not os.path.exists(os.path.join(os.getcwd(), racecar_name)): os.makedirs(os.path.join(os.getcwd(), racecar_name)) local_model_metadata_path = os.path.abspath(os.path.join(os.path.join(os.getcwd(), racecar_name), 'model_metadata.json')) json_key = yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY][agent_index] json_key = json_key.replace('s3://{}/'.format(model_s3_bucket), '') s3_client.download_file(Bucket=model_s3_bucket, Key=json_key, Filename=local_model_metadata_path) sensors, _, simapp_version = utils_parse_model_metadata.parse_model_metadata(local_model_metadata_path) simapp_versions.append(simapp_version) if Input.STEREO.value in sensors: racecars_with_stereo_cameras.append(racecar_name) if Input.LIDAR.value in sensors or Input.SECTOR_LIDAR.value in sensors: racecars_with_lidars.append(racecar_name) cmd = [''.join(("roslaunch deepracer_simulation_environment {} ".format(launch_name), "local_yaml_path:={} ".format(local_yaml_path), "racecars_with_stereo_cameras:={} ".format(','.join(racecars_with_stereo_cameras)), "racecars_with_lidars:={} multicar:={} ".format(','.join(racecars_with_lidars), multicar), "car_colors:={} simapp_versions:={}".format(','.join(yaml_values[CAR_COLOR_YAML_KEY]), ','.join(simapp_versions))))] Popen(cmd, shell=True, executable="/bin/bash") except botocore.exceptions.ClientError as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_400) except botocore.exceptions.EndpointConnectionError: log_and_exit("No Internet connection or s3 service unavailable", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except Exception as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def
(yaml_values, multicar): """ Validate that the parameter provided in the yaml file for configuration is correct. Some of the params requires list of two values. This is mostly checked as part of this function Arguments: yaml_values {[dict]} -- [All the yaml parameter as a list] multicar {[bool]} -- [Is multicar enabled (True), else False] Raises: Exception -- [Exception] """ # Verify if all the yaml keys required for launching models have same number of values same_len_values = [MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, MODEL_METADATA_FILE_S3_YAML_KEY, CAR_COLOR_YAML_KEY] LOG.info(yaml_values) if not all(map(lambda param: len(yaml_values[param]) == len(yaml_values[same_len_values[0]]), same_len_values)): raise Exception('Incorrect number of values for these yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 2 values for multi car racing if multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 2: raise Exception('Incorrect number of values for multicar racing yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 1 value for single car racing if not multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 1: raise Exception('Incorrect number of values for single car racing yaml parameters {}'.format(same_len_values)) def get_yaml_dict(local_yaml_path): '''local_yaml_path - path to the local yaml file ''' with open(local_yaml_path, 'r') as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: log_and_exit("yaml read error:
validate_yaml_values
identifier_name
download_params_and_roslaunch_agent.py
markov.utils import force_list from markov.constants import DEFAULT_COLOR from markov.architecture.constants import Input from markov.utils import get_boto_config from markov.log_handler.constants import (SIMAPP_EVENT_ERROR_CODE_400, SIMAPP_EVENT_ERROR_CODE_500, SIMAPP_SIMULATION_WORKER_EXCEPTION) from markov.log_handler.logger import Logger from markov.log_handler.exception_handler import log_and_exit LOG = Logger(__name__, logging.INFO).get_logger() # Pass a list with 2 values for CAR_COLOR, MODEL_S3_BUCKET, MODEL_S3_PREFIX, MODEL_METADATA_FILE_S3_KEY for multicar CAR_COLOR_YAML_KEY = "CAR_COLOR" RACE_TYPE_YAML_KEY = "RACE_TYPE" HEAD_TO_MODEL_RACE_TYPE = "HEAD_TO_MODEL" TIME_TRIAL_RACE_TYPE = "TIME_TRIAL" MODEL_S3_BUCKET_YAML_KEY = "MODEL_S3_BUCKET" MODEL_S3_PREFIX_YAML_KEY = "MODEL_S3_PREFIX" MODEL_METADATA_FILE_S3_YAML_KEY = "MODEL_METADATA_FILE_S3_KEY" # Amount of time to wait to guarantee that RoboMaker's network configuration is ready. WAIT_FOR_ROBOMAKER_TIME = 10 def main(): """ Main function for downloading yaml params """ try: # parse argument s3_region = sys.argv[1] s3_bucket = sys.argv[2] s3_prefix = sys.argv[3] s3_yaml_name = sys.argv[4] launch_name = sys.argv[5] # create boto3 session/client and download yaml/json file session = boto3.session.Session() s3_endpoint_url = os.environ.get("S3_ENDPOINT_URL", None) if s3_endpoint_url is not None: LOG.info('Endpoint URL {}'.format(s3_endpoint_url)) rospy.set_param('S3_ENDPOINT_URL', s3_endpoint_url) else: # create boto3 session/client and download yaml/json file ec2_client = session.client('ec2', s3_region) LOG.info('Checking internet connection...') response = ec2_client.describe_vpcs() if not response['Vpcs']: log_and_exit("No VPC attached to instance", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) LOG.info('Verified internet connection') s3_client = session.client('s3', region_name=s3_region, endpoint_url=s3_endpoint_url, config=get_boto_config()) yaml_key = os.path.normpath(os.path.join(s3_prefix, s3_yaml_name)) local_yaml_path = os.path.abspath(os.path.join(os.getcwd(), s3_yaml_name)) s3_client.download_file(Bucket=s3_bucket, Key=yaml_key, Filename=local_yaml_path) # Get values passed in yaml files. Default values are for backward compatibility and for single racecar racing default_yaml_values = {RACE_TYPE_YAML_KEY: TIME_TRIAL_RACE_TYPE, MODEL_S3_BUCKET_YAML_KEY: s3_bucket, MODEL_S3_PREFIX_YAML_KEY: s3_prefix, CAR_COLOR_YAML_KEY: DEFAULT_COLOR, MODEL_METADATA_FILE_S3_YAML_KEY: None} yaml_dict = get_yaml_dict(local_yaml_path) yaml_values = get_yaml_values(yaml_dict, default_yaml_values) # Forcing the yaml parameter to list force_list_params = [MODEL_METADATA_FILE_S3_YAML_KEY, MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, CAR_COLOR_YAML_KEY] for params in force_list_params: yaml_values[params] = force_list(yaml_values[params]) # Populate the model_metadata_s3_key values to handle both training and evaluation for all race_formats if None in yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY]: # MODEL_METADATA_FILE_S3_KEY not passed as part of yaml file ==> This happens during evaluation # Assume model_metadata.json is present in the s3_prefix/model/ folder yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY] = list() for s3_prefix in yaml_values[MODEL_S3_PREFIX_YAML_KEY]: yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY].append(os.path.join(s3_prefix, 'model/model_metadata.json')) # Set multicar value if its a head to model racetype multicar = yaml_values[RACE_TYPE_YAML_KEY] == HEAD_TO_MODEL_RACE_TYPE # Validate the yaml values validate_yaml_values(yaml_values, multicar) # List of racecar names that should include second camera while launching racecars_with_stereo_cameras = list() # List of racecar names that should include lidar while launching racecars_with_lidars = list() # List of SimApp versions simapp_versions = list() for agent_index, model_s3_bucket in enumerate(yaml_values[MODEL_S3_BUCKET_YAML_KEY]): racecar_name = 'racecar_'+str(agent_index) if len(yaml_values[MODEL_S3_BUCKET_YAML_KEY]) > 1 else 'racecar' # Make a local folder with the racecar name to download the model_metadata.json if not os.path.exists(os.path.join(os.getcwd(), racecar_name)): os.makedirs(os.path.join(os.getcwd(), racecar_name)) local_model_metadata_path = os.path.abspath(os.path.join(os.path.join(os.getcwd(), racecar_name), 'model_metadata.json')) json_key = yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY][agent_index] json_key = json_key.replace('s3://{}/'.format(model_s3_bucket), '') s3_client.download_file(Bucket=model_s3_bucket, Key=json_key, Filename=local_model_metadata_path) sensors, _, simapp_version = utils_parse_model_metadata.parse_model_metadata(local_model_metadata_path) simapp_versions.append(simapp_version) if Input.STEREO.value in sensors: racecars_with_stereo_cameras.append(racecar_name) if Input.LIDAR.value in sensors or Input.SECTOR_LIDAR.value in sensors: racecars_with_lidars.append(racecar_name) cmd = [''.join(("roslaunch deepracer_simulation_environment {} ".format(launch_name), "local_yaml_path:={} ".format(local_yaml_path), "racecars_with_stereo_cameras:={} ".format(','.join(racecars_with_stereo_cameras)), "racecars_with_lidars:={} multicar:={} ".format(','.join(racecars_with_lidars), multicar), "car_colors:={} simapp_versions:={}".format(','.join(yaml_values[CAR_COLOR_YAML_KEY]), ','.join(simapp_versions))))] Popen(cmd, shell=True, executable="/bin/bash") except botocore.exceptions.ClientError as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_400) except botocore.exceptions.EndpointConnectionError: log_and_exit("No Internet connection or s3 service unavailable", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except Exception as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def validate_yaml_values(yaml_values, multicar): """ Validate that the parameter provided in the yaml file for configuration is correct. Some of the params requires list of two values. This is mostly checked as part of this function Arguments: yaml_values {[dict]} -- [All the yaml parameter as a list] multicar {[bool]} -- [Is multicar enabled (True), else False] Raises: Exception -- [Exception] """ # Verify if all the yaml keys required for launching models have same number of values same_len_values = [MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, MODEL_METADATA_FILE_S3_YAML_KEY, CAR_COLOR_YAML_KEY] LOG.info(yaml_values) if not all(map(lambda param: len(yaml_values[param]) == len(yaml_values[same_len_values[0]]), same_len_values)): raise Exception('Incorrect number of values for these yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 2 values for multi car racing if multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 2: raise Exception('Incorrect number of values for multicar racing yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 1 value for single car racing if not multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 1: raise Exception('Incorrect number of values for single car racing yaml parameters {}'.format(same_len_values)) def get_yaml_dict(local_yaml_path):
'''local_yaml_path - path to the local yaml file ''' with open(local_yaml_path, 'r') as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: log_and_exit("yaml read error: {}".format(exc), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500)
identifier_body
download_params_and_roslaunch_agent.py
ore import boto3 import yaml import rospy from markov import utils_parse_model_metadata from markov.utils import force_list from markov.constants import DEFAULT_COLOR from markov.architecture.constants import Input from markov.utils import get_boto_config from markov.log_handler.constants import (SIMAPP_EVENT_ERROR_CODE_400, SIMAPP_EVENT_ERROR_CODE_500, SIMAPP_SIMULATION_WORKER_EXCEPTION) from markov.log_handler.logger import Logger from markov.log_handler.exception_handler import log_and_exit LOG = Logger(__name__, logging.INFO).get_logger() # Pass a list with 2 values for CAR_COLOR, MODEL_S3_BUCKET, MODEL_S3_PREFIX, MODEL_METADATA_FILE_S3_KEY for multicar CAR_COLOR_YAML_KEY = "CAR_COLOR" RACE_TYPE_YAML_KEY = "RACE_TYPE" HEAD_TO_MODEL_RACE_TYPE = "HEAD_TO_MODEL" TIME_TRIAL_RACE_TYPE = "TIME_TRIAL" MODEL_S3_BUCKET_YAML_KEY = "MODEL_S3_BUCKET" MODEL_S3_PREFIX_YAML_KEY = "MODEL_S3_PREFIX" MODEL_METADATA_FILE_S3_YAML_KEY = "MODEL_METADATA_FILE_S3_KEY" # Amount of time to wait to guarantee that RoboMaker's network configuration is ready. WAIT_FOR_ROBOMAKER_TIME = 10 def main(): """ Main function for downloading yaml params """ try: # parse argument s3_region = sys.argv[1] s3_bucket = sys.argv[2] s3_prefix = sys.argv[3] s3_yaml_name = sys.argv[4] launch_name = sys.argv[5] # create boto3 session/client and download yaml/json file session = boto3.session.Session() s3_endpoint_url = os.environ.get("S3_ENDPOINT_URL", None) if s3_endpoint_url is not None: LOG.info('Endpoint URL {}'.format(s3_endpoint_url)) rospy.set_param('S3_ENDPOINT_URL', s3_endpoint_url) else: # create boto3 session/client and download yaml/json file ec2_client = session.client('ec2', s3_region) LOG.info('Checking internet connection...') response = ec2_client.describe_vpcs() if not response['Vpcs']: log_and_exit("No VPC attached to instance", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) LOG.info('Verified internet connection') s3_client = session.client('s3', region_name=s3_region, endpoint_url=s3_endpoint_url, config=get_boto_config()) yaml_key = os.path.normpath(os.path.join(s3_prefix, s3_yaml_name)) local_yaml_path = os.path.abspath(os.path.join(os.getcwd(), s3_yaml_name)) s3_client.download_file(Bucket=s3_bucket, Key=yaml_key, Filename=local_yaml_path) # Get values passed in yaml files. Default values are for backward compatibility and for single racecar racing default_yaml_values = {RACE_TYPE_YAML_KEY: TIME_TRIAL_RACE_TYPE, MODEL_S3_BUCKET_YAML_KEY: s3_bucket, MODEL_S3_PREFIX_YAML_KEY: s3_prefix, CAR_COLOR_YAML_KEY: DEFAULT_COLOR, MODEL_METADATA_FILE_S3_YAML_KEY: None} yaml_dict = get_yaml_dict(local_yaml_path) yaml_values = get_yaml_values(yaml_dict, default_yaml_values) # Forcing the yaml parameter to list force_list_params = [MODEL_METADATA_FILE_S3_YAML_KEY, MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, CAR_COLOR_YAML_KEY] for params in force_list_params: yaml_values[params] = force_list(yaml_values[params]) # Populate the model_metadata_s3_key values to handle both training and evaluation for all race_formats if None in yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY]: # MODEL_METADATA_FILE_S3_KEY not passed as part of yaml file ==> This happens during evaluation # Assume model_metadata.json is present in the s3_prefix/model/ folder yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY] = list() for s3_prefix in yaml_values[MODEL_S3_PREFIX_YAML_KEY]: yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY].append(os.path.join(s3_prefix, 'model/model_metadata.json')) # Set multicar value if its a head to model racetype multicar = yaml_values[RACE_TYPE_YAML_KEY] == HEAD_TO_MODEL_RACE_TYPE # Validate the yaml values validate_yaml_values(yaml_values, multicar) # List of racecar names that should include second camera while launching racecars_with_stereo_cameras = list() # List of racecar names that should include lidar while launching racecars_with_lidars = list() # List of SimApp versions simapp_versions = list() for agent_index, model_s3_bucket in enumerate(yaml_values[MODEL_S3_BUCKET_YAML_KEY]): racecar_name = 'racecar_'+str(agent_index) if len(yaml_values[MODEL_S3_BUCKET_YAML_KEY]) > 1 else 'racecar' # Make a local folder with the racecar name to download the model_metadata.json if not os.path.exists(os.path.join(os.getcwd(), racecar_name)): os.makedirs(os.path.join(os.getcwd(), racecar_name)) local_model_metadata_path = os.path.abspath(os.path.join(os.path.join(os.getcwd(), racecar_name), 'model_metadata.json')) json_key = yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY][agent_index] json_key = json_key.replace('s3://{}/'.format(model_s3_bucket), '') s3_client.download_file(Bucket=model_s3_bucket, Key=json_key, Filename=local_model_metadata_path) sensors, _, simapp_version = utils_parse_model_metadata.parse_model_metadata(local_model_metadata_path) simapp_versions.append(simapp_version) if Input.STEREO.value in sensors: racecars_with_stereo_cameras.append(racecar_name) if Input.LIDAR.value in sensors or Input.SECTOR_LIDAR.value in sensors:
cmd = [''.join(("roslaunch deepracer_simulation_environment {} ".format(launch_name), "local_yaml_path:={} ".format(local_yaml_path), "racecars_with_stereo_cameras:={} ".format(','.join(racecars_with_stereo_cameras)), "racecars_with_lidars:={} multicar:={} ".format(','.join(racecars_with_lidars), multicar), "car_colors:={} simapp_versions:={}".format(','.join(yaml_values[CAR_COLOR_YAML_KEY]), ','.join(simapp_versions))))] Popen(cmd, shell=True, executable="/bin/bash") except botocore.exceptions.ClientError as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_400) except botocore.exceptions.EndpointConnectionError: log_and_exit("No Internet connection or s3 service unavailable", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except Exception as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def validate_yaml_values(yaml_values, multicar): """ Validate that the parameter provided in the yaml file for configuration is correct. Some of the params requires list of two values. This is mostly checked as part of this function Arguments: yaml_values {[dict]} -- [All the yaml parameter as a list] multicar {[bool]} -- [Is multicar enabled (True), else False] Raises: Exception -- [Exception] """ # Verify if all the yaml keys required for launching models have same number of values same_len_values = [MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, MODEL_METADATA_FILE_S3_YAML_KEY, CAR_COLOR_YAML_KEY] LOG.info(yaml_values) if not all(map(lambda param: len(yaml_values[param]) == len(yaml_values[same_len_values[0]]), same_len_values)): raise Exception('Incorrect number of values for these yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 2 values for multi car racing if multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 2: raise Exception('Incorrect number of values for multicar racing yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 1 value for single car racing if not multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 1: raise Exception('Incorrect number of values for single car racing yaml parameters {}'.format(same_len_values)) def get_yaml_dict(local_yaml_path): '''local_yaml_path - path to the local yaml file ''' with open(local_yaml_path, 'r') as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: log_and_exit("yaml read error:
racecars_with_lidars.append(racecar_name)
conditional_block
download_params_and_roslaunch_agent.py
APP_SIMULATION_WORKER_EXCEPTION) from markov.log_handler.logger import Logger from markov.log_handler.exception_handler import log_and_exit LOG = Logger(__name__, logging.INFO).get_logger() # Pass a list with 2 values for CAR_COLOR, MODEL_S3_BUCKET, MODEL_S3_PREFIX, MODEL_METADATA_FILE_S3_KEY for multicar CAR_COLOR_YAML_KEY = "CAR_COLOR" RACE_TYPE_YAML_KEY = "RACE_TYPE" HEAD_TO_MODEL_RACE_TYPE = "HEAD_TO_MODEL" TIME_TRIAL_RACE_TYPE = "TIME_TRIAL" MODEL_S3_BUCKET_YAML_KEY = "MODEL_S3_BUCKET" MODEL_S3_PREFIX_YAML_KEY = "MODEL_S3_PREFIX" MODEL_METADATA_FILE_S3_YAML_KEY = "MODEL_METADATA_FILE_S3_KEY" # Amount of time to wait to guarantee that RoboMaker's network configuration is ready. WAIT_FOR_ROBOMAKER_TIME = 10 def main(): """ Main function for downloading yaml params """ try: # parse argument s3_region = sys.argv[1] s3_bucket = sys.argv[2] s3_prefix = sys.argv[3] s3_yaml_name = sys.argv[4] launch_name = sys.argv[5] # create boto3 session/client and download yaml/json file session = boto3.session.Session() s3_endpoint_url = os.environ.get("S3_ENDPOINT_URL", None) if s3_endpoint_url is not None: LOG.info('Endpoint URL {}'.format(s3_endpoint_url)) rospy.set_param('S3_ENDPOINT_URL', s3_endpoint_url) else: # create boto3 session/client and download yaml/json file ec2_client = session.client('ec2', s3_region) LOG.info('Checking internet connection...') response = ec2_client.describe_vpcs() if not response['Vpcs']: log_and_exit("No VPC attached to instance", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) LOG.info('Verified internet connection') s3_client = session.client('s3', region_name=s3_region, endpoint_url=s3_endpoint_url, config=get_boto_config()) yaml_key = os.path.normpath(os.path.join(s3_prefix, s3_yaml_name)) local_yaml_path = os.path.abspath(os.path.join(os.getcwd(), s3_yaml_name)) s3_client.download_file(Bucket=s3_bucket, Key=yaml_key, Filename=local_yaml_path) # Get values passed in yaml files. Default values are for backward compatibility and for single racecar racing default_yaml_values = {RACE_TYPE_YAML_KEY: TIME_TRIAL_RACE_TYPE, MODEL_S3_BUCKET_YAML_KEY: s3_bucket, MODEL_S3_PREFIX_YAML_KEY: s3_prefix, CAR_COLOR_YAML_KEY: DEFAULT_COLOR, MODEL_METADATA_FILE_S3_YAML_KEY: None} yaml_dict = get_yaml_dict(local_yaml_path) yaml_values = get_yaml_values(yaml_dict, default_yaml_values) # Forcing the yaml parameter to list force_list_params = [MODEL_METADATA_FILE_S3_YAML_KEY, MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, CAR_COLOR_YAML_KEY] for params in force_list_params: yaml_values[params] = force_list(yaml_values[params]) # Populate the model_metadata_s3_key values to handle both training and evaluation for all race_formats if None in yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY]: # MODEL_METADATA_FILE_S3_KEY not passed as part of yaml file ==> This happens during evaluation # Assume model_metadata.json is present in the s3_prefix/model/ folder yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY] = list() for s3_prefix in yaml_values[MODEL_S3_PREFIX_YAML_KEY]: yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY].append(os.path.join(s3_prefix, 'model/model_metadata.json')) # Set multicar value if its a head to model racetype multicar = yaml_values[RACE_TYPE_YAML_KEY] == HEAD_TO_MODEL_RACE_TYPE # Validate the yaml values validate_yaml_values(yaml_values, multicar) # List of racecar names that should include second camera while launching racecars_with_stereo_cameras = list() # List of racecar names that should include lidar while launching racecars_with_lidars = list() # List of SimApp versions simapp_versions = list() for agent_index, model_s3_bucket in enumerate(yaml_values[MODEL_S3_BUCKET_YAML_KEY]): racecar_name = 'racecar_'+str(agent_index) if len(yaml_values[MODEL_S3_BUCKET_YAML_KEY]) > 1 else 'racecar' # Make a local folder with the racecar name to download the model_metadata.json if not os.path.exists(os.path.join(os.getcwd(), racecar_name)): os.makedirs(os.path.join(os.getcwd(), racecar_name)) local_model_metadata_path = os.path.abspath(os.path.join(os.path.join(os.getcwd(), racecar_name), 'model_metadata.json')) json_key = yaml_values[MODEL_METADATA_FILE_S3_YAML_KEY][agent_index] json_key = json_key.replace('s3://{}/'.format(model_s3_bucket), '') s3_client.download_file(Bucket=model_s3_bucket, Key=json_key, Filename=local_model_metadata_path) sensors, _, simapp_version = utils_parse_model_metadata.parse_model_metadata(local_model_metadata_path) simapp_versions.append(simapp_version) if Input.STEREO.value in sensors: racecars_with_stereo_cameras.append(racecar_name) if Input.LIDAR.value in sensors or Input.SECTOR_LIDAR.value in sensors: racecars_with_lidars.append(racecar_name) cmd = [''.join(("roslaunch deepracer_simulation_environment {} ".format(launch_name), "local_yaml_path:={} ".format(local_yaml_path), "racecars_with_stereo_cameras:={} ".format(','.join(racecars_with_stereo_cameras)), "racecars_with_lidars:={} multicar:={} ".format(','.join(racecars_with_lidars), multicar), "car_colors:={} simapp_versions:={}".format(','.join(yaml_values[CAR_COLOR_YAML_KEY]), ','.join(simapp_versions))))] Popen(cmd, shell=True, executable="/bin/bash") except botocore.exceptions.ClientError as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_400) except botocore.exceptions.EndpointConnectionError: log_and_exit("No Internet connection or s3 service unavailable", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except Exception as ex: log_and_exit("Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def validate_yaml_values(yaml_values, multicar): """ Validate that the parameter provided in the yaml file for configuration is correct. Some of the params requires list of two values. This is mostly checked as part of this function Arguments: yaml_values {[dict]} -- [All the yaml parameter as a list] multicar {[bool]} -- [Is multicar enabled (True), else False] Raises: Exception -- [Exception] """ # Verify if all the yaml keys required for launching models have same number of values same_len_values = [MODEL_S3_BUCKET_YAML_KEY, MODEL_S3_PREFIX_YAML_KEY, MODEL_METADATA_FILE_S3_YAML_KEY, CAR_COLOR_YAML_KEY] LOG.info(yaml_values) if not all(map(lambda param: len(yaml_values[param]) == len(yaml_values[same_len_values[0]]), same_len_values)): raise Exception('Incorrect number of values for these yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 2 values for multi car racing if multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 2: raise Exception('Incorrect number of values for multicar racing yaml parameters {}'.format(same_len_values)) # Verify if all yaml keys have 1 value for single car racing if not multicar and len(yaml_values[MODEL_S3_PREFIX_YAML_KEY]) != 1: raise Exception('Incorrect number of values for single car racing yaml parameters {}'.format(same_len_values)) def get_yaml_dict(local_yaml_path): '''local_yaml_path - path to the local yaml file ''' with open(local_yaml_path, 'r') as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: log_and_exit("yaml read error: {}".format(exc), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) def get_yaml_values(yaml_dict, default_vals=None): '''yaml_dict - dict containing yaml configs default_vals - Dictionary of the default values to be used if key is not present ''' try: return_values = dict()
default_val_keys = default_vals.keys() if default_vals else []
random_line_split
2_tracking.py
]] # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0.0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return float(intersect) / (sum_area - intersect) class Box(object): """ match_state:一个box是否匹配到一个track中,若没有,应该生成新的track """ def __init__(self, frame_index, id, box, score, gps_coor, feature): self.frame_index = frame_index self.id = id self.box = box self.score = score self.gps_coor = gps_coor self.feature = feature self.center = (self.box[0] + self.box[2] / 2, self.box[1] + self.box[3] / 2) self.match_state = NO_MATCHED class Track(object): def __init__(self, id, sequence): self.id = id self.sequence = sequence self.match_state = MATCHED # self.leak_time = int(0) # 镂空次数,如果连续两帧 def append(self, box): self.sequence.append(box) def get_last(self): return self.sequence[-1] def get_last_feature(self): return self.sequence[-1].feature def get_last_gps(self): return self.sequence[-1].gps_coor def show(self): print("For track-" + str(self.id) + ' : ', "length-" + len(self.sequence), ", matchState-", self.match_state) class Frame(object): def __init__(self, index, boxes): self.index = index self.boxes = boxes def append(self, box): self.boxes.append(box) def show(self): print("For frame index-" + str(self.index) + ' : ', "length-" + len(self.boxes)) for i in range(len(self.boxes)):
def Hungary(task_matrix): b = task_matrix.copy() # 行和列减0 for i in range(len(b)): row_min = np.min(b[i]) for j in range(len(b[i])): b[i][j] -= row_min for i in range(len(b[0])): col_min = np.min(b[:, i]) for j in range(len(b)): b[j][i] -= col_min line_count = 0 # 线数目小于矩阵长度时,进行循环 while (line_count < len(b)): line_count = 0 row_zero_count = [] col_zero_count = [] for i in range(len(b)): row_zero_count.append(np.sum(b[i] == 0)) for i in range(len(b[0])): col_zero_count.append((np.sum(b[:, i] == 0))) # 划线的顺序(分行或列) line_order = [] row_or_col = [] for i in range(len(b[0]), 0, -1): while (i in row_zero_count): line_order.append(row_zero_count.index(i)) row_or_col.append(0) row_zero_count[row_zero_count.index(i)] = 0 while (i in col_zero_count): line_order.append(col_zero_count.index(i)) row_or_col.append(1) col_zero_count[col_zero_count.index(i)] = 0 # 画线覆盖0,并得到行减最小值,列加最小值后的矩阵 delete_count_of_row = [] delete_count_of_rol = [] row_and_col = [i for i in range(len(b))] for i in range(len(line_order)): if row_or_col[i] == 0: delete_count_of_row.append(line_order[i]) else: delete_count_of_rol.append(line_order[i]) c = np.delete(b, delete_count_of_row, axis=0) c = np.delete(c, delete_count_of_rol, axis=1) line_count = len(delete_count_of_row) + len(delete_count_of_rol) # 线数目等于矩阵长度时,跳出 if line_count == len(b): break # 判断是否画线覆盖所有0,若覆盖,进行加减操作 if 0 not in c: row_sub = list(set(row_and_col) - set(delete_count_of_row)) min_value = np.min(c) for i in row_sub: b[i] = b[i] - min_value for i in delete_count_of_rol: b[:, i] = b[:, i] + min_value break row_ind, col_ind = linear_sum_assignment(b) min_cost = task_matrix[row_ind, col_ind].sum() best_solution = list(task_matrix[row_ind, col_ind]) return best_solution, col_ind # dict:key-帧序列数,value-Box_list def analysis_to_frame_dict(file_path): frame_dict = {} lines = open(file_path, 'r').readlines() for line in lines: words = line.strip('\n').split(',') # print 'what: ', words[0], len(words) index = int(words[0]) id = int(words[1]) box = [int(float(words[2])), int(float(words[3])), int(float(words[4])), int(float(words[5]))] score = float(words[6]) gps_x = float(words[8]) gps_y = float(words[9]) ft = np.zeros(len(words) - 10) for i in range(10, len(words)): ft[i - 10] = float(words[i]) cur_box = Box(index, id, box, score, (gps_x, gps_y), ft) if index not in frame_dict: frame_dict[index] = Frame(index, []) frame_dict[index].append(cur_box) return frame_dict def get_num_frames(video_path): cap = cv2.VideoCapture(video_path) return int(cap.get(7)) def process_a_video(camera_dir): det_reid_ft_path = camera_dir + "/det_reid_features.txt" result_path = camera_dir + "/det_reid_track.txt" roi_path = camera_dir + '/roi.jpg' video_path = camera_dir + '/vdo.avi' all_frames = get_num_frames(video_path) roi_src = cv2.imread(roi_path) frame_dict = analysis_to_frame_dict(det_reid_ft_path) # dict:key-帧序列数,value-Frame result_dict = {} # 记录最后结果的字典:key-id,value-track flowing_track = [] # 记录当前正在跟踪的tracks print(all_frames) all_frames_num = len(frame_dict) count = 0 for k in range(1, all_frames+1): cur_frame = frame_dict.get(k) if cur_frame == None: continue # print k, '**************************************************' # print len(cur_frame.boxes) processed_boxes = preprocess_boxes(cur_frame.boxes, roi_src) cur_frame.boxes = processed_boxes # print len(cur_frame.boxes) # 当前帧的所有box试图与现有的track匹配 track_features = [] # 如果一个track,它和当前帧所有的box都不相似,那么它应该被移除,不参与后面的匹配 delete_tks = [] for tk in flowing_track: tk_ft = tk.get_last_feature() tk_gps = tk.get_last_gps() no_matched_flag = True for box in cur_frame.boxes: # 计算特征差 box_ft = box.feature feature_dis_vec = box_ft - tk_ft feature_dis = np.dot(feature_dis_vec.T, feature_dis_vec) # 计算gps差 box_gps = box.gps_coor gps_dis_vec = ((tk_gps[0]-box_gps[0]), (tk_gps[1]-box_gps[1])) gps_dis = (gps_dis_vec[0]*100000)**2 + (gps_dis_vec[1]*100000)**2 # print feature_dis, gps_dis_vec, gps_dis total_dis = gps_dis*WIGHTS + feature_dis # if feature_dis < 50: # print 'near: ', gps_dis*WIGHTS, feature_dis, total_dis # if feature_dis > 150: # print 'far: ', gps_dis*WIGHTS, feature_dis, total_dis
box = self.boxes[i] print('box', i, ': ', box)
random_line_split
2_tracking.py
]] # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0.0 else: intersect = (right_line - left_
ottom_line - top_line) return float(intersect) / (sum_area - intersect) class Box(object): """ match_state:一个box是否匹配到一个track中,若没有,应该生成新的track """ def __init__(self, frame_index, id, box, score, gps_coor, feature): self.frame_index = frame_index self.id = id self.box = box self.score = score self.gps_coor = gps_coor self.feature = feature self.center = (self.box[0] + self.box[2] / 2, self.box[1] + self.box[3] / 2) self.match_state = NO_MATCHED class Track(object): def __init__(self, id, sequence): self.id = id self.sequence = sequence self.match_state = MATCHED # self.leak_time = int(0) # 镂空次数,如果连续两帧 def append(self, box): self.sequence.append(box) def get_last(self): return self.sequence[-1] def get_last_feature(self): return self.sequence[-1].feature def get_last_gps(self): return self.sequence[-1].gps_coor def show(self): print("For track-" + str(self.id) + ' : ', "length-" + len(self.sequence), ", matchState-", self.match_state) class Frame(object): def __init__(self, index, boxes): self.index = index self.boxes = boxes def append(self, box): self.boxes.append(box) def show(self): print("For frame index-" + str(self.index) + ' : ', "length-" + len(self.boxes)) for i in range(len(self.boxes)): box = self.boxes[i] print('box', i, ': ', box) def Hungary(task_matrix): b = task_matrix.copy() # 行和列减0 for i in range(len(b)): row_min = np.min(b[i]) for j in range(len(b[i])): b[i][j] -= row_min for i in range(len(b[0])): col_min = np.min(b[:, i]) for j in range(len(b)): b[j][i] -= col_min line_count = 0 # 线数目小于矩阵长度时,进行循环 while (line_count < len(b)): line_count = 0 row_zero_count = [] col_zero_count = [] for i in range(len(b)): row_zero_count.append(np.sum(b[i] == 0)) for i in range(len(b[0])): col_zero_count.append((np.sum(b[:, i] == 0))) # 划线的顺序(分行或列) line_order = [] row_or_col = [] for i in range(len(b[0]), 0, -1): while (i in row_zero_count): line_order.append(row_zero_count.index(i)) row_or_col.append(0) row_zero_count[row_zero_count.index(i)] = 0 while (i in col_zero_count): line_order.append(col_zero_count.index(i)) row_or_col.append(1) col_zero_count[col_zero_count.index(i)] = 0 # 画线覆盖0,并得到行减最小值,列加最小值后的矩阵 delete_count_of_row = [] delete_count_of_rol = [] row_and_col = [i for i in range(len(b))] for i in range(len(line_order)): if row_or_col[i] == 0: delete_count_of_row.append(line_order[i]) else: delete_count_of_rol.append(line_order[i]) c = np.delete(b, delete_count_of_row, axis=0) c = np.delete(c, delete_count_of_rol, axis=1) line_count = len(delete_count_of_row) + len(delete_count_of_rol) # 线数目等于矩阵长度时,跳出 if line_count == len(b): break # 判断是否画线覆盖所有0,若覆盖,进行加减操作 if 0 not in c: row_sub = list(set(row_and_col) - set(delete_count_of_row)) min_value = np.min(c) for i in row_sub: b[i] = b[i] - min_value for i in delete_count_of_rol: b[:, i] = b[:, i] + min_value break row_ind, col_ind = linear_sum_assignment(b) min_cost = task_matrix[row_ind, col_ind].sum() best_solution = list(task_matrix[row_ind, col_ind]) return best_solution, col_ind # dict:key-帧序列数,value-Box_list def analysis_to_frame_dict(file_path): frame_dict = {} lines = open(file_path, 'r').readlines() for line in lines: words = line.strip('\n').split(',') # print 'what: ', words[0], len(words) index = int(words[0]) id = int(words[1]) box = [int(float(words[2])), int(float(words[3])), int(float(words[4])), int(float(words[5]))] score = float(words[6]) gps_x = float(words[8]) gps_y = float(words[9]) ft = np.zeros(len(words) - 10) for i in range(10, len(words)): ft[i - 10] = float(words[i]) cur_box = Box(index, id, box, score, (gps_x, gps_y), ft) if index not in frame_dict: frame_dict[index] = Frame(index, []) frame_dict[index].append(cur_box) return frame_dict def get_num_frames(video_path): cap = cv2.VideoCapture(video_path) return int(cap.get(7)) def process_a_video(camera_dir): det_reid_ft_path = camera_dir + "/det_reid_features.txt" result_path = camera_dir + "/det_reid_track.txt" roi_path = camera_dir + '/roi.jpg' video_path = camera_dir + '/vdo.avi' all_frames = get_num_frames(video_path) roi_src = cv2.imread(roi_path) frame_dict = analysis_to_frame_dict(det_reid_ft_path) # dict:key-帧序列数,value-Frame result_dict = {} # 记录最后结果的字典:key-id,value-track flowing_track = [] # 记录当前正在跟踪的tracks print(all_frames) all_frames_num = len(frame_dict) count = 0 for k in range(1, all_frames+1): cur_frame = frame_dict.get(k) if cur_frame == None: continue # print k, '**************************************************' # print len(cur_frame.boxes) processed_boxes = preprocess_boxes(cur_frame.boxes, roi_src) cur_frame.boxes = processed_boxes # print len(cur_frame.boxes) # 当前帧的所有box试图与现有的track匹配 track_features = [] # 如果一个track,它和当前帧所有的box都不相似,那么它应该被移除,不参与后面的匹配 delete_tks = [] for tk in flowing_track: tk_ft = tk.get_last_feature() tk_gps = tk.get_last_gps() no_matched_flag = True for box in cur_frame.boxes: # 计算特征差 box_ft = box.feature feature_dis_vec = box_ft - tk_ft feature_dis = np.dot(feature_dis_vec.T, feature_dis_vec) # 计算gps差 box_gps = box.gps_coor gps_dis_vec = ((tk_gps[0]-box_gps[0]), (tk_gps[1]-box_gps[1])) gps_dis = (gps_dis_vec[0]*100000)**2 + (gps_dis_vec[1]*100000)**2 # print feature_dis, gps_dis_vec, gps_dis total_dis = gps_dis*WIGHTS + feature_dis # if feature_dis < 50: # print 'near: ', gps_dis*WIGHTS, feature_dis, total_dis # if feature_dis > 150: # print 'far: ', gps_dis*WIGHTS, feature_dis,
line) * (b
conditional_block
2_tracking.py
]] # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0.0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return float(intersect) / (sum_area - intersect) class Box(object): """ match_state:一个box是否匹配到一个track中,若没有,应该生成新的track """ def __init__(self, frame_index, id, box, score, gps_coor, feature): self.frame_index = frame_index self.id = id self.box = box self.score = score self.gps_coor = gps_coor self.feature = feature self.center = (self.box[0] + self.box[2] / 2, self.box[1] + self.box[3] / 2) self.match_state = NO_MATCHED class Track(object): def __init__(self, id, sequence): self.id = id self.sequence = sequence self.match_state = MATCHED # self.leak_time = int(0) # 镂空次数,如果连续两帧 def append(self, box): self.sequence.append(box) def get_last(self): return self.sequence[-1] def get_last_feature(self): return self.sequence[-1].feature def get_last_gps(self): return self.sequence[-1].gps_coor def show(self): print("For track-" + str(self.id) + ' : ', "length-" + len(self.sequence), ", matchState-", self.match_state) class Frame(object): def __init__(self, index, boxes): self.index = index self.boxes = boxes def append(self, box): self.boxes.append(box) def show(self)
.index) + ' : ', "length-" + len(self.boxes)) for i in range(len(self.boxes)): box = self.boxes[i] print('box', i, ': ', box) def Hungary(task_matrix): b = task_matrix.copy() # 行和列减0 for i in range(len(b)): row_min = np.min(b[i]) for j in range(len(b[i])): b[i][j] -= row_min for i in range(len(b[0])): col_min = np.min(b[:, i]) for j in range(len(b)): b[j][i] -= col_min line_count = 0 # 线数目小于矩阵长度时,进行循环 while (line_count < len(b)): line_count = 0 row_zero_count = [] col_zero_count = [] for i in range(len(b)): row_zero_count.append(np.sum(b[i] == 0)) for i in range(len(b[0])): col_zero_count.append((np.sum(b[:, i] == 0))) # 划线的顺序(分行或列) line_order = [] row_or_col = [] for i in range(len(b[0]), 0, -1): while (i in row_zero_count): line_order.append(row_zero_count.index(i)) row_or_col.append(0) row_zero_count[row_zero_count.index(i)] = 0 while (i in col_zero_count): line_order.append(col_zero_count.index(i)) row_or_col.append(1) col_zero_count[col_zero_count.index(i)] = 0 # 画线覆盖0,并得到行减最小值,列加最小值后的矩阵 delete_count_of_row = [] delete_count_of_rol = [] row_and_col = [i for i in range(len(b))] for i in range(len(line_order)): if row_or_col[i] == 0: delete_count_of_row.append(line_order[i]) else: delete_count_of_rol.append(line_order[i]) c = np.delete(b, delete_count_of_row, axis=0) c = np.delete(c, delete_count_of_rol, axis=1) line_count = len(delete_count_of_row) + len(delete_count_of_rol) # 线数目等于矩阵长度时,跳出 if line_count == len(b): break # 判断是否画线覆盖所有0,若覆盖,进行加减操作 if 0 not in c: row_sub = list(set(row_and_col) - set(delete_count_of_row)) min_value = np.min(c) for i in row_sub: b[i] = b[i] - min_value for i in delete_count_of_rol: b[:, i] = b[:, i] + min_value break row_ind, col_ind = linear_sum_assignment(b) min_cost = task_matrix[row_ind, col_ind].sum() best_solution = list(task_matrix[row_ind, col_ind]) return best_solution, col_ind # dict:key-帧序列数,value-Box_list def analysis_to_frame_dict(file_path): frame_dict = {} lines = open(file_path, 'r').readlines() for line in lines: words = line.strip('\n').split(',') # print 'what: ', words[0], len(words) index = int(words[0]) id = int(words[1]) box = [int(float(words[2])), int(float(words[3])), int(float(words[4])), int(float(words[5]))] score = float(words[6]) gps_x = float(words[8]) gps_y = float(words[9]) ft = np.zeros(len(words) - 10) for i in range(10, len(words)): ft[i - 10] = float(words[i]) cur_box = Box(index, id, box, score, (gps_x, gps_y), ft) if index not in frame_dict: frame_dict[index] = Frame(index, []) frame_dict[index].append(cur_box) return frame_dict def get_num_frames(video_path): cap = cv2.VideoCapture(video_path) return int(cap.get(7)) def process_a_video(camera_dir): det_reid_ft_path = camera_dir + "/det_reid_features.txt" result_path = camera_dir + "/det_reid_track.txt" roi_path = camera_dir + '/roi.jpg' video_path = camera_dir + '/vdo.avi' all_frames = get_num_frames(video_path) roi_src = cv2.imread(roi_path) frame_dict = analysis_to_frame_dict(det_reid_ft_path) # dict:key-帧序列数,value-Frame result_dict = {} # 记录最后结果的字典:key-id,value-track flowing_track = [] # 记录当前正在跟踪的tracks print(all_frames) all_frames_num = len(frame_dict) count = 0 for k in range(1, all_frames+1): cur_frame = frame_dict.get(k) if cur_frame == None: continue # print k, '**************************************************' # print len(cur_frame.boxes) processed_boxes = preprocess_boxes(cur_frame.boxes, roi_src) cur_frame.boxes = processed_boxes # print len(cur_frame.boxes) # 当前帧的所有box试图与现有的track匹配 track_features = [] # 如果一个track,它和当前帧所有的box都不相似,那么它应该被移除,不参与后面的匹配 delete_tks = [] for tk in flowing_track: tk_ft = tk.get_last_feature() tk_gps = tk.get_last_gps() no_matched_flag = True for box in cur_frame.boxes: # 计算特征差 box_ft = box.feature feature_dis_vec = box_ft - tk_ft feature_dis = np.dot(feature_dis_vec.T, feature_dis_vec) # 计算gps差 box_gps = box.gps_coor gps_dis_vec = ((tk_gps[0]-box_gps[0]), (tk_gps[1]-box_gps[1])) gps_dis = (gps_dis_vec[0]*100000)**2 + (gps_dis_vec[1]*100000)**2 # print feature_dis, gps_dis_vec, gps_dis total_dis = gps_dis*WIGHTS + feature_dis # if feature_dis < 50: # print 'near: ', gps_dis*WIGHTS, feature_dis, total_dis # if feature_dis > 150: # print 'far: ', gps_dis*WIGHTS, feature_dis, total
: print("For frame index-" + str(self
identifier_body
2_tracking.py
, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU """ rec1 = [box1[0], box1[1], box1[0] + box1[2], box1[1] + box1[3]] rec2 = [box2[0], box2[1], box2[0] + box2[2], box2[1] + box2[3]] # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0.0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return float(intersect) / (sum_area - intersect) class Box(object): """ match_state:一个box是否匹配到一个track中,若没有,应该生成新的track """ def __init__(self, frame_index, id, box, score, gps_coor, feature): self.frame_index = frame_index self.id = id self.box = box self.score = score self.gps_coor = gps_coor self.feature = feature self.center = (self.box[0] + self.box[2] / 2, self.box[1] + self.box[3] / 2) self.match_state = NO_MATCHED class Track(object): def __init__(self, id, sequence): self.id = id self.sequence = sequence self.match_state = MATCHED # self.leak_time = int(0) # 镂空次数,如果连续两帧 def append(self, box): self.sequence.append(box) def get_last(self): return self.sequence[-1] def get_last_feature(self): return self.sequence[-1].feature def get_last_gps(self): return self.sequence[-1].gps_coor def show(self): print("For track-" + str(self.id) + ' : ', "length-" + len(self.sequence), ", matchState-", self.match_state) class Frame(object): def __init__(self, index, boxes): self.index = index self.boxes = boxes def append(self, box): self.boxes.append(box) def show(self): print("For frame index-" + str(self.index) + ' : ', "length-" + len(self.boxes)) for i in range(len(self.boxes)): box = self.boxes[i] print('box', i, ': ', box) def Hungary(task_matrix): b = task_matrix.copy() # 行和列减0 for i in range(len(b)): row_min = np.min(b[i]) for j in range(len(b[i])): b[i][j] -= row_min for i in range(len(b[0])): col_min = np.min(b[:, i]) for j in range(len(b)): b[j][i] -= col_min line_count = 0 # 线数目小于矩阵长度时,进行循环 while (line_count < len(b)): line_count = 0 row_zero_count = [] col_zero_count = [] for i in range(len(b)): row_zero_count.append(np.sum(b[i] == 0)) for i in range(len(b[0])): col_zero_count.append((np.sum(b[:, i] == 0))) # 划线的顺序(分行或列) line_order = [] row_or_col = [] for i in range(len(b[0]), 0, -1): while (i in row_zero_count): line_order.append(row_zero_count.index(i)) row_or_col.append(0) row_zero_count[row_zero_count.index(i)] = 0 while (i in col_zero_count): line_order.append(col_zero_count.index(i)) row_or_col.append(1) col_zero_count[col_zero_count.index(i)] = 0 # 画线覆盖0,并得到行减最小值,列加最小值后的矩阵 delete_count_of_row = [] delete_count_of_rol = [] row_and_col = [i for i in range(len(b))] for i in range(len(line_order)): if row_or_col[i] == 0: delete_count_of_row.append(line_order[i]) else: delete_count_of_rol.append(line_order[i]) c = np.delete(b, delete_count_of_row, axis=0) c = np.delete(c, delete_count_of_rol, axis=1) line_count = len(delete_count_of_row) + len(delete_count_of_rol) # 线数目等于矩阵长度时,跳出 if line_count == len(b): break # 判断是否画线覆盖所有0,若覆盖,进行加减操作 if 0 not in c: row_sub = list(set(row_and_col) - set(delete_count_of_row)) min_value = np.min(c) for i in row_sub: b[i] = b[i] - min_value for i in delete_count_of_rol: b[:, i] = b[:, i] + min_value break row_ind, col_ind = linear_sum_assignment(b) min_cost = task_matrix[row_ind, col_ind].sum() best_solution = list(task_matrix[row_ind, col_ind]) return best_solution, col_ind # dict:key-帧序列数,value-Box_list def analysis_to_frame_dict(file_path): frame_dict = {} lines = open(file_path, 'r').readlines() for line in lines: words = line.strip('\n').split(',') # print 'what: ', words[0], len(words) index = int(words[0]) id = int(words[1]) box = [int(float(words[2])), int(float(words[3])), int(float(words[4])), int(float(words[5]))] score = float(words[6]) gps_x = float(words[8]) gps_y = float(words[9]) ft = np.zeros(len(words) - 10) for i in range(10, len(words)): ft[i - 10] = float(words[i]) cur_box = Box(index, id, box, score, (gps_x, gps_y), ft) if index not in frame_dict: frame_dict[index] = Frame(index, []) frame_dict[index].append(cur_box) return frame_dict def get_num_frames(video_path): cap = cv2.VideoCapture(video_path) return int(cap.get(7)) def process_a_video(camera_dir): det_reid_ft_path = camera_dir + "/det_reid_features.txt" result_path = camera_dir + "/det_reid_track.txt" roi_path = camera_dir + '/roi.jpg' video_path = camera_dir + '/vdo.avi' all_frames = get_num_frames(video_path) roi_src = cv2.imread(roi_path) frame_dict = analysis_to_frame_dict(det_reid_ft_path) # dict:key-帧序列数,value-Frame result_dict = {} # 记录最后结果的字典:key-id,value-track flowing_track = [] # 记录当前正在跟踪的tracks print(all_frames) all_frames_num = len(frame_dict) count = 0 for k in range(1, all_frames+1): cur_frame = frame_dict.get(k) if cur_frame == None: continue # print k, '**************************************************' # print len(cur_frame.boxes) processed_boxes = preprocess_boxes(cur_frame.boxes, roi_src) cur_frame.boxes = processed_boxes # print len(cur_frame.boxes) # 当前帧的所有box试图与现有的track匹配 track_features = [] # 如果一个track,它和当前帧所有的box都不相似,那么它应该被移除,不参与后面的匹配 delete_tks = [] for tk in flowing_track: tk_ft = tk.get_last_feature() tk_gps = tk.get_last_gps() no_matched_flag = True for box in cur_frame.boxes: # 计算特征差 box_ft = box.feature feature_dis_vec = box_ft - tk_ft feature_dis = np.dot(feature_dis_vec.T, feature_dis_vec) # 计算gps差 box_gps = box.gps_coor gps_dis_vec = ((tk_gps[0]-box_gps[0]), (tk
m rec1: (y0
identifier_name
add-action-form.component.ts
boolean = false; resultValue: any = {}; appAttributeParams: any = {}; validateForm: FormGroup; code: any; nameverification: any;//name conturi: any; //功能地址 contauthorizationUri: any = '只能输入数字、26个英文字母(大小写)、:/?&#-_{}.=,多个URL以英文逗号分隔'; private checkPwd: any = CheckRegExp(this.regService.getPwd()) idNum: number; id: number; subscription: Subscription;//订阅问题 appIconFile: any = { list: [], number: 1, apiUrl: `${document.location.origin}/console-api/attachmentController/uploadImage`, }; componentChange(value: any, fieldName: string) { if (this.checkHasFieldName(fieldName)) { this.validateForm.controls[fieldName].setValue(value); } } guid() { return (this.S4() + this.S4() + this.S4() + this.S4() + this.S4() + this.S4() + this.S4() + this.S4()); } S4() { return (((1 + Math.random()) * 0x10000) | 0).toString(16).substring(1); } checkHasFieldName(fieldName: string) { let has = false; for (let o in this.validateForm.controls) { if (fieldName && fieldName == o) { has = true; break; } } return has; } _submitForm() { for (const i in this.validateForm.controls) { this.validateForm.controls[i].markAsDirty(); } // console.log(this.validateForm); if (this.validateForm.invalid) { return; } this.resultData.emit(this.resultValue); this.onSubmit.emit(this.validateForm); } constructor(private regService: RegexpSService, private fb: FormBuilder, private service: AddActionFormService, private route: ActivatedRoute ) { this.subscription = this.service.editGrabble$.subscribe((grabble: any) => { this.id = grabble; });
rols['checkPassword'].updateValueAndValidity(); }); } getCaptcha(e: MouseEvent) { e.preventDefault(); } // confirmationValidator = (control: FormControl): { [s: string]: boolean } => { // if (!control.value) { // return { required: true }; // } else if (control.value !== this.validateForm.controls['password'].value) { // return { confirm: true, error: true }; // } // }; // // // confirmationSerialNumber(): ValidatorFn { return (control: FormControl) => { let forbiddenName: boolean = false; // let controlV = control.value ? control.value : ''; // controlV && (controlV = controlV.trim()); if (/\D/g.test(control.value) || control.value.length > 6) { forbiddenName = true; } return forbiddenName ? { 'forbiddenName': { value: control.value } } : null; } }; initValidateForm() { //监听service里的id值,当编辑时传id if (this.validateForm) { return false; } const that = this; if (this.id) {//当操作为编辑时,添加id值 this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(768), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: [null, [Validators.required]], parentId: [(this.action && this.action.parentId ? this.action.parentId : 0)], id: [this.id], parentName: [(this.action && this.action.parentName ? this.action.parentName : 'root')] }); } else { this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(256), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: this.defaultType, parentId: [0], id: null, parentName: ['root'] }); } } resetValidateForm(data: any) { if (data.icon == null || data.icon == '' || data.icon == undefined) { // 没有icon时清除 this.appIconFile.list = []; this.appIconFile = Object.assign({}, this.appIconFile); } const that = this; if (this.editOrAdd == 'select' || this.editOrAdd == 'update') { this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root', }); } else {//新增 this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root' }); } } space() { } /** * 检验name是否重复 * 这里使用箭头函数是因为内部取不到this * @param {FormControl} control [description] * @return {[type]} [description] */ checkRepeatCodeAs = async (control: FormControl): Promise<any> => { let cont = !(/^([\u4E00-\u9FA5]|[A-Za-z]|[0-9]|[ ]|[-_&])+$/).test(control.value || '') if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'features': { value: cont } }) this.nameverification = "只能输入中文、数字、26个英文字母(大小写)、-_&、空格" }) } else { return new Promise((resolve: any, reject: any) => { let controlV: string = control.value || '' controlV && (controlV = controlV.trim()) let params: any = { isname: controlV, } params.appId = this.route.snapshot.params['id']; if (this.id) { params.id = this.id; } this.service.checkRepeat(params).subscribe((data: any) => { resolve(!data.success ? { 'features': { value: control.value } } : null) this.nameverification = "应用名称已存在" }) }) } } /** * 检验uri */ checkRepeaturiAs = async (control: FormControl): Promise<any> => { let cont = !(/^([A-Za-z]|[0-9]|[:/?&#-_{}.])+$/).test(control.value || '') if (control.value && control.value.length < 10) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': { value: true } }) this.conturi = "输入的功能地址长度不得小于10位" }) } else if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi
} updateConfirmValidator() { /** wait for refresh value */ setTimeout(() => { this.validateForm.cont
identifier_body
add-action-form.component.ts
refresh value */ setTimeout(() => { this.validateForm.controls['checkPassword'].updateValueAndValidity(); }); } getCaptcha(e: MouseEvent) { e.preventDefault(); } // confirmationValidator = (control: FormControl): { [s: string]: boolean } => { // if (!control.value) { // return { required: true }; // } else if (control.value !== this.validateForm.controls['password'].value) { // return { confirm: true, error: true }; // } // }; // // // confirmationSerialNumber(): ValidatorFn { return (control: FormControl) => { let forbiddenName: boolean = false; // let controlV = control.value ? control.value : ''; // controlV && (controlV = controlV.trim()); if (/\D/g.test(control.value) || control.value.length > 6) { forbiddenName = true; } return forbiddenName ? { 'forbiddenName': { value: control.value } } : null; } }; initValidateForm() { //监听service里的id值,当编辑时传id if (this.validateForm) { return false; } const that = this; if (this.id) {//当操作为编辑时,添加id值 this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(768), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: [null, [Validators.required]], parentId: [(this.action && this.action.parentId ? this.action.parentId : 0)], id: [this.id], parentName: [(this.action && this.action.parentName ? this.action.parentName : 'root')] }); } else { this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(256), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: this.defaultType, parentId: [0], id: null, parentName: ['root'] }); } } resetValidateForm(data: any) { if (data.icon == null || data.icon == '' || data.icon == undefined) { // 没有icon时清除 this.appIconFile.list = []; this.appIconFile = Object.assign({}, this.appIconFile); } const that = this; if (this.editOrAdd == 'select' || this.editOrAdd == 'update') { this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root', }); } else {//新增 this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root' }); } } space() { } /** * 检验name是否重复 * 这里使用箭头函数是因为内部取不到this * @param {FormControl} control [description] * @return {[type]} [description] */ checkRepeatCodeAs = async (control: FormControl): Promise<any> => { let cont = !(/^([\u4E00-\u9FA5]|[A-Za-z]|[0-9]|[ ]|[-_&])+$/).test(control.value || '') if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'features': { value: cont } }) this.nameverification = "只能输入中文、数字、26个英文字母(大小写)、-_&、空格" }) } else { return new Promise((resolve: any, reject: any) => { let controlV: string = control.value || '' controlV && (controlV = controlV.trim()) let params: any = { isname: controlV, } params.appId = this.route.snapshot.params['id']; if (this.id) { params.id = this.id; } this.service.checkRepeat(params).subscribe((data: any) => { resolve(!data.success ? { 'features': { value: control.value } } : null) this.nameverification = "应用名称已存在" }) }) } } /** * 检验uri */ checkRepeaturiAs = async (control: FormControl): Promise<any> => { let cont = !(/^([A-Za-z]|[0-9]|[:/?&#-_{}.])+$/).test(control.value || '') if (control.value && control.value.length < 10) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': { value: true } }) this.conturi = "输入的功能地址长度不得小于10位" }) } else if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': { value: cont } }) this.conturi = "只能输入数字、26个英文字母(大小写)、':/?&#-_{}.'" }) } } ngOnInit() { this.code = this.guid(); this.action = {}; this.initValidateForm(); } selectSearchAdditionalAppId(value: any, fieldName: string) { this.componentChange(value, fieldName); } getFormControl(name: string) { return this.validateForm.controls[name]; } initIcon() { /* this.appIconFile.list = [{ uid: 146, name: 'yhgj.png', status: 'done', url: 'https://zos.alipayobjects.com/rmsportal/jkjgkEfvpUPVyRjUImniVslZfWPnJuuZ.png', //thumbUrl: icon }];*/ /*let icon=this.action.icon; if(icon){ this.appIconFile.list = [{ uid: 146, name: 'yhgj.png', status: 'done', //url: 'https://zos.alipayobjects.com/rmsportal/jkjgkEfvpUPVyRjUImniVslZfWPnJuuZ.png', thumbUrl: this.action.icon }]; this.resultValue.icon = this.appIconFile.list[0].thumbUrl; }*/ } initActionFormData() { if (this.action) { for (let o in this.action) { this.componentChange(this.action[o], o); } } } showAddUserModal() { this.isShowAddUerModal = true; } onSearchUserList(params: any) { this.userTableFieldParams = params; } onUploadAppIconFile(files: any[]) { if (files.length > 0 && files[0].thumbUrl) { this.resultValue.icon = files[0].thumbUrl; } else { this.resultValue.icon = ""; } } ngOnChanges(changes: SimpleChanges) { this.initValidateForm(); if (changes.action && changes.action.currentValue) { this.action = {};
this.action =
identifier_name
add-action-form.component.ts
if (this.validateForm.invalid) { return; } this.resultData.emit(this.resultValue); this.onSubmit.emit(this.validateForm); } constructor(private regService: RegexpSService, private fb: FormBuilder, private service: AddActionFormService, private route: ActivatedRoute ) { this.subscription = this.service.editGrabble$.subscribe((grabble: any) => { this.id = grabble; }); } updateConfirmValidator() { /** wait for refresh value */ setTimeout(() => { this.validateForm.controls['checkPassword'].updateValueAndValidity(); }); } getCaptcha(e: MouseEvent) { e.preventDefault(); } // confirmationValidator = (control: FormControl): { [s: string]: boolean } => { // if (!control.value) { // return { required: true }; // } else if (control.value !== this.validateForm.controls['password'].value) { // return { confirm: true, error: true }; // } // }; // // // confirmationSerialNumber(): ValidatorFn { return (control: FormControl) => { let forbiddenName: boolean = false; // let controlV = control.value ? control.value : ''; // controlV && (controlV = controlV.trim()); if (/\D/g.test(control.value) || control.value.length > 6) { forbiddenName = true; } return forbiddenName ? { 'forbiddenName': { value: control.value } } : null; } }; initValidateForm() { //监听service里的id值,当编辑时传id if (this.validateForm) { return false; } const that = this; if (this.id) {//当操作为编辑时,添加id值 this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(768), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: [null, [Validators.required]], parentId: [(this.action && this.action.parentId ? this.action.parentId : 0)], id: [this.id], parentName: [(this.action && this.action.parentName ? this.action.parentName : 'root')] }); } else { this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(256), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: this.defaultType, parentId: [0], id: null, parentName: ['root'] }); } } resetValidateForm(data: any) { if (data.icon == null || data.icon == '' || data.icon == undefined) { // 没有icon时清除 this.appIconFile.list = []; this.appIconFile = Object.assign({}, this.appIconFile); } const that = this; if (this.editOrAdd == 'select' || this.editOrAdd == 'update') { this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root', }); } else {//新增 this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root' }); } } space() { } /** * 检验name是否重复 * 这里使用箭头函数是因为内部取不到this * @param {FormControl} control [description] * @return {[type]} [description] */ checkRepeatCodeAs = async (control: FormControl): Promise<any> => { let cont = !(/^([\u4E00-\u9FA5]|[A-Za-z]|[0-9]|[ ]|[-_&])+$/).test(control.value || '') if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'features': { value: cont } }) this.nameverification = "只能输入中文、数字、26个英文字母(大小写)、-_&、空格" }) } else { return new Promise((resolve: any, reject: any) => { let controlV: string = control.value || '' controlV && (controlV = controlV.trim()) let params: any = { isname: controlV, } params.appId = this.route.snapshot.params['id']; if (this.id) { params.id = this.id; } this.service.checkRepeat(params).subscribe((data: any) => { resolve(!data.success ? { 'features': { value: control.value } } : null) this.nameverification = "应用名称已存在" }) }) } } /** * 检验uri */ checkRepeaturiAs = async (control: FormControl): Promise<any> => { let cont = !(/^([A-Za-z]|[0-9]|[:/?&#-_{}.])+$/).test(control.value || '') if (control.value && control.value.length < 10) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': { value: true } }) this.conturi = "输入的功能地址长度不得小于10位" }) } else if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': { value: cont } }) this.conturi = "只能输入数字、26个英文字母(大小写)、':/?&#-_{}.'" }) } } ngOnInit() { this.code = this.guid(); this.action = {}; this.initValidateForm(); } selectSearchAdditionalAppId(value: any, fieldName: string) { this.componentChange(value, fieldName); } getFormControl(name: string) { return this.validateForm.controls[name]; } initIcon() { /* this.appIconFile.list = [{ uid: 146, name: 'yhgj.png', status: 'done', url: 'https://zos.alipayobjects.com/rmsportal/jkjgkEfvpUPVyRjUImniVslZfWPnJuuZ.png', //thumbUrl: icon }];*/ /*let icon=this.action.icon; if(icon){ this.appIconFile.list = [{ uid: 146, name: 'yhgj.png', status: 'done', //url: 'https://zos.alipayobjects.com/rmsportal/jkjgkEfvpUPVyRjUImniVslZfWPnJuuZ.png', thumbUrl: this.action.icon }]; this.resultValue.icon = this.appIconFile.list[0].thumbUrl; }*/ } initActionFormData() { if (this.action) { for (let o in this.action) { this.componentChange(this.action[o], o); } } } showAddUserModal() { this.isShowAddUerModal = true; } onSearchUserList(params: any) {
random_line_split
add-action-form.component.ts
boolean = false; resultValue: any = {}; appAttributeParams: any = {}; validateForm: FormGroup; code: any; nameverification: any;//name conturi: any; //功能地址 contauthorizationUri: any = '只能输入数字、26个英文字母(大小写)、:/?&#-_{}.=,多个URL以英文逗号分隔'; private checkPwd: any = CheckRegExp(this.regService.getPwd()) idNum: number; id: number; subscription: Subscription;//订阅问题 appIconFile: any = { list: [], number: 1, apiUrl: `${document.location.origin}/console-api/attachmentController/uploadImage`, }; componentChange(value: any, fieldName: string) { if (this.checkHasFieldName(fieldName)) { this.validateForm.controls[fieldName].setValue(value); } } guid() { return (this.S4() + this.S4() + this.S4() + this.S4() + this.S4() + this.S4() + this.S4() + this.S4()); } S4() { return (((1 + Math.random()) * 0x10000) | 0).toString(16).substring(1); } checkHasFieldName(fieldName: string) { let has = false; for (let o in this.validateForm.controls) { if (fieldName && fieldName == o) { has = true; break; } } return has; } _submitForm() { for (const i in this.validateForm.controls) { this.validateForm.controls[i].markAsDirty(); } // console.log(this.validateForm); if (this.validateForm.invalid) { return; } this.resultData.emit(this.resultValue); this.onSubmit.emit(this.validateForm); } constructor(private regService: RegexpSService, private fb: FormBuilder, private service: AddActionFormService, private route: ActivatedRoute ) { this.subscription = this.service.editGrabble$.subscribe((grabble: any) => { this.id = grabble; }); } updateConfirmValidator() { /** wait for refresh value */ setTimeout(() => { this.validateForm.controls['checkPassword'].updateValueAndValidity(); }); } getCaptcha(e: MouseEvent) { e.preventDefault(); } // confirmationValidator = (control: FormControl): { [s: string]: boolean } => { // if (!control.value) { // return { required: true }; // } else if (control.value !== this.validateForm.controls['password'].value) { // return { confirm: true, error: true }; // } // }; // // // confirmationSerialNumber(): ValidatorFn { return (control: FormControl) => { let forbiddenName: boolean = false; // let controlV = control.value ? control.value : ''; // controlV && (controlV = controlV.trim()); if (/\D/g.test(control.value) || control.value.length > 6) { forbiddenName = true; } return forbiddenName ? { 'forbiddenName': { value: control.value } } :
() { //监听service里的id值,当编辑时传id if (this.validateForm) { return false; } const that = this; if (this.id) {//当操作为编辑时,添加id值 this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(768), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: [null, [Validators.required]], parentId: [(this.action && this.action.parentId ? this.action.parentId : 0)], id: [this.id], parentName: [(this.action && this.action.parentName ? this.action.parentName : 'root')] }); } else { this.validateForm = this.fb.group({ name: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(100), Validators.pattern(/^\S.*\S$|^\S$/)], this.checkRepeatCodeAs], code: that.code, authorizationUri: [null, [Validators.maxLength(256), Validators.minLength(2), Validators.pattern(/^([A-Za-z0-9 | : | \? | \= | \. | # | & | \- | \/ | _ | \{ | \}]+\,*)+$/)]], uri: [null, [Validators.required, Validators.minLength(2), Validators.maxLength(256), Validators.pattern(/^[A-Za-z0-9\-_:#\?\=&\.{}/]+$/)]], // serialNumber: [null, [Validators.required, this.checkPwd]], serialNumber: 0, // serialNumber: [null, [Validators.required, this.confirmationSerialNumber()]], desc: [null, [Validators.maxLength(256)]], fucTypeDicId: this.defaultType, parentId: [0], id: null, parentName: ['root'] }); } } resetValidateForm(data: any) { if (data.icon == null || data.icon == '' || data.icon == undefined) { // 没有icon时清除 this.appIconFile.list = []; this.appIconFile = Object.assign({}, this.appIconFile); } const that = this; if (this.editOrAdd == 'select' || this.editOrAdd == 'update') { this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root', }); } else {//新增 this.validateForm.reset({ name: null, code: that.code, authorizationUri: null, uri: null, desc: null, fucTypeDicId: this.defaultType, id: null, serialNumber: 0, parentId: data.parentId ? data.parentId : 0, parentName: data.parentName ? data.parentName : 'root' }); } } space() { } /** * 检验name是否重复 * 这里使用箭头函数是因为内部取不到this * @param {FormControl} control [description] * @return {[type]} [description] */ checkRepeatCodeAs = async (control: FormControl): Promise<any> => { let cont = !(/^([\u4E00-\u9FA5]|[A-Za-z]|[0-9]|[ ]|[-_&])+$/).test(control.value || '') if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'features': { value: cont } }) this.nameverification = "只能输入中文、数字、26个英文字母(大小写)、-_&、空格" }) } else { return new Promise((resolve: any, reject: any) => { let controlV: string = control.value || '' controlV && (controlV = controlV.trim()) let params: any = { isname: controlV, } params.appId = this.route.snapshot.params['id']; if (this.id) { params.id = this.id; } this.service.checkRepeat(params).subscribe((data: any) => { resolve(!data.success ? { 'features': { value: control.value } } : null) this.nameverification = "应用名称已存在" }) }) } } /** * 检验uri */ checkRepeaturiAs = async (control: FormControl): Promise<any> => { let cont = !(/^([A-Za-z]|[0-9]|[:/?&#-_{}.])+$/).test(control.value || '') if (control.value && control.value.length < 10) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': { value: true } }) this.conturi = "输入的功能地址长度不得小于10位" }) } else if (cont) { return new Promise((resolve: any, reject: any) => { resolve({ 'conturi': {
null; } }; initValidateForm
conditional_block
__init__.py
process.communicate() if stdout: stdout = stdout.rstrip(' \n') else: stdout = "" if stderr: stderr = stderr.rstrip(' \n') else: stderr = "" return (process.returncode, stdout, stderr) def detectSystem(): (returncode, stdout, stderr) = runCommand("hostname") if returncode != 0: raise BatchelorException("runCommand(\"hostname\") failed") hostname = stdout if hostname.startswith("gridka"): raise BatchelorException("hostname '" + hostname + "' seems to indicate gridka, but the wrong host") elif hostname == "compass-kit.gridka.de": return "gridka" elif hostname.startswith("lxplus") or hostname.endswith(".cern.ch"): return "lxplus" elif hostname.endswith(".e18.physik.tu-muenchen.de"): return "e18" elif hostname.startswith("ccage"): return "lyon" elif hostname.startswith("login") and runCommand("which llsubmit")[0] == 0: return "c2pap" return "UNKNOWN" def _getRealPath(path): return os.path.abspath(os.path.expandvars(os.path.expanduser(path))) def _checkForSpecialCharacters(string): if string is None: string = "" specialCharacters = [' ', ':', ';', '"', '\'', '@', '!', '?', '$', '\\', '/', '#', '(', ')', '{', '}', '[', ']', '.', ',', '*'] foundChars = [] for char in specialCharacters: if string.find(char) > 0: foundChars.append(char) if foundChars: msg = "forbidden characters in job name (" for char in foundChars: msg += repr(char) + ", " msg = msg[:-2] msg += ")" raise BatchelorException(msg) def checkConfig(configFileName, system = ""): config = ConfigParser.RawConfigParser() if not config.read(os.path.abspath(configFileName)):
error = False if system != "" and not config.has_section(system): print("ERROR: System set but corresponding section is missing in config file.") error = True requiredOptions = { "c2pap": [ "group", "notification", "notify_user", "node_usage", "wall_clock_limit", "resources", "job_type", "class" ], "e18": [ "shortqueue", "memory", "header_file", "arch" ], "gridka": [ "queue", "project", "memory", "header_file" ], "lxplus": [ "queue", "pool", "header_file" ], "lyon": [], "local": [ "shell", "cores" ], "simulator": [ "lifetime" ] } filesToTest = { "gridka": [ "header_file" ], "e18": [ "header_file" ], "lxplus": [ "header_file" ], "c2pap": [ "header_file" ], "local": [ "shell" ] } for section in requiredOptions.keys(): if config.has_section(section): options = requiredOptions[section] for option in options: if not config.has_option(section, option): print("ERROR: '" + section + "' section is missing option '" + option + "'.") error = True continue if section in filesToTest.keys() and option in filesToTest[section] and (system == "" or system == section): path = _getRealPath(config.get(section, option)) if not os.path.exists(path): print("ERROR: Could not find required file '" + path + "'.") error = True if error: return False return True class Batchelor: debug = False bprintTicker = "" batchFunctions = None def __init__(self): self._config = ConfigParser.RawConfigParser() def bprint(self, msg): self.bprintTicker += ('' if self.bprintTicker == '' else '\n') + msg if self.debug: print(msg) def initialize(self, configFileName, systemOverride = ""): self.bprint("Initializing...") if not self._config.read(os.path.abspath(configFileName)): self.bprint("Could not read config file '" + configFileName + "'. Initialization failed...") return False if systemOverride == "": self._system = detectSystem() if self._system == "UNKNOWN": self.bprint("Could not determine on which system we are. Initialization failed...") return False self.bprint("Detected system '" + self._system + "'.") else: self._system = systemOverride self.bprint("System manually set to '" + self._system + "'.") if not self._config.has_section(self._system): self.bprint("Could not find section describing '" + self._system + "' in config file '" + configFileName + "'. Initialization failed...") return False if not checkConfig(configFileName, self._system): self.bprint("Config file contains errors. Initialization failed...") return False self.bprint("Importing appropriate submodule.") if self._system == "c2pap": import batchelor._batchelorC2PAP as batchFunctions elif self._system == "gridka": import batchelor._batchelorGridka as batchFunctions elif self._system == "e18": import batchelor._batchelorE18 as batchFunctions elif self._system == "lxplus": import batchelor._batchelorLxplus as batchFunctions elif self._system == "lyon": import batchelor._batchelorLyon as batchFunctions elif self._system == "local": import batchelor._batchelorLocal as batchFunctions batchFunctions.initialize(self._config) elif self._system == "simulator": import batchelor._batchelorSimulator as batchFunctions else: self.bprint("Unknown system '" + self._system + "', cannot load appropriate submodule. Initialization failed...") return False self.batchFunctions = batchFunctions self.bprint("Imported " + batchFunctions.submoduleIdentifier() + " submodule.") self.bprint("Initialized.") return True def initialized(self): if self.batchFunctions: return True else: return False def shutdown(self): if not self.initialized(): raise BatchelorException("not initialized") if "shutdown" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.shutdown() def submitJob(self, command, outputFile, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "submitJob" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.submitJob(self._config, command, outputFile, jobName) else: raise BatchelorException("not implemented") def submitJobs(self, jobs): # 'jobs' should be a list of arguments as they need to be specified for # 'submitJob', e.g.: # [ [ "command 1", "output file 1", "name 1" ], # [ "command 2", "output file 2", None ], # ... ] # The return value is a list of job IDs in the same order as the jobs. # A job ID of -1 indicates an error during submission of this job. if not self.initialized(): raise BatchelorException("not initialized") if "submitJobs" in self.batchFunctions.__dict__.keys(): for i in range(len(jobs)): if len(jobs[i]) == 3: _checkForSpecialCharacters(jobs[i][2]) elif len(jobs[i]) == 2: # the 'submitJob' method of the 'Batchelor' class # has a default argument for the job name, do # something similar here jobs[i].append(None) else: raise BatchelorException("wrong number of arguments") return self.batchFunctions.submitJobs(self._config, jobs) else: jobIds = [] for job in jobs: try: jobId = self.submitJob(*job) except batchelor.BatchelorException as exc: jobId = -1 jobIds.append(jobId) return jobIds def getListOfActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getListOfActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getListOfActiveJobs(jobName) else: raise BatchelorException("not implemented") def getNActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getNActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getNActiveJobs(jobName) else: raise BatchelorException("not implemented") def jobStillRunning(self, jobId): if not self.initialized(): raise BatchelorException("not initialized") if "jobStillRunning" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.jobStillRunning(jobId) else: raise BatchelorException("not implemented") def getListOf
print("ERROR: Could not read config file '" + configFileName + "'.") return False
conditional_block
__init__.py
process.communicate() if stdout: stdout = stdout.rstrip(' \n') else: stdout = "" if stderr: stderr = stderr.rstrip(' \n') else: stderr = "" return (process.returncode, stdout, stderr) def detectSystem(): (returncode, stdout, stderr) = runCommand("hostname") if returncode != 0: raise BatchelorException("runCommand(\"hostname\") failed") hostname = stdout if hostname.startswith("gridka"): raise BatchelorException("hostname '" + hostname + "' seems to indicate gridka, but the wrong host") elif hostname == "compass-kit.gridka.de": return "gridka" elif hostname.startswith("lxplus") or hostname.endswith(".cern.ch"): return "lxplus" elif hostname.endswith(".e18.physik.tu-muenchen.de"): return "e18" elif hostname.startswith("ccage"): return "lyon" elif hostname.startswith("login") and runCommand("which llsubmit")[0] == 0: return "c2pap" return "UNKNOWN" def _getRealPath(path): return os.path.abspath(os.path.expandvars(os.path.expanduser(path))) def _checkForSpecialCharacters(string): if string is None: string = "" specialCharacters = [' ', ':', ';', '"', '\'', '@', '!', '?', '$', '\\', '/', '#', '(', ')', '{', '}', '[', ']', '.', ',', '*'] foundChars = [] for char in specialCharacters: if string.find(char) > 0: foundChars.append(char) if foundChars: msg = "forbidden characters in job name (" for char in foundChars: msg += repr(char) + ", " msg = msg[:-2] msg += ")" raise BatchelorException(msg) def checkConfig(configFileName, system = ""): config = ConfigParser.RawConfigParser() if not config.read(os.path.abspath(configFileName)): print("ERROR: Could not read config file '" + configFileName + "'.") return False error = False if system != "" and not config.has_section(system): print("ERROR: System set but corresponding section is missing in config file.") error = True requiredOptions = { "c2pap": [ "group", "notification", "notify_user", "node_usage", "wall_clock_limit", "resources", "job_type", "class" ], "e18": [ "shortqueue", "memory", "header_file", "arch" ], "gridka": [ "queue", "project", "memory", "header_file" ], "lxplus": [ "queue", "pool", "header_file" ], "lyon": [], "local": [ "shell", "cores" ], "simulator": [ "lifetime" ] } filesToTest = { "gridka": [ "header_file" ], "e18": [ "header_file" ], "lxplus": [ "header_file" ], "c2pap": [ "header_file" ], "local": [ "shell" ] } for section in requiredOptions.keys(): if config.has_section(section): options = requiredOptions[section] for option in options: if not config.has_option(section, option): print("ERROR: '" + section + "' section is missing option '" + option + "'.") error = True continue if section in filesToTest.keys() and option in filesToTest[section] and (system == "" or system == section): path = _getRealPath(config.get(section, option)) if not os.path.exists(path): print("ERROR: Could not find required file '" + path + "'.") error = True if error: return False return True class Batchelor: debug = False
self._config = ConfigParser.RawConfigParser() def bprint(self, msg): self.bprintTicker += ('' if self.bprintTicker == '' else '\n') + msg if self.debug: print(msg) def initialize(self, configFileName, systemOverride = ""): self.bprint("Initializing...") if not self._config.read(os.path.abspath(configFileName)): self.bprint("Could not read config file '" + configFileName + "'. Initialization failed...") return False if systemOverride == "": self._system = detectSystem() if self._system == "UNKNOWN": self.bprint("Could not determine on which system we are. Initialization failed...") return False self.bprint("Detected system '" + self._system + "'.") else: self._system = systemOverride self.bprint("System manually set to '" + self._system + "'.") if not self._config.has_section(self._system): self.bprint("Could not find section describing '" + self._system + "' in config file '" + configFileName + "'. Initialization failed...") return False if not checkConfig(configFileName, self._system): self.bprint("Config file contains errors. Initialization failed...") return False self.bprint("Importing appropriate submodule.") if self._system == "c2pap": import batchelor._batchelorC2PAP as batchFunctions elif self._system == "gridka": import batchelor._batchelorGridka as batchFunctions elif self._system == "e18": import batchelor._batchelorE18 as batchFunctions elif self._system == "lxplus": import batchelor._batchelorLxplus as batchFunctions elif self._system == "lyon": import batchelor._batchelorLyon as batchFunctions elif self._system == "local": import batchelor._batchelorLocal as batchFunctions batchFunctions.initialize(self._config) elif self._system == "simulator": import batchelor._batchelorSimulator as batchFunctions else: self.bprint("Unknown system '" + self._system + "', cannot load appropriate submodule. Initialization failed...") return False self.batchFunctions = batchFunctions self.bprint("Imported " + batchFunctions.submoduleIdentifier() + " submodule.") self.bprint("Initialized.") return True def initialized(self): if self.batchFunctions: return True else: return False def shutdown(self): if not self.initialized(): raise BatchelorException("not initialized") if "shutdown" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.shutdown() def submitJob(self, command, outputFile, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "submitJob" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.submitJob(self._config, command, outputFile, jobName) else: raise BatchelorException("not implemented") def submitJobs(self, jobs): # 'jobs' should be a list of arguments as they need to be specified for # 'submitJob', e.g.: # [ [ "command 1", "output file 1", "name 1" ], # [ "command 2", "output file 2", None ], # ... ] # The return value is a list of job IDs in the same order as the jobs. # A job ID of -1 indicates an error during submission of this job. if not self.initialized(): raise BatchelorException("not initialized") if "submitJobs" in self.batchFunctions.__dict__.keys(): for i in range(len(jobs)): if len(jobs[i]) == 3: _checkForSpecialCharacters(jobs[i][2]) elif len(jobs[i]) == 2: # the 'submitJob' method of the 'Batchelor' class # has a default argument for the job name, do # something similar here jobs[i].append(None) else: raise BatchelorException("wrong number of arguments") return self.batchFunctions.submitJobs(self._config, jobs) else: jobIds = [] for job in jobs: try: jobId = self.submitJob(*job) except batchelor.BatchelorException as exc: jobId = -1 jobIds.append(jobId) return jobIds def getListOfActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getListOfActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getListOfActiveJobs(jobName) else: raise BatchelorException("not implemented") def getNActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getNActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getNActiveJobs(jobName) else: raise BatchelorException("not implemented") def jobStillRunning(self, jobId): if not self.initialized(): raise BatchelorException("not initialized") if "jobStillRunning" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.jobStillRunning(jobId) else: raise BatchelorException("not implemented") def getListOfError
bprintTicker = "" batchFunctions = None def __init__(self):
random_line_split
__init__.py
process.communicate() if stdout: stdout = stdout.rstrip(' \n') else: stdout = "" if stderr: stderr = stderr.rstrip(' \n') else: stderr = "" return (process.returncode, stdout, stderr) def detectSystem(): (returncode, stdout, stderr) = runCommand("hostname") if returncode != 0: raise BatchelorException("runCommand(\"hostname\") failed") hostname = stdout if hostname.startswith("gridka"): raise BatchelorException("hostname '" + hostname + "' seems to indicate gridka, but the wrong host") elif hostname == "compass-kit.gridka.de": return "gridka" elif hostname.startswith("lxplus") or hostname.endswith(".cern.ch"): return "lxplus" elif hostname.endswith(".e18.physik.tu-muenchen.de"): return "e18" elif hostname.startswith("ccage"): return "lyon" elif hostname.startswith("login") and runCommand("which llsubmit")[0] == 0: return "c2pap" return "UNKNOWN" def _getRealPath(path): return os.path.abspath(os.path.expandvars(os.path.expanduser(path))) def _checkForSpecialCharacters(string): if string is None: string = "" specialCharacters = [' ', ':', ';', '"', '\'', '@', '!', '?', '$', '\\', '/', '#', '(', ')', '{', '}', '[', ']', '.', ',', '*'] foundChars = [] for char in specialCharacters: if string.find(char) > 0: foundChars.append(char) if foundChars: msg = "forbidden characters in job name (" for char in foundChars: msg += repr(char) + ", " msg = msg[:-2] msg += ")" raise BatchelorException(msg) def checkConfig(configFileName, system = ""): config = ConfigParser.RawConfigParser() if not config.read(os.path.abspath(configFileName)): print("ERROR: Could not read config file '" + configFileName + "'.") return False error = False if system != "" and not config.has_section(system): print("ERROR: System set but corresponding section is missing in config file.") error = True requiredOptions = { "c2pap": [ "group", "notification", "notify_user", "node_usage", "wall_clock_limit", "resources", "job_type", "class" ], "e18": [ "shortqueue", "memory", "header_file", "arch" ], "gridka": [ "queue", "project", "memory", "header_file" ], "lxplus": [ "queue", "pool", "header_file" ], "lyon": [], "local": [ "shell", "cores" ], "simulator": [ "lifetime" ] } filesToTest = { "gridka": [ "header_file" ], "e18": [ "header_file" ], "lxplus": [ "header_file" ], "c2pap": [ "header_file" ], "local": [ "shell" ] } for section in requiredOptions.keys(): if config.has_section(section): options = requiredOptions[section] for option in options: if not config.has_option(section, option): print("ERROR: '" + section + "' section is missing option '" + option + "'.") error = True continue if section in filesToTest.keys() and option in filesToTest[section] and (system == "" or system == section): path = _getRealPath(config.get(section, option)) if not os.path.exists(path): print("ERROR: Could not find required file '" + path + "'.") error = True if error: return False return True class Batchelor: debug = False bprintTicker = "" batchFunctions = None def __init__(self): self._config = ConfigParser.RawConfigParser() def bprint(self, msg): self.bprintTicker += ('' if self.bprintTicker == '' else '\n') + msg if self.debug: print(msg) def initialize(self, configFileName, systemOverride = ""): self.bprint("Initializing...") if not self._config.read(os.path.abspath(configFileName)): self.bprint("Could not read config file '" + configFileName + "'. Initialization failed...") return False if systemOverride == "": self._system = detectSystem() if self._system == "UNKNOWN": self.bprint("Could not determine on which system we are. Initialization failed...") return False self.bprint("Detected system '" + self._system + "'.") else: self._system = systemOverride self.bprint("System manually set to '" + self._system + "'.") if not self._config.has_section(self._system): self.bprint("Could not find section describing '" + self._system + "' in config file '" + configFileName + "'. Initialization failed...") return False if not checkConfig(configFileName, self._system): self.bprint("Config file contains errors. Initialization failed...") return False self.bprint("Importing appropriate submodule.") if self._system == "c2pap": import batchelor._batchelorC2PAP as batchFunctions elif self._system == "gridka": import batchelor._batchelorGridka as batchFunctions elif self._system == "e18": import batchelor._batchelorE18 as batchFunctions elif self._system == "lxplus": import batchelor._batchelorLxplus as batchFunctions elif self._system == "lyon": import batchelor._batchelorLyon as batchFunctions elif self._system == "local": import batchelor._batchelorLocal as batchFunctions batchFunctions.initialize(self._config) elif self._system == "simulator": import batchelor._batchelorSimulator as batchFunctions else: self.bprint("Unknown system '" + self._system + "', cannot load appropriate submodule. Initialization failed...") return False self.batchFunctions = batchFunctions self.bprint("Imported " + batchFunctions.submoduleIdentifier() + " submodule.") self.bprint("Initialized.") return True def initialized(self): if self.batchFunctions: return True else: return False def shutdown(self): if not self.initialized(): raise BatchelorException("not initialized") if "shutdown" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.shutdown() def submitJob(self, command, outputFile, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "submitJob" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.submitJob(self._config, command, outputFile, jobName) else: raise BatchelorException("not implemented") def
(self, jobs): # 'jobs' should be a list of arguments as they need to be specified for # 'submitJob', e.g.: # [ [ "command 1", "output file 1", "name 1" ], # [ "command 2", "output file 2", None ], # ... ] # The return value is a list of job IDs in the same order as the jobs. # A job ID of -1 indicates an error during submission of this job. if not self.initialized(): raise BatchelorException("not initialized") if "submitJobs" in self.batchFunctions.__dict__.keys(): for i in range(len(jobs)): if len(jobs[i]) == 3: _checkForSpecialCharacters(jobs[i][2]) elif len(jobs[i]) == 2: # the 'submitJob' method of the 'Batchelor' class # has a default argument for the job name, do # something similar here jobs[i].append(None) else: raise BatchelorException("wrong number of arguments") return self.batchFunctions.submitJobs(self._config, jobs) else: jobIds = [] for job in jobs: try: jobId = self.submitJob(*job) except batchelor.BatchelorException as exc: jobId = -1 jobIds.append(jobId) return jobIds def getListOfActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getListOfActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getListOfActiveJobs(jobName) else: raise BatchelorException("not implemented") def getNActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getNActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getNActiveJobs(jobName) else: raise BatchelorException("not implemented") def jobStillRunning(self, jobId): if not self.initialized(): raise BatchelorException("not initialized") if "jobStillRunning" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.jobStillRunning(jobId) else: raise BatchelorException("not implemented") def getList
submitJobs
identifier_name
__init__.py
def runCommand(commandString): commandString = "errHandler() { (( errcount++ )); }; trap errHandler ERR\n" + commandString.rstrip('\n') + "\nexit $errcount" process = subprocess.Popen(commandString, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, executable="/bin/bash") (stdout, stderr) = process.communicate() if stdout: stdout = stdout.rstrip(' \n') else: stdout = "" if stderr: stderr = stderr.rstrip(' \n') else: stderr = "" return (process.returncode, stdout, stderr) def detectSystem(): (returncode, stdout, stderr) = runCommand("hostname") if returncode != 0: raise BatchelorException("runCommand(\"hostname\") failed") hostname = stdout if hostname.startswith("gridka"): raise BatchelorException("hostname '" + hostname + "' seems to indicate gridka, but the wrong host") elif hostname == "compass-kit.gridka.de": return "gridka" elif hostname.startswith("lxplus") or hostname.endswith(".cern.ch"): return "lxplus" elif hostname.endswith(".e18.physik.tu-muenchen.de"): return "e18" elif hostname.startswith("ccage"): return "lyon" elif hostname.startswith("login") and runCommand("which llsubmit")[0] == 0: return "c2pap" return "UNKNOWN" def _getRealPath(path): return os.path.abspath(os.path.expandvars(os.path.expanduser(path))) def _checkForSpecialCharacters(string): if string is None: string = "" specialCharacters = [' ', ':', ';', '"', '\'', '@', '!', '?', '$', '\\', '/', '#', '(', ')', '{', '}', '[', ']', '.', ',', '*'] foundChars = [] for char in specialCharacters: if string.find(char) > 0: foundChars.append(char) if foundChars: msg = "forbidden characters in job name (" for char in foundChars: msg += repr(char) + ", " msg = msg[:-2] msg += ")" raise BatchelorException(msg) def checkConfig(configFileName, system = ""): config = ConfigParser.RawConfigParser() if not config.read(os.path.abspath(configFileName)): print("ERROR: Could not read config file '" + configFileName + "'.") return False error = False if system != "" and not config.has_section(system): print("ERROR: System set but corresponding section is missing in config file.") error = True requiredOptions = { "c2pap": [ "group", "notification", "notify_user", "node_usage", "wall_clock_limit", "resources", "job_type", "class" ], "e18": [ "shortqueue", "memory", "header_file", "arch" ], "gridka": [ "queue", "project", "memory", "header_file" ], "lxplus": [ "queue", "pool", "header_file" ], "lyon": [], "local": [ "shell", "cores" ], "simulator": [ "lifetime" ] } filesToTest = { "gridka": [ "header_file" ], "e18": [ "header_file" ], "lxplus": [ "header_file" ], "c2pap": [ "header_file" ], "local": [ "shell" ] } for section in requiredOptions.keys(): if config.has_section(section): options = requiredOptions[section] for option in options: if not config.has_option(section, option): print("ERROR: '" + section + "' section is missing option '" + option + "'.") error = True continue if section in filesToTest.keys() and option in filesToTest[section] and (system == "" or system == section): path = _getRealPath(config.get(section, option)) if not os.path.exists(path): print("ERROR: Could not find required file '" + path + "'.") error = True if error: return False return True class Batchelor: debug = False bprintTicker = "" batchFunctions = None def __init__(self): self._config = ConfigParser.RawConfigParser() def bprint(self, msg): self.bprintTicker += ('' if self.bprintTicker == '' else '\n') + msg if self.debug: print(msg) def initialize(self, configFileName, systemOverride = ""): self.bprint("Initializing...") if not self._config.read(os.path.abspath(configFileName)): self.bprint("Could not read config file '" + configFileName + "'. Initialization failed...") return False if systemOverride == "": self._system = detectSystem() if self._system == "UNKNOWN": self.bprint("Could not determine on which system we are. Initialization failed...") return False self.bprint("Detected system '" + self._system + "'.") else: self._system = systemOverride self.bprint("System manually set to '" + self._system + "'.") if not self._config.has_section(self._system): self.bprint("Could not find section describing '" + self._system + "' in config file '" + configFileName + "'. Initialization failed...") return False if not checkConfig(configFileName, self._system): self.bprint("Config file contains errors. Initialization failed...") return False self.bprint("Importing appropriate submodule.") if self._system == "c2pap": import batchelor._batchelorC2PAP as batchFunctions elif self._system == "gridka": import batchelor._batchelorGridka as batchFunctions elif self._system == "e18": import batchelor._batchelorE18 as batchFunctions elif self._system == "lxplus": import batchelor._batchelorLxplus as batchFunctions elif self._system == "lyon": import batchelor._batchelorLyon as batchFunctions elif self._system == "local": import batchelor._batchelorLocal as batchFunctions batchFunctions.initialize(self._config) elif self._system == "simulator": import batchelor._batchelorSimulator as batchFunctions else: self.bprint("Unknown system '" + self._system + "', cannot load appropriate submodule. Initialization failed...") return False self.batchFunctions = batchFunctions self.bprint("Imported " + batchFunctions.submoduleIdentifier() + " submodule.") self.bprint("Initialized.") return True def initialized(self): if self.batchFunctions: return True else: return False def shutdown(self): if not self.initialized(): raise BatchelorException("not initialized") if "shutdown" in self.batchFunctions.__dict__.keys(): return self.batchFunctions.shutdown() def submitJob(self, command, outputFile, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "submitJob" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.submitJob(self._config, command, outputFile, jobName) else: raise BatchelorException("not implemented") def submitJobs(self, jobs): # 'jobs' should be a list of arguments as they need to be specified for # 'submitJob', e.g.: # [ [ "command 1", "output file 1", "name 1" ], # [ "command 2", "output file 2", None ], # ... ] # The return value is a list of job IDs in the same order as the jobs. # A job ID of -1 indicates an error during submission of this job. if not self.initialized(): raise BatchelorException("not initialized") if "submitJobs" in self.batchFunctions.__dict__.keys(): for i in range(len(jobs)): if len(jobs[i]) == 3: _checkForSpecialCharacters(jobs[i][2]) elif len(jobs[i]) == 2: # the 'submitJob' method of the 'Batchelor' class # has a default argument for the job name, do # something similar here jobs[i].append(None) else: raise BatchelorException("wrong number of arguments") return self.batchFunctions.submitJobs(self._config, jobs) else: jobIds = [] for job in jobs: try: jobId = self.submitJob(*job) except batchelor.BatchelorException as exc: jobId = -1 jobIds.append(jobId) return jobIds def getListOfActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getListOfActiveJobs" in self.batchFunctions.__dict__.keys(): _checkForSpecialCharacters(jobName) return self.batchFunctions.getListOfActiveJobs(jobName) else: raise BatchelorException("not implemented") def getNActiveJobs(self, jobName = None): if not self.initialized(): raise BatchelorException("not initialized") if "getNActiveJobs" in self.batch
def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
identifier_body
clob.rs
/// Создает читателя данного символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных. /// Данные читаются из CLOB-а в кодировке `UTF-8`. #[inline] pub fn new_reader<'lob>(&'lob mut self) -> Result<ClobReader<'lob, 'conn>> { self.new_reader_with_charset(Charset::AL32UTF8) } /// Создает читателя данного символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных. /// Данные читаются из CLOB-а в указанной кодировке. /// /// Каждый вызов `read` будет заполнять массив байтами в запрошенной кодировке. Так как стандартные методы Rust для /// работы читателем байт как читателем текста предполагают, что представлен в UTF-8, то их нельзя использовать для /// данного читателя, т.к. тест будет извлекаться с указанной кодировке. #[inline] pub fn new_reader_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobReader<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::ReadOnly)); Ok(ClobReader { lob: self, piece: Piece::First, charset: charset }) } /// Создает писателя в данный символьный объект. Преимущество использования писателя вместо прямой записи /// в объект в том, что функциональные и доменные индексы базы данных (если они есть) для данного большого /// объекта будут обновлены только после уничтожения писателя, а не при каждой записи в объект, что в /// лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer<'lob>(&'lob mut self) -> Result<ClobWriter<'lob, 'conn>> { self.new_writer_with_charset(Charset::AL32UTF8) } /// Создает писателя в данный символьный объект, записывающий текстовые данные, представленные в указанной кодировке. /// /// Преимущество использования писателя вместо прямой записи в объект в том, что функциональные и доменные индексы /// базы данных (если они есть) для данного большого объекта будут обновлены только после уничтожения писателя, а не /// при каждой записи в объект, что в лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobWriter<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::WriteOnly)); Ok(ClobWriter { lob: self, piece: Piece::First, charset: charset }) } /// Получает кодировку базы данных для данного большого символьного объекта. #[inline] pub fn charset(&self) -> Result<Charset> { self.impl_.charset().map_err(Into::into) } /// Если CLOB прочитан или записан не полностью, то сообщает базе данных, что дальнейшее чтение/запись не требуются /// и закрывает CLOB. fn close(&mut self, piece: Piece) -> DbResult<()> { // Если LOB был прочитан/записан не полностью, то отменяем запросы на чтение/запись и восстанавливаемся if piece != Piece::Last { try!(self.impl_.break_()); try!(self.impl_.reset()); } self.impl_.close() } } impl<'conn> LobPrivate<'conn> for Clob<'conn> { fn new(raw: &[u8], conn: &'conn Connection) -> Result<Self> { let p = raw.as_ptr() as *const *mut Lob; let locator = unsafe { *p as *mut Lob }; let impl_ = LobImpl::from(conn, locator); let form = try!(impl_.form()); Ok(Clob { impl_: impl_, form: form }) } } impl<'conn> io::Read for Clob<'conn> { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.impl_.read(Piece::One, Charset::AL32UTF8, self.form, buf).0 } } impl<'conn> io::Write for Clob<'conn> { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.impl_.write(Piece::One, Charset::AL32UTF8, self.form, buf).0 } fn flush(&mut self) -> io::Result<()> { Ok(()) } } //------------------------------------------------------------------------------------------------- /// Позволяет писать в большой символьный объект, не вызывая пересчета индексов после каждой записи. /// Индексы будут пересчитаны только после уничтожения данного объекта. #[derive(Debug)] pub struct ClobWriter<'lob, 'conn: 'lob> { lob: &'lob mut Clob<'conn>, piece: Piece, charset: Charset, } impl<'lob, 'conn: 'lob> ClobWriter<'lob, 'conn> { /// Получает `CLOB`, записываемый данным писателем. pub fn lob(&mut self) -> &mut Clob<'conn> { self.lob } /// Укорачивает данный объект до указанной длины. В случае, если новая длина больше предыдущей, будет /// возвращена ошибка (таким образом, данную функцию нельзя использовать для увеличения размера LOB). #[inline] pub fn trim(&mut self, len: Chars) -> Result<()> { self.lob.trim(len) } /// Заполняет LOB, начиная с указанного индекса, указанным количеством нулей. После завершения /// работы в `count` будет записано реальное количество очищенных байт. #[inline] pub fn erase(&mut self, offset: Chars, count: &mut Chars) -> Result<()> { self.lob.erase(offset, count) } } impl<'lob, 'conn: 'lob> io::Write for ClobWriter<'lob, 'conn> { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result<usize> { let (res, piece) = self.lob.impl_.write(self.piece, self.charset, self.lob.form, buf); self.piece = piece; res } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl<'lob, 'conn: 'lob> Drop for ClobWriter<'lob, 'conn> { fn drop(&mut self) { // Невозможно делать панику отсюда, т.к. приложение из-за этого крашится let _ = self.lob.close(self.piece);//.expect("Error when close CLOB writer"); } } //------------------------------------------------------------------------------------------------- /// Позволяет читать из большой бинарного объекта в потоковом режиме. Каждый вызов `read` читает очередную порцию данных. #[derive(Debug)] pub struct ClobReader<'lob, 'conn: 'lob> { lob: &'lob mut Clob<'conn>, /// Описательная часть порции данных, получаемых из базы данных (первая или нет). piece: Piece, /// Кодировка, в которой следует интерпретировать получаемые из базы данных байты. charset: Charset, } impl<'lob, 'conn: 'lob> ClobReader<'lob, 'conn> { /// Получает `CLOB`, читаемый данным читателем. pub fn lob(&mut self) -> &mut Clob<'conn> { self.lob } } impl<'lob, 'conn: 'lob> io::Read for ClobReader<'lob, 'conn> { #[inline] fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { let (
res, piece) = self.lob.impl_.read(self.piece, self.charset, self.lob.for
conditional_block
clob.rs
символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных. /// Данные читаются из CLOB-а в кодировке `UTF-8`. #[inline] pub fn new_reader<'lob>(&'lob mut self) -> Result<ClobReader<'lob, 'conn>> { self.new_reader_with_charset(Charset::AL32UTF8) } /// Создает читателя данного символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных. /// Данные читаются из CLOB-а в указанной кодировке. /// /// Каждый вызов `read` будет заполнять массив байтами в запрошенной кодировке. Так как стандартные методы Rust для /// работы читателем байт как читателем текста предполагают, что представлен в UTF-8, то их нельзя использовать для /// данного читателя, т.к. тест будет извлекаться с указанной кодировке. #[inline] pub fn new_reader_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobReader<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::ReadOnly)); Ok(ClobReader { lob: self, piece: Piece::First, charset: charset }) } /// Создает писателя в данный символьный объект. Преимущество использования писателя вместо прямой записи /// в объект в том, что функциональные и доменные индексы базы данных (если они есть) для данного большого /// объекта будут обновлены только после уничтожения писателя, а не при каждой записи в объект, что в /// лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer<'lob>(&'lob mut self) -> Result<ClobWriter<'lob, 'conn>> { self.new_writer_with_charset(Charset::AL32UTF8) } /// Создает писателя в данный символьный объект, записывающий текстовые данные, представленные в указанной кодировке. /// /// Преимущество использования писателя вместо прямой записи в объект в том, что функциональные и доменные индексы /// базы данных (если они есть) для данного большого объекта будут обновлены только после уничтожения писателя, а не /// при каждой записи в объект, что в лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobWriter<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::WriteOnly)); Ok(ClobWriter { lob: self, piece: Piece::First, charset: charset }) } /// Получает кодировку базы данных для данного большого символьного объекта. #[inline] pub fn charset(&self) -> Result<Charset> { self.impl_.charset().map_err(Into::into) } /// Если CLOB прочитан или записан не полностью, то сообщает базе данных, что дальнейшее чтение/запись не требуются /// и закрывает CLOB. fn close(&mut self, piece: Piece) -> DbResult<()> { // Если LOB был прочитан/записан не полностью, то отменяем запросы на чтение/запись и восстанавливаемся if piece != Piece::Last { try!(self.impl_.break_()); try!(self.impl_.reset()); } self.impl_.close() } } impl<'conn> LobPrivate<'conn> for Clob<'conn> { fn new(raw: &[u8], conn: &'conn Connection) -> Result<Self> { let p = raw.as_ptr() as *const *mut Lob; let locator = unsafe { *p as *mut Lob }; let impl_ = LobImpl::from(conn, locator); let form = try!(impl_.form()); Ok(Clob { impl_: impl_, form: form }) } } impl<'conn> io::Read for Clob<'conn> { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.impl_.read(Piece::One, Charset::AL32UTF8, self.form, buf).0 } } impl<'conn> io::Write for Clob<'conn> { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.impl_.write(Piece::One, Charset::AL32UTF8, self.form, buf).0 } fn flush(&mut self) -> io::Result<()> { Ok(()) } } //------------------------------------------------------------------------------------------------- /// Позволяет писать в большой символьный объект, не вызывая пересчета индексов после каждой записи. /// Индексы будут пересчитаны только после уничтожения данного объекта. #[derive(Debug)] pub struct ClobWriter<'lob, 'conn: 'lob> { lob: &'lob mut Clob<'conn>, piece: Piece, charset: Charset, } impl<'lob, 'conn: 'lob> ClobWriter<'lob, 'conn> { /// Получает `CLOB`, записываемый данным писателем. pub fn lob(&mut self) -> &mut Clob<'conn> { self.lob } /// Укорачивает данный объект до указанной длины. В случае, если новая длина больше предыдущей, будет /// возвращена ошибка (таким образом, данную функцию нельзя использовать для увеличения размера LOB). #[inline] pub fn trim(&mut self, len: Chars) -> Result<()> { self.lob.trim(len) } /// Заполняет LOB, начиная с указанного индекса, указанным количеством нулей. После завершения /// работы в `count` будет записано реальное количество очищенных байт. #[inline] pub fn erase(&mut self, offset: Chars, count: &mut Chars) -> Result<()> { self.lob.erase(offset, count) } } impl<'lob, 'conn: 'lob> io::Write for ClobWriter<'lob, 'conn> { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result<usize> { let (res, piece) = self.lob.impl_.write(self.piece, self.charset, self.lob.form, buf); self.piece = piece; res } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl<'lob, 'conn: 'lob> Drop for ClobWriter<'lob, 'conn> { fn drop(&mut self) { // Невозможно делать панику отсюда, т.к. приложение из-за этого крашится let _ = self.lob.close(self.piece);//.expect("Error when close CLOB writer"); } } //------------------------------------------------------------------------------------------------- /// Позволяет читать из большой бинарного объекта в потоковом режиме. Каждый вызов `read` читает очередную порцию данных. #[derive(Debug)] pub struct ClobReader<'lob, 'conn: 'lob> { lob: &'lob mut Clob<'conn>, /// Описательная часть порции данных, получаемых из базы данных (первая или нет). piece: Piece, /// Кодировка, в которой следует интерпретировать получаемые из базы данных байты. charset: Charset, } impl<'lob, 'conn: 'lob> ClobReader<'lob, 'conn> { /// Получает `CLOB`, читаемый данным
читателем. pub fn lob(&mut self) -> &mut Clob<'conn> { self.lob } } impl<'lob, 'conn: 'lob> io::Read for ClobReader<'lob, 'conn> { #[inline] fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { let (res, piece) = self.lob.impl_.read(self.piece, self.charset, self.lob.form, buf); self.piece = p
identifier_body
clob.rs
/// В зависимости от настроек сервера базы данных данное значение может варьироваться от /// 8 до 128 терабайт (TB). #[inline] pub fn capacity(&self) -> Result<Bytes> { let len = try!(self.impl_.capacity()); Ok(Bytes(len)) } /// For LOBs with storage parameter `BASICFILE`, the amount of a chunk's space that is used to store /// the internal LOB value. This is the amount that users should use when reading or writing the LOB /// value. If possible, users should start their writes at chunk boundaries, such as the beginning of /// a chunk, and write a chunk at a time. /// /// For LOBs with storage parameter `SECUREFILE`, chunk size is an advisory size and is provided for /// backward compatibility. /// /// When creating a table that contains an internal LOB, the user can specify the chunking factor, /// which can be a multiple of Oracle Database blocks. This corresponds to the chunk size used by /// the LOB data layer when accessing and modifying the LOB value. Part of the chunk is used to store /// system-related information, and the rest stores the LOB value. This function returns the amount /// of space used in the LOB chunk to store the LOB value. Performance is improved if the application /// issues read or write requests using a multiple of this chunk size. For writes, there is an added /// benefit because LOB chunks are versioned and, if all writes are done on a chunk basis, no extra /// versioning is done or duplicated. Users could batch up the write until they have enough for a chunk /// instead of issuing several write calls for the same chunk. #[inline] pub fn get_chunk_size(&self) -> Result<Bytes> { let size = try!(self.impl_.get_chunk_size()); Ok(Bytes(size as u64)) } /// Укорачивает данный объект до указанной длины. В случае, если новая длина больше предыдущей, будет /// возвращена ошибка (таким образом, данную функцию нельзя использовать для увеличения размера LOB). /// /// # Производительность /// Необходимо учитывать, что в случае частой записи предпочтительней делать ее через специальный /// объект-писатель, который можно получить из данного объекта вызовом функции [`new_writer()`](#function.new_writer). /// Если поступить таким образом, то обновление функциональных и доменных индексов базы данных (если они /// есть) для данного большого объекта будет отложено до тех пор, пока объект-писатель не будет уничтожен. /// При вызове же данной функции обновление данных индексов произойдет сразу же по окончании вызова, что /// может сильно снизить производительность. #[inline] pub fn trim(&mut self, len: Chars) -> Result<()> { self.impl_.trim(len.0).map_err(Into::into) } /// Заполняет LOB, начиная с указанного индекса, указанным количеством пробелов. После завершения /// работы в `count` будет записано реальное количество очищенных символов. /// /// # Производительность /// Необходимо учитывать, что в случае частой записи предпочтительней делать ее через специальный /// объект-писатель, который можно получить из данного объекта вызовом функции [`new_writer()`](#function.new_writer). /// Если поступить таким образом, то обновление функциональных и доменных индексов базы данных (если они /// есть) для данного большого объекта будет отложено до тех пор, пока объект-писатель не будет уничтожен. /// При вызове же данной функции обновление данных индексов произойдет сразу же по окончании вызова, что /// может сильно снизить производительность. #[inline] pub fn erase(&mut self, offset: Chars, count: &mut Chars) -> Result<()> { self.impl_.erase(offset.0, &mut count.0).map_err(Into::into) } /// Создает читателя данного символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных.
} /// Создает читателя данного символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных. /// Данные читаются из CLOB-а в указанной кодировке. /// /// Каждый вызов `read` будет заполнять массив байтами в запрошенной кодировке. Так как стандартные методы Rust для /// работы читателем байт как читателем текста предполагают, что представлен в UTF-8, то их нельзя использовать для /// данного читателя, т.к. тест будет извлекаться с указанной кодировке. #[inline] pub fn new_reader_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobReader<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::ReadOnly)); Ok(ClobReader { lob: self, piece: Piece::First, charset: charset }) } /// Создает писателя в данный символьный объект. Преимущество использования писателя вместо прямой записи /// в объект в том, что функциональные и доменные индексы базы данных (если они есть) для данного большого /// объекта будут обновлены только после уничтожения писателя, а не при каждой записи в объект, что в /// лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer<'lob>(&'lob mut self) -> Result<ClobWriter<'lob, 'conn>> { self.new_writer_with_charset(Charset::AL32UTF8) } /// Создает писателя в данный символьный объект, записывающий текстовые данные, представленные в указанной кодировке. /// /// Преимущество использования писателя вместо прямой записи в объект в том, что функциональные и доменные индексы /// базы данных (если они есть) для данного большого объекта будут обновлены только после уничтожения писателя, а не /// при каждой записи в объект, что в лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobWriter<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::WriteOnly)); Ok(ClobWriter { lob: self, piece: Piece::First, charset: charset }) } /// Получает кодировку базы данных для данного большого символьного объекта. #[inline] pub fn charset(&self) -> Result<Charset> { self.impl_.charset().map_err(Into::into) } /// Если CLOB прочитан или записан не полностью, то сообщает базе данных, что дальнейшее чтение/запись не требуются /// и закрывает CLOB. fn close(&mut self, piece: Piece) -> DbResult<()> { // Если LOB был прочитан/записан не полностью, то отменяем запросы на чтение/запись и восстанавливаемся if piece != Piece::Last { try!(self.impl_.break_()); try!(self.impl_.reset()); } self.impl_.close() } } impl<'conn> LobPrivate<'conn> for Clob<'conn> { fn new(raw: &[u8], conn: &'conn Connection) -> Result<Self> { let p = raw.as_ptr() as *const *mut Lob; let locator = unsafe { *p as *mut Lob }; let impl_ = LobImpl
/// Данные читаются из CLOB-а в кодировке `UTF-8`. #[inline] pub fn new_reader<'lob>(&'lob mut self) -> Result<ClobReader<'lob, 'conn>> { self.new_reader_with_charset(Charset::AL32UTF8)
random_line_split
clob.rs
2UTF8) } /// Создает читателя данного символьного объекта. Каждый вызов метода `read` читателя читает очередную порцию данных. /// Данные читаются из CLOB-а в указанной кодировке. /// /// Каждый вызов `read` будет заполнять массив байтами в запрошенной кодировке. Так как стандартные методы Rust для /// работы читателем байт как читателем текста предполагают, что представлен в UTF-8, то их нельзя использовать для /// данного читателя, т.к. тест будет извлекаться с указанной кодировке. #[inline] pub fn new_reader_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobReader<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::ReadOnly)); Ok(ClobReader { lob: self, piece: Piece::First, charset: charset }) } /// Создает писателя в данный символьный объект. Преимущество использования писателя вместо прямой записи /// в объект в том, что функциональные и доменные индексы базы данных (если они есть) для данного большого /// объекта будут обновлены только после уничтожения писателя, а не при каждой записи в объект, что в /// лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer<'lob>(&'lob mut self) -> Result<ClobWriter<'lob, 'conn>> { self.new_writer_with_charset(Charset::AL32UTF8) } /// Создает писателя в данный символьный объект, записывающий текстовые данные, представленные в указанной кодировке. /// /// Преимущество использования писателя вместо прямой записи в объект в том, что функциональные и доменные индексы /// базы данных (если они есть) для данного большого объекта будут обновлены только после уничтожения писателя, а не /// при каждой записи в объект, что в лучшую сторону сказывается на производительности. /// /// В пределах одной транзакции один CLOB может быть открыт только единожды, независимо от того, сколько /// локаторов (которые представляет данный класс) на него существует. #[inline] pub fn new_writer_with_charset<'lob>(&'lob mut self, charset: Charset) -> Result<ClobWriter<'lob, 'conn>> { try!(self.impl_.open(LobOpenMode::WriteOnly)); Ok(ClobWriter { lob: self, piece: Piece::First, charset: charset }) } /// Получает кодировку базы данных для данного большого символьного объекта. #[inline] pub fn charset(&self) -> Result<Charset> { self.impl_.charset().map_err(Into::into) } /// Если CLOB прочитан или записан не полностью, то сообщает базе данных, что дальнейшее чтение/запись не требуются /// и закрывает CLOB. fn close(&mut self, piece: Piece) -> DbResult<()> { // Если LOB был прочитан/записан не полностью, то отменяем запросы на чтение/запись и восстанавливаемся if piece != Piece::Last { try!(self.impl_.break_()); try!(self.impl_.reset()); } self.impl_.close() } } impl<'conn> LobPrivate<'conn> for Clob<'conn> { fn new(raw: &[u8], conn: &'conn Connection) -> Result<Self> { let p = raw.as_ptr() as *const *mut Lob; let locator = unsafe { *p as *mut Lob }; let impl_ = LobImpl::from(conn, locator); let form = try!(impl_.form()); Ok(Clob { impl_: impl_, form: form }) } } impl<'conn> io::Read for Clob<'conn> { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.impl_.read(Piece::One, Charset::AL32UTF8, self.form, buf).0 } } impl<'conn> io::Write for Clob<'conn> { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.impl_.write(Piece::One, Charset::AL32UTF8, self.form, buf).0 } fn flush(&mut self) -> io::Result<()> { Ok(()) } } //------------------------------------------------------------------------------------------------- /// Позволяет писать в большой символьный объект, не вызывая пересчета индексов после каждой записи. /// Индексы будут пересчитаны только после уничтожения данного объекта. #[derive(Debug)] pub struct ClobWriter<'lob, 'conn: 'lob> { lob: &'lob mut Clob<'conn>, piece: Piece, charset: Charset, } impl<'lob, 'conn: 'lob> ClobWriter<'lob, 'conn> { /// Получает `CLOB`, записываемый данным писателем. pub fn lob(&mut self) -> &mut Clob<'conn> { self.lob } /// Укорачивает данный объект до указанной длины. В случае, если новая длина больше предыдущей, будет /// возвращена ошибка (таким образом, данную функцию нельзя использовать для увеличения размера LOB). #[inline] pub fn trim(&mut self, len: Chars) -> Result<()> { self.lob.trim(len) } /// Заполняет LOB, начиная с указанного индекса, указанным количеством нулей. После завершения /// работы в `count` будет записано реальное количество очищенных байт. #[inline] pub fn erase(&mut self, offset: Chars, count: &mut Chars) -> Result<()> { self.lob.erase(offset, count) } } impl<'lob, 'conn: 'lob> io::Write for ClobWriter<'lob, 'conn> { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result<usize> { let (res, piece) = self.lob.impl_.write(self.piece, self.charset, self.lob.form, buf); self.piece = piece; res } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl<'lob, 'conn: 'lob> Drop for ClobWriter<'lob, 'conn> { fn drop(&mut self) { // Невозможно делать панику отсюда, т.к. приложение из-за этого крашится let _ = self.lob.close(self.piece);//.expect("Error when close CLOB writer"); } } //------------------------------------------------------------------------------------------------- /// Позволяет читать из большой бинарного объекта в потоковом режиме. Каждый вызов `read` читает очередную порцию данных. #[derive(Debug)] pub struct ClobReader<'lob, 'conn: 'lob> { lob: &'lob mut Clob<'conn>, /// Описательная часть порции данных, получаемых из базы данных (первая или нет). piece: Piece, /// Кодировка, в которой следует интерпретировать получаемые из базы данных байты. charset: Charset, } impl<'lob, 'conn: 'lob> ClobReader<'lob, 'conn> { /// Получает `CLOB`, читаемый данным читателем. pub fn lob(&mut self) -> &mut Clob<'conn> { self.lob } } impl<'lob, 'conn: 'lob> io::Read for ClobReader<'lob, 'conn> { #[inline] fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { let (res, piece) = self.lob.impl_.read(self.piece, self.charset, self.lob.form, buf); self.piece = piece; res } } impl<'lob, 'conn: 'lob> Drop for ClobReader<'lob, 'conn> { fn drop(&mut self) { // Невозможно делать панику отсюда, т.к. приложение из-за этого крашится let _ = self.lob.close(self.piece);//.expect("Error when close CLOB reader"); } }
identifier_name
visualization.py
(x): if '__' in x: return [int(x) for x in x.split('__')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0) + 1 var_array = df['mode'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mode'].values, -1)], axis=1)) df_out.columns = list(df_out.columns[:-1]) + [var] return df_out def extract_mean_as_array(trace, var='z', astype='array'): df = pm.summary(trace) df = df.reset_index() def split_fun(x): if '__' in x: return [int(x) for x in x.split('__')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0)+1 var_array = df['mean'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mean'].values, -1)], axis=1)) idx_cols = [str(i) for i in df_out.columns[:-1]] df_out.columns = idx_cols+[var] if astype == 'xarray': return pd_to_xarray_datacube(df_out, idx_cols, value_col=var) else: return df_out def gen_data_for_plot(data, x, z=None, rand_sample_vars=[], mean_sample_vars=[], const_vars={}, stages='balanced', nstages=5, samples_per_x_range=500, truncate_to_percentile=0): """ Generate some data that we can use to plot poterior/param values for :param data: data used to train model, so that levels of x are known :param x: continous data for x axis :param z: catergorical data for y axis :param rand_sample_vars: :return: """ data_points = data.copy() unq_x = data[x].unique() if len(unq_x) < 7: #catergorical x_data = data[x].sample(samples_per_x_range).values else: if truncate_to_percentile: x_data = np.linspace(np.percentile(data[x],truncate_to_percentile), np.percentile(data[x],100-truncate_to_percentile), samples_per_x_range) else: x_data = np.linspace(data[x].min(), data[x].max(), samples_per_x_range) df = pd.DataFrame({x:x_data}) for var in mean_sample_vars: var_mean = data[var].mean(skipna=True) var_std = data[var].std(skipna=True) df[var] = var_mean data_points = data_points.loc[(var_mean-var_std<data_points[var]) & (data_points[var]<var_mean+var_std),:] for var in rand_sample_vars: df[var] = np.random.choice(data[var], size=(samples_per_x_range, )) for var, val in const_vars.items(): df[var] = [val] * samples_per_x_range if 'consider' not in var: var_std = data[var].std(skipna=True) data_points = data_points.loc[(val - var_std < data_points[var]) & (data_points[var] < val + var_std), :] if stages == 'balanced': df_stages = pd.DataFrame({'current_epoch':list(range(nstages))}) n_reps = int(np.ceil(df.shape[0]/df_stages.shape[0])) df_stages = pd.concat([df_stages]*n_reps, axis=0).iloc[0:samples_per_x_range,:].reset_index(drop=True) df_stages = df_stages.sample(frac=1).reset_index(drop=True) df = pd.concat([df, df_stages], axis=1, sort=False) if z is not None: data_cont = [] unique_z = data[z].unique() if len(unique_z) >= 7: # make cont into categorical unique_z = np.linspace(data[z].min(), data[z].max(), 7) unique_z += (unique_z[1] - unique_z[0])/2 unique_z = unique_z[:-1] for z_val in unique_z: new_df = df.copy() new_df[z] = z_val data_cont.append(new_df) df = pd.concat(data_cont, axis=0) return df, data_points def pairplot_divergence(trace, ax=None, divergence=True, color='C3', divergence_color='C2'): theta = trace.get_values(varname='theta', combine=True)[:, 0] logtau = trace.get_values(varname='tau_log__', combine=True) if not ax: _, ax = plt.subplots(1, 1, figsize=(10, 5)) ax.plot(theta, logtau, 'o', color=color, alpha=.5) if divergence: divergent = trace['diverging'] ax.plot(theta[divergent], logtau[divergent], 'o', color=divergence_color) ax.set_xlabel('theta[0]') ax.set_ylabel('log(tau)') ax.set_title('scatter plot between log(tau) and theta[0]'); return ax def plot_vars(mod, data, x, y, facet_row=None, facet_col=None, hue=None, style=None, y_levels=None, y_level_name='set_y_level_name', maps=None, data_points=None, mean_center_means=None, vars_to_label=None, num_draws_from_params=100, out_of_sample=True, combine_trace=False, legend='full', points_alpha=0.01): for var_name in mod.input_vars: if 'consider' in var_name: mod.input_vars[var_name].set_value(data[var_name].iloc[0]) else: mod.input_vars[var_name].set_value(data[var_name]) vars_ppc = [v for v in [x, y, hue, facet_col, facet_row, style] if v is not None and v != y_level_name] pps = mod.sample_posterior_predictive(vars=vars_ppc, num_draws_from_params=num_draws_from_params, out_of_sample=out_of_sample) df_ppc_cont = [] for var in vars_ppc: label = [var] if (y_levels is None) or (var!=y) else y_levels df_ppc_var_cont = [] for ppc_idx, ppc_sample in enumerate(pps[var]): df_ppc_var = pd.DataFrame(ppc_sample, columns=label) df_ppc_var['ppc_idx'] = ppc_idx df_ppc_var_cont.append(df_ppc_var) df_ppc = pd.concat(df_ppc_var_cont, axis=0) if var != vars_ppc[-1]: df_ppc = df_ppc.drop('ppc_idx', axis=1) df_ppc_cont.append(df_ppc) df = pd.concat(df_ppc_cont, axis=1) if maps: for col in df.columns: if col in maps: df[col] = df[col].map({v:k for k,v in maps[col].items()}) if y_levels is not None: vars_ppc.remove(y) df = df.melt(id_vars=['ppc_idx']+vars_ppc, value_vars=y_levels, var_name=y_level_name, value_name=y).reset_index() hue = hue if y_level_name == facet_row or y_level_name == facet_col else y_level_name # if mean_center_means is not None: # for var in mean_center_means: # df[var] += df[var]*mean_center_means[var]['sd']+mean_center_means['mean'] # df_prev = df.drop(['index', 'ppc_idx'], axis=1).groupby( # ['previous_bout', 'current_epoch', 'feature']).mean().reset_index() # df_prev.to_csv( # '../../data/processed/previous_bout_feature.csv') # df_prev = pd.read_csv('../../data/processed/previous_bout_feature.csv') # # df_current = df.drop(['index', 'ppc_idx'], axis=1).groupby( # ['current_epoch', 'feature']).mean().reset_index() # df_current.to_csv('../../data/output/current_bout_feature.csv') # # df_merged = pd.merge(df_current,df_prev, on=['current_epoch','feature']) # df_merged['Difference when inc previous stage'] = df_merged['feature_rate_p_x'] - df_merged['feature_rate_p_y'] # df_merged['Trans P when marginalizing over previous stage'] = df_merged['feature
split_fun
identifier_name
visualization.py
def stage_parameters(trace, stage_param_names, stage_map, label_plot=True): stage_map = {v:k for k,v in stage_map.items()} _, axs = model_parameters(trace, stage_param_names) for param in stage_param_names: if trace[param].dtype == np.float64: means = extract_mean_as_array(trace, param, 'df') print(param, ':\n', sep='') for idx, row in means.iterrows(): stage_str = [stage_map[row[level]] for level in row.index if level != param] print(stage_str, row[param]) if label_plot: axs[0, 0].axvline(row[param], linewidth=0.5, linestyle='--', color='r') axs[0,0].text(row[param], (axs[0,0].get_ylim()[1] - axs[0,0].get_ylim()[0])/np.random.normal(loc=2, scale=0.5), '_'.join(stage_str), rotation=45) plt.show() def extract_mode_as_array(trace, var='z', astype='array'): def trace_mode(x): return pd.Series(mode(x).mode[0], name='mode') df = pm.summary(trace, stat_funcs=[trace_mode], varnames=[var]) df = df.reset_index() def split_fun(x): if '__' in x: return [int(x) for x in x.split('__')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0) + 1 var_array = df['mode'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mode'].values, -1)], axis=1)) df_out.columns = list(df_out.columns[:-1]) + [var] return df_out def extract_mean_as_array(trace, var='z', astype='array'): df = pm.summary(trace) df = df.reset_index() def split_fun(x): if '__' in x: return [int(x) for x in x.split('__')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0)+1 var_array = df['mean'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mean'].values, -1)], axis=1)) idx_cols = [str(i) for i in df_out.columns[:-1]] df_out.columns = idx_cols+[var] if astype == 'xarray': return pd_to_xarray_datacube(df_out, idx_cols, value_col=var) else: return df_out def gen_data_for_plot(data, x, z=None, rand_sample_vars=[], mean_sample_vars=[], const_vars={}, stages='balanced', nstages=5, samples_per_x_range=500, truncate_to_percentile=0): """ Generate some data that we can use to plot poterior/param values for :param data: data used to train model, so that levels of x are known :param x: continous data for x axis :param z: catergorical data for y axis :param rand_sample_vars: :return: """ data_points = data.copy() unq_x = data[x].unique() if len(unq_x) < 7: #catergorical x_data = data[x].sample(samples_per_x_range).values else: if truncate_to_percentile: x_data = np.linspace(np.percentile(data[x],truncate_to_percentile), np.percentile(data[x],100-truncate_to_percentile), samples_per_x_range) else: x_data = np.linspace(data[x].min(), data[x].max(), samples_per_x_range) df = pd.DataFrame({x:x_data}) for var in mean_sample_vars: var_mean = data[var].mean(skipna=True) var_std = data[var].std(skipna=True) df[var] = var_mean data_points = data_points.loc[(var_mean-var_std<data_points[var]) & (data_points[var]<var_mean+var_std),:] for var in rand_sample_vars: df[var] = np.random.choice(data[var], size=(samples_per_x_range, )) for var, val in const_vars.items(): df[var] = [val] * samples_per_x_range if 'consider' not in var: var_std = data[var].std(skipna=True) data_points = data_points.loc[(val - var_std < data_points[var]) & (data_points[var] < val + var_std), :] if stages == 'balanced': df_stages = pd.DataFrame({'current_epoch':list(range(nstages))}) n_reps = int(np.ceil(df.shape[0]/df_stages.shape[0])) df_stages = pd.concat([df_stages]*n_reps, axis=0).iloc[0:samples_per_x_range,:].reset_index(drop=True) df_stages = df_stages.sample(frac=1).reset_index(drop=True) df = pd.concat([df, df_stages], axis=1, sort=False) if z is not None: data_cont = [] unique_z = data[z].unique() if len(unique_z) >= 7: # make cont into categorical unique_z = np.linspace(data[z].min(), data[z].max(), 7) unique_z += (unique_z[1] - unique_z[0])/2 unique_z = unique_z[:-1] for z_val in unique_z: new_df = df.copy() new_df[z] = z_val data_cont.append(new_df) df = pd.concat(data_cont, axis=0) return df, data_points def pairplot_divergence(trace, ax=None, divergence=True, color='C3', divergence_color='C2'): theta = trace.get_values(varname='theta', combine=True)[:, 0] logtau = trace.get_values(varname='tau_log__', combine=True) if not ax: _, ax = plt.subplots(1, 1, figsize=(10, 5)) ax.plot(theta, logtau, 'o', color=color, alpha=.5) if divergence: divergent = trace['diverging'] ax.plot(theta[divergent], logtau[divergent], 'o', color=divergence_color) ax.set_xlabel('theta[0]') ax.set_ylabel('log(tau)') ax.set_title('scatter plot between log(tau) and theta[0]'); return ax def plot_vars(mod, data, x, y, facet_row=None, facet_col=None, hue=None, style=None, y_levels=None, y_level_name='set_y_level_name', maps=None, data_points=None, mean_center_means=None, vars_to_label=None, num_draws_from_params=100, out_of_sample=True, combine_trace=False, legend='full', points_alpha=0.01): for var_name in mod.input_vars: if 'consider' in var_name: mod.input_vars[var_name].set_value(data[var_name].iloc[0]) else: mod.input_vars[var_name].set_value(data[var_name]) vars_ppc = [v for v in [x, y, hue, facet_col, facet_row, style] if v is not None and v != y_level_name] pps = mod.sample_posterior_predictive(vars=vars_ppc, num_draws_from_params=num_draws_from_params, out_of_sample=out_of_sample) df_ppc_cont = [] for var in vars_ppc: label = [var] if (y_levels is None) or (var!=y) else y_levels df_ppc_var_cont = [] for ppc_idx, ppc_sample in enumerate(pps[var]): df_ppc_var = pd.DataFrame(ppc_sample, columns=label) df_ppc_var['ppc_idx'] = ppc_idx df_ppc_var_cont.append(df_ppc_var) df_ppc = pd.concat(df_ppc_var_cont, axis=0) if var != vars_ppc[-1]: df_ppc = df_ppc.drop('ppc_idx', axis=1) df_ppc_cont.append(df_ppc) df = pd.concat(df_ppc_cont, axis=1) if maps: for col in df.columns: if col in maps: df[col] = df[col].map({v:k for k,v
summary_df = pm.summary(trace, varnames=varnames) print(summary_df) axs = pm.traceplot(trace, varnames=varnames) return summary_df, axs
identifier_body
visualization.py
('__')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0) + 1 var_array = df['mode'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mode'].values, -1)], axis=1)) df_out.columns = list(df_out.columns[:-1]) + [var] return df_out def extract_mean_as_array(trace, var='z', astype='array'): df = pm.summary(trace) df = df.reset_index() def split_fun(x): if '__' in x: return [int(x) for x in x.split('__')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0)+1 var_array = df['mean'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mean'].values, -1)], axis=1)) idx_cols = [str(i) for i in df_out.columns[:-1]] df_out.columns = idx_cols+[var] if astype == 'xarray': return pd_to_xarray_datacube(df_out, idx_cols, value_col=var) else: return df_out def gen_data_for_plot(data, x, z=None, rand_sample_vars=[], mean_sample_vars=[], const_vars={}, stages='balanced', nstages=5, samples_per_x_range=500, truncate_to_percentile=0): """ Generate some data that we can use to plot poterior/param values for :param data: data used to train model, so that levels of x are known :param x: continous data for x axis :param z: catergorical data for y axis :param rand_sample_vars: :return: """ data_points = data.copy() unq_x = data[x].unique() if len(unq_x) < 7: #catergorical x_data = data[x].sample(samples_per_x_range).values
x_data = np.linspace(data[x].min(), data[x].max(), samples_per_x_range) df = pd.DataFrame({x:x_data}) for var in mean_sample_vars: var_mean = data[var].mean(skipna=True) var_std = data[var].std(skipna=True) df[var] = var_mean data_points = data_points.loc[(var_mean-var_std<data_points[var]) & (data_points[var]<var_mean+var_std),:] for var in rand_sample_vars: df[var] = np.random.choice(data[var], size=(samples_per_x_range, )) for var, val in const_vars.items(): df[var] = [val] * samples_per_x_range if 'consider' not in var: var_std = data[var].std(skipna=True) data_points = data_points.loc[(val - var_std < data_points[var]) & (data_points[var] < val + var_std), :] if stages == 'balanced': df_stages = pd.DataFrame({'current_epoch':list(range(nstages))}) n_reps = int(np.ceil(df.shape[0]/df_stages.shape[0])) df_stages = pd.concat([df_stages]*n_reps, axis=0).iloc[0:samples_per_x_range,:].reset_index(drop=True) df_stages = df_stages.sample(frac=1).reset_index(drop=True) df = pd.concat([df, df_stages], axis=1, sort=False) if z is not None: data_cont = [] unique_z = data[z].unique() if len(unique_z) >= 7: # make cont into categorical unique_z = np.linspace(data[z].min(), data[z].max(), 7) unique_z += (unique_z[1] - unique_z[0])/2 unique_z = unique_z[:-1] for z_val in unique_z: new_df = df.copy() new_df[z] = z_val data_cont.append(new_df) df = pd.concat(data_cont, axis=0) return df, data_points def pairplot_divergence(trace, ax=None, divergence=True, color='C3', divergence_color='C2'): theta = trace.get_values(varname='theta', combine=True)[:, 0] logtau = trace.get_values(varname='tau_log__', combine=True) if not ax: _, ax = plt.subplots(1, 1, figsize=(10, 5)) ax.plot(theta, logtau, 'o', color=color, alpha=.5) if divergence: divergent = trace['diverging'] ax.plot(theta[divergent], logtau[divergent], 'o', color=divergence_color) ax.set_xlabel('theta[0]') ax.set_ylabel('log(tau)') ax.set_title('scatter plot between log(tau) and theta[0]'); return ax def plot_vars(mod, data, x, y, facet_row=None, facet_col=None, hue=None, style=None, y_levels=None, y_level_name='set_y_level_name', maps=None, data_points=None, mean_center_means=None, vars_to_label=None, num_draws_from_params=100, out_of_sample=True, combine_trace=False, legend='full', points_alpha=0.01): for var_name in mod.input_vars: if 'consider' in var_name: mod.input_vars[var_name].set_value(data[var_name].iloc[0]) else: mod.input_vars[var_name].set_value(data[var_name]) vars_ppc = [v for v in [x, y, hue, facet_col, facet_row, style] if v is not None and v != y_level_name] pps = mod.sample_posterior_predictive(vars=vars_ppc, num_draws_from_params=num_draws_from_params, out_of_sample=out_of_sample) df_ppc_cont = [] for var in vars_ppc: label = [var] if (y_levels is None) or (var!=y) else y_levels df_ppc_var_cont = [] for ppc_idx, ppc_sample in enumerate(pps[var]): df_ppc_var = pd.DataFrame(ppc_sample, columns=label) df_ppc_var['ppc_idx'] = ppc_idx df_ppc_var_cont.append(df_ppc_var) df_ppc = pd.concat(df_ppc_var_cont, axis=0) if var != vars_ppc[-1]: df_ppc = df_ppc.drop('ppc_idx', axis=1) df_ppc_cont.append(df_ppc) df = pd.concat(df_ppc_cont, axis=1) if maps: for col in df.columns: if col in maps: df[col] = df[col].map({v:k for k,v in maps[col].items()}) if y_levels is not None: vars_ppc.remove(y) df = df.melt(id_vars=['ppc_idx']+vars_ppc, value_vars=y_levels, var_name=y_level_name, value_name=y).reset_index() hue = hue if y_level_name == facet_row or y_level_name == facet_col else y_level_name # if mean_center_means is not None: # for var in mean_center_means: # df[var] += df[var]*mean_center_means[var]['sd']+mean_center_means['mean'] # df_prev = df.drop(['index', 'ppc_idx'], axis=1).groupby( # ['previous_bout', 'current_epoch', 'feature']).mean().reset_index() # df_prev.to_csv( # '../../data/processed/previous_bout_feature.csv') # df_prev = pd.read_csv('../../data/processed/previous_bout_feature.csv') # # df_current = df.drop(['index', 'ppc_idx'], axis=1).groupby( # ['current_epoch', 'feature']).mean().reset_index() # df_current.to_csv('../../data/output/current_bout_feature.csv') # # df_merged = pd.merge(df_current,df_prev, on=['current_epoch','feature']) # df_merged['Difference when inc previous stage'] = df_merged['feature_rate_p_x'] - df_merged['feature_rate_p_y'] # df_merged['Trans P when marginalizing over previous stage'] = df_merged['feature_rate_p_x'] # df_merged['Trans P inc previous stage'] = df_merged['feature_rate_p_y
else: if truncate_to_percentile: x_data = np.linspace(np.percentile(data[x],truncate_to_percentile), np.percentile(data[x],100-truncate_to_percentile), samples_per_x_range) else:
random_line_split
visualization.py
')[1].split('_')] else: return [0] df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0) + 1 var_array = df['mode'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mode'].values, -1)], axis=1)) df_out.columns = list(df_out.columns[:-1]) + [var] return df_out def extract_mean_as_array(trace, var='z', astype='array'): df = pm.summary(trace) df = df.reset_index() def split_fun(x): if '__' in x: return [int(x) for x in x.split('__')[1].split('_')] else:
df['var type'] = df['index'].apply(lambda x: x.split('__')[0]) df = df.loc[df['var type'] == var, :] var_idxs = df['index'].apply(split_fun) indexs = np.stack(var_idxs) if astype == 'array': sizes = indexs.max(axis=0)+1 var_array = df['mean'].copy().values.reshape(sizes) return var_array else: df_out = pd.DataFrame(np.concatenate([indexs, np.expand_dims(df['mean'].values, -1)], axis=1)) idx_cols = [str(i) for i in df_out.columns[:-1]] df_out.columns = idx_cols+[var] if astype == 'xarray': return pd_to_xarray_datacube(df_out, idx_cols, value_col=var) else: return df_out def gen_data_for_plot(data, x, z=None, rand_sample_vars=[], mean_sample_vars=[], const_vars={}, stages='balanced', nstages=5, samples_per_x_range=500, truncate_to_percentile=0): """ Generate some data that we can use to plot poterior/param values for :param data: data used to train model, so that levels of x are known :param x: continous data for x axis :param z: catergorical data for y axis :param rand_sample_vars: :return: """ data_points = data.copy() unq_x = data[x].unique() if len(unq_x) < 7: #catergorical x_data = data[x].sample(samples_per_x_range).values else: if truncate_to_percentile: x_data = np.linspace(np.percentile(data[x],truncate_to_percentile), np.percentile(data[x],100-truncate_to_percentile), samples_per_x_range) else: x_data = np.linspace(data[x].min(), data[x].max(), samples_per_x_range) df = pd.DataFrame({x:x_data}) for var in mean_sample_vars: var_mean = data[var].mean(skipna=True) var_std = data[var].std(skipna=True) df[var] = var_mean data_points = data_points.loc[(var_mean-var_std<data_points[var]) & (data_points[var]<var_mean+var_std),:] for var in rand_sample_vars: df[var] = np.random.choice(data[var], size=(samples_per_x_range, )) for var, val in const_vars.items(): df[var] = [val] * samples_per_x_range if 'consider' not in var: var_std = data[var].std(skipna=True) data_points = data_points.loc[(val - var_std < data_points[var]) & (data_points[var] < val + var_std), :] if stages == 'balanced': df_stages = pd.DataFrame({'current_epoch':list(range(nstages))}) n_reps = int(np.ceil(df.shape[0]/df_stages.shape[0])) df_stages = pd.concat([df_stages]*n_reps, axis=0).iloc[0:samples_per_x_range,:].reset_index(drop=True) df_stages = df_stages.sample(frac=1).reset_index(drop=True) df = pd.concat([df, df_stages], axis=1, sort=False) if z is not None: data_cont = [] unique_z = data[z].unique() if len(unique_z) >= 7: # make cont into categorical unique_z = np.linspace(data[z].min(), data[z].max(), 7) unique_z += (unique_z[1] - unique_z[0])/2 unique_z = unique_z[:-1] for z_val in unique_z: new_df = df.copy() new_df[z] = z_val data_cont.append(new_df) df = pd.concat(data_cont, axis=0) return df, data_points def pairplot_divergence(trace, ax=None, divergence=True, color='C3', divergence_color='C2'): theta = trace.get_values(varname='theta', combine=True)[:, 0] logtau = trace.get_values(varname='tau_log__', combine=True) if not ax: _, ax = plt.subplots(1, 1, figsize=(10, 5)) ax.plot(theta, logtau, 'o', color=color, alpha=.5) if divergence: divergent = trace['diverging'] ax.plot(theta[divergent], logtau[divergent], 'o', color=divergence_color) ax.set_xlabel('theta[0]') ax.set_ylabel('log(tau)') ax.set_title('scatter plot between log(tau) and theta[0]'); return ax def plot_vars(mod, data, x, y, facet_row=None, facet_col=None, hue=None, style=None, y_levels=None, y_level_name='set_y_level_name', maps=None, data_points=None, mean_center_means=None, vars_to_label=None, num_draws_from_params=100, out_of_sample=True, combine_trace=False, legend='full', points_alpha=0.01): for var_name in mod.input_vars: if 'consider' in var_name: mod.input_vars[var_name].set_value(data[var_name].iloc[0]) else: mod.input_vars[var_name].set_value(data[var_name]) vars_ppc = [v for v in [x, y, hue, facet_col, facet_row, style] if v is not None and v != y_level_name] pps = mod.sample_posterior_predictive(vars=vars_ppc, num_draws_from_params=num_draws_from_params, out_of_sample=out_of_sample) df_ppc_cont = [] for var in vars_ppc: label = [var] if (y_levels is None) or (var!=y) else y_levels df_ppc_var_cont = [] for ppc_idx, ppc_sample in enumerate(pps[var]): df_ppc_var = pd.DataFrame(ppc_sample, columns=label) df_ppc_var['ppc_idx'] = ppc_idx df_ppc_var_cont.append(df_ppc_var) df_ppc = pd.concat(df_ppc_var_cont, axis=0) if var != vars_ppc[-1]: df_ppc = df_ppc.drop('ppc_idx', axis=1) df_ppc_cont.append(df_ppc) df = pd.concat(df_ppc_cont, axis=1) if maps: for col in df.columns: if col in maps: df[col] = df[col].map({v:k for k,v in maps[col].items()}) if y_levels is not None: vars_ppc.remove(y) df = df.melt(id_vars=['ppc_idx']+vars_ppc, value_vars=y_levels, var_name=y_level_name, value_name=y).reset_index() hue = hue if y_level_name == facet_row or y_level_name == facet_col else y_level_name # if mean_center_means is not None: # for var in mean_center_means: # df[var] += df[var]*mean_center_means[var]['sd']+mean_center_means['mean'] # df_prev = df.drop(['index', 'ppc_idx'], axis=1).groupby( # ['previous_bout', 'current_epoch', 'feature']).mean().reset_index() # df_prev.to_csv( # '../../data/processed/previous_bout_feature.csv') # df_prev = pd.read_csv('../../data/processed/previous_bout_feature.csv') # # df_current = df.drop(['index', 'ppc_idx'], axis=1).groupby( # ['current_epoch', 'feature']).mean().reset_index() # df_current.to_csv('../../data/output/current_bout_feature.csv') # # df_merged = pd.merge(df_current,df_prev, on=['current_epoch','feature']) # df_merged['Difference when inc previous stage'] = df_merged['feature_rate_p_x'] - df_merged['feature_rate_p_y'] # df_merged['Trans P when marginalizing over previous stage'] = df_merged['feature_rate_p_x'] # df_merged['Trans P inc previous stage'] = df_merged['feature_rate_p
return [0]
conditional_block
train_ddpg_selfplay.py
os.path.join('runs', current_time + '_' + hp.ENV_NAME + '_' + hp.EXP_NAME) pi_atk = DDPGActor(hp.N_OBS, hp.N_ACTS).to(device) Q_atk = DDPGCritic(hp.N_OBS, hp.N_ACTS).to(device) pi_gk = DDPGActor(hp.N_OBS, hp.N_ACTS).to(device) Q_gk = DDPGCritic(hp.N_OBS, hp.N_ACTS).to(device) # Playing pi_atk.share_memory() pi_gk.share_memory() exp_queue = mp.Queue(maxsize=hp.EXP_GRAD_RATIO) finish_event = mp.Event() sigma_m = mp.Value('f', hp.NOISE_SIGMA_INITIAL) gif_req_m = mp.Value('i', -1) data_proc_list = [] for _ in range(hp.N_ROLLOUT_PROCESSES): data_proc = mp.Process( target=data_func, args=( {'pi_atk': pi_atk, 'pi_gk': pi_gk}, device, exp_queue, finish_event, sigma_m, gif_req_m, hp ) ) data_proc.start() data_proc_list.append(data_proc) # Training tgt_pi_atk = TargetActor(pi_atk) tgt_Q_atk = TargetCritic(Q_atk) tgt_pi_gk = TargetActor(pi_gk) tgt_Q_gk = TargetCritic(Q_gk) pi_opt_atk = optim.Adam(pi_atk.parameters(), lr=hp.LEARNING_RATE) Q_opt_atk = optim.Adam(Q_atk.parameters(), lr=hp.LEARNING_RATE) pi_opt_gk = optim.Adam(pi_gk.parameters(), lr=hp.LEARNING_RATE) Q_opt_gk = optim.Adam(Q_gk.parameters(), lr=hp.LEARNING_RATE) buffer_atk = ReplayBuffer(buffer_size=hp.REPLAY_SIZE, observation_space=hp.observation_space, action_space=hp.action_space, device=hp.DEVICE ) buffer_gk = ReplayBuffer(buffer_size=hp.REPLAY_SIZE, observation_space=hp.observation_space, action_space=hp.action_space, device=hp.DEVICE ) n_grads = 0 n_samples = 0 n_episodes = 0 best_reward_atk = None best_reward_gk = None last_gif = None try: while n_grads < hp.TOTAL_GRAD_STEPS: metrics = {} ep_infos = list() st_time = time.perf_counter() # Collect EXP_GRAD_RATIO sample for each grad step new_samples = 0 while new_samples < hp.EXP_GRAD_RATIO: exp = exp_queue.get() if exp is None: raise Exception # got None value in queue safe_exp = copy.deepcopy(exp) del(exp) # Dict is returned with end of episode info if not 'exp_atk' in safe_exp: logs = {"ep_info/"+key: value for key, value in safe_exp.items() if 'truncated' not in key} ep_infos.append(logs) n_episodes += 1 else: buffer_atk.add( obs=safe_exp['exp_atk'].state, next_obs=safe_exp['exp_atk'].last_state if safe_exp['exp_atk'].last_state is not None else safe_exp['exp_atk'].state, action=safe_exp['exp_atk'].action, reward=safe_exp['exp_atk'].reward, done=False if safe_exp['exp_atk'].last_state is not None else True ) buffer_gk.add( obs=safe_exp['exp_gk'].state, next_obs=safe_exp['exp_gk'].last_state if safe_exp['exp_gk'].last_state is not None else safe_exp['exp_gk'].state, action=safe_exp['exp_gk'].action, reward=safe_exp['exp_gk'].reward, done=False if safe_exp['exp_gk'].last_state is not None else True ) new_samples += 1 n_samples += new_samples sample_time = time.perf_counter() # Only start training after buffer is larger than initial value if buffer_atk.size() < hp.REPLAY_INITIAL or buffer_gk.size() < hp.REPLAY_INITIAL: continue # Sample a batch and load it as a tensor on device batch_atk = buffer_atk.sample(hp.BATCH_SIZE) S_v_atk = batch_atk.observations A_v_atk = batch_atk.actions r_v_atk = batch_atk.rewards dones_atk = batch_atk.dones S_next_v_atk = batch_atk.next_observations batch_gk = buffer_gk.sample(hp.BATCH_SIZE) S_v_gk = batch_gk.observations A_v_gk = batch_gk.actions r_v_gk = batch_gk.rewards dones_gk = batch_gk.dones S_next_v_gk = batch_gk.next_observations # train critic Q_opt_atk.zero_grad() Q_v_atk = Q_atk(S_v_atk, A_v_atk) # expected Q for S,A A_next_v_atk = tgt_pi_atk(S_next_v_atk) # Get an Bootstrap Action for S_next Q_next_v_atk = tgt_Q_atk(S_next_v_atk, A_next_v_atk) # Bootstrap Q_next Q_next_v_atk[dones_atk == 1.] = 0.0 # No bootstrap if transition is terminal # Calculate_atk a reference Q value using the bootstrap Q Q_ref_v_atk = r_v_atk + Q_next_v_atk * (hp.GAMMA**hp.REWARD_STEPS) Q_loss_v_atk = F.mse_loss(Q_v_atk, Q_ref_v_atk.detach()) Q_loss_v_atk.backward() Q_opt_atk.step() metrics["train/loss_Q_atk"] = Q_loss_v_atk.cpu().detach().numpy() Q_opt_gk.zero_grad() Q_v_gk = Q_gk(S_v_gk, A_v_gk) # expected Q for S,A A_next_v_gk = tgt_pi_gk(S_next_v_gk) # Get an Bootstrap Action for S_next Q_next_v_gk = tgt_Q_gk(S_next_v_gk, A_next_v_gk) # Bootstrap Q_next Q_next_v_gk[dones_gk == 1.] = 0.0 # No bootstrap if transition is terminal # Calculate_gk a reference Q value using the bootstrap Q Q_ref_v_gk = r_v_gk + Q_next_v_gk * (hp.GAMMA**hp.REWARD_STEPS) Q_loss_v_gk = F.mse_loss(Q_v_gk, Q_ref_v_gk.detach()) Q_loss_v_gk.backward() Q_opt_gk.step() metrics["train/loss_Q_gk"] = Q_loss_v_gk.cpu().detach().numpy() # train actor - Maximize Q value received over every S pi_opt_atk.zero_grad() A_cur_v_atk = pi_atk(S_v_atk) pi_loss_v_atk = -Q_atk(S_v_atk, A_cur_v_atk) pi_loss_v_atk = pi_loss_v_atk.mean() pi_loss_v_atk.backward() pi_opt_atk.step() metrics["train/loss_pi_atk"] = pi_loss_v_atk.cpu().detach().numpy() pi_opt_gk.zero_grad() A_cur_v_gk = pi_gk(S_v_gk) pi_loss_v_gk = -Q_gk(S_v_gk, A_cur_v_gk) pi_loss_v_gk = pi_loss_v_gk.mean() pi_loss_v_gk.backward() pi_opt_gk.step() metrics["train/loss_pi_gk"] = pi_loss_v_gk.cpu().detach().numpy() # Sync target networks tgt_pi_atk.sync(alpha=1 - 1e-3) tgt_Q_atk.sync(alpha=1 - 1e-3) tgt_pi_gk.sync(alpha=1 - 1e-3) tgt_Q_gk.sync(alpha=1 - 1e-3) n_grads += 1 grad_time = time.perf_counter() metrics['speed/samples'] = new_samples/(sample_time - st_time) metrics['speed/grad'] = 1/(grad_time - sample_time) metrics['speed/total'] = 1/(grad_time - st_time) metrics['counters/samples'] = n_samples metrics['counters/grads'] = n_grads metrics['counters/episodes'] = n_episodes metrics['counters/buffer_len_atk'] = buffer_atk.size() metrics['counters/buffer_len_gk'] = buffer_gk.size() if ep_infos: for key in ep_infos[0].keys():
metrics[key] = np.mean([info[key] for info in ep_infos])
conditional_block
train_ddpg_selfplay.py
import numpy as np import rc_gym import torch.multiprocessing as mp import torch.nn.functional as F import torch.optim as optim import wandb from agents.ddpg_selfplay import (DDPGHP, DDPGActor, DDPGCritic, TargetActor, TargetCritic, data_func) from agents.utils import ReplayBuffer, save_checkpoint, unpack_batch, ExperienceFirstLast if __name__ == "__main__": mp.set_start_method('spawn') os.environ['OMP_NUM_THREADS'] = "1" parser = argparse.ArgumentParser() parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda") parser.add_argument("-n", "--name", required=True, help="Name of the run") parser.add_argument("-e", "--env", required=True, help="Name of the gym environment") args = parser.parse_args() device = "cuda" if args.cuda else "cpu" # Input Experiment Hyperparameters hp = DDPGHP( EXP_NAME=args.name, DEVICE=device, ENV_NAME=args.env, N_ROLLOUT_PROCESSES=3, LEARNING_RATE=0.0001, EXP_GRAD_RATIO=10, BATCH_SIZE=256, GAMMA=0.95, REWARD_STEPS=1, NOISE_SIGMA_INITIAL=0.8, NOISE_THETA=0.15, NOISE_SIGMA_DECAY=0.99, NOISE_SIGMA_MIN=0.15, NOISE_SIGMA_GRAD_STEPS=3000, REPLAY_SIZE=1000000, REPLAY_INITIAL=100000, SAVE_FREQUENCY=100000, GIF_FREQUENCY=100000, TOTAL_GRAD_STEPS=2000000, MULTI_AGENT=False, N_AGENTS=1 ) wandb.init(project='RoboCIn-RL', entity='matheusalb', name=hp.EXP_NAME, config=hp.to_dict()) current_time = datetime.datetime.now().strftime('%b-%d_%H-%M-%S') tb_path = os.path.join('runs', current_time + '_' + hp.ENV_NAME + '_' + hp.EXP_NAME) pi_atk = DDPGActor(hp.N_OBS, hp.N_ACTS).to(device) Q_atk = DDPGCritic(hp.N_OBS, hp.N_ACTS).to(device) pi_gk = DDPGActor(hp.N_OBS, hp.N_ACTS).to(device) Q_gk = DDPGCritic(hp.N_OBS, hp.N_ACTS).to(device) # Playing pi_atk.share_memory() pi_gk.share_memory() exp_queue = mp.Queue(maxsize=hp.EXP_GRAD_RATIO) finish_event = mp.Event() sigma_m = mp.Value('f', hp.NOISE_SIGMA_INITIAL) gif_req_m = mp.Value('i', -1) data_proc_list = [] for _ in range(hp.N_ROLLOUT_PROCESSES): data_proc = mp.Process( target=data_func, args=( {'pi_atk': pi_atk, 'pi_gk': pi_gk}, device, exp_queue, finish_event, sigma_m, gif_req_m, hp ) ) data_proc.start() data_proc_list.append(data_proc) # Training tgt_pi_atk = TargetActor(pi_atk) tgt_Q_atk = TargetCritic(Q_atk) tgt_pi_gk = TargetActor(pi_gk) tgt_Q_gk = TargetCritic(Q_gk) pi_opt_atk = optim.Adam(pi_atk.parameters(), lr=hp.LEARNING_RATE) Q_opt_atk = optim.Adam(Q_atk.parameters(), lr=hp.LEARNING_RATE) pi_opt_gk = optim.Adam(pi_gk.parameters(), lr=hp.LEARNING_RATE) Q_opt_gk = optim.Adam(Q_gk.parameters(), lr=hp.LEARNING_RATE) buffer_atk = ReplayBuffer(buffer_size=hp.REPLAY_SIZE, observation_space=hp.observation_space, action_space=hp.action_space, device=hp.DEVICE ) buffer_gk = ReplayBuffer(buffer_size=hp.REPLAY_SIZE, observation_space=hp.observation_space, action_space=hp.action_space, device=hp.DEVICE ) n_grads = 0 n_samples = 0 n_episodes = 0 best_reward_atk = None best_reward_gk = None last_gif = None try: while n_grads < hp.TOTAL_GRAD_STEPS: metrics = {} ep_infos = list() st_time = time.perf_counter() # Collect EXP_GRAD_RATIO sample for each grad step new_samples = 0 while new_samples < hp.EXP_GRAD_RATIO: exp = exp_queue.get() if exp is None: raise Exception # got None value in queue safe_exp = copy.deepcopy(exp) del(exp) # Dict is returned with end of episode info if not 'exp_atk' in safe_exp: logs = {"ep_info/"+key: value for key, value in safe_exp.items() if 'truncated' not in key} ep_infos.append(logs) n_episodes += 1 else: buffer_atk.add( obs=safe_exp['exp_atk'].state, next_obs=safe_exp['exp_atk'].last_state if safe_exp['exp_atk'].last_state is not None else safe_exp['exp_atk'].state, action=safe_exp['exp_atk'].action, reward=safe_exp['exp_atk'].reward, done=False if safe_exp['exp_atk'].last_state is not None else True ) buffer_gk.add( obs=safe_exp['exp_gk'].state, next_obs=safe_exp['exp_gk'].last_state if safe_exp['exp_gk'].last_state is not None else safe_exp['exp_gk'].state, action=safe_exp['exp_gk'].action, reward=safe_exp['exp_gk'].reward, done=False if safe_exp['exp_gk'].last_state is not None else True ) new_samples += 1 n_samples += new_samples sample_time = time.perf_counter() # Only start training after buffer is larger than initial value if buffer_atk.size() < hp.REPLAY_INITIAL or buffer_gk.size() < hp.REPLAY_INITIAL: continue # Sample a batch and load it as a tensor on device batch_atk = buffer_atk.sample(hp.BATCH_SIZE) S_v_atk = batch_atk.observations A_v_atk = batch_atk.actions r_v_atk = batch_atk.rewards dones_atk = batch_atk.dones S_next_v_atk = batch_atk.next_observations batch_gk = buffer_gk.sample(hp.BATCH_SIZE) S_v_gk = batch_gk.observations A_v_gk = batch_gk.actions r_v_gk = batch_gk.rewards dones_gk = batch_gk.dones S_next_v_gk = batch_gk.next_observations # train critic Q_opt_atk.zero_grad() Q_v_atk = Q_atk(S_v_atk, A_v_atk) # expected Q for S,A A_next_v_atk = tgt_pi_atk(S_next_v_atk) # Get an Bootstrap Action for S_next Q_next_v_atk = tgt_Q_atk(S_next_v_atk, A_next_v_atk) # Bootstrap Q_next Q_next_v_atk[dones_atk == 1.] = 0.0 # No bootstrap if transition is terminal # Calculate_atk a reference Q value using the bootstrap Q Q_ref_v_atk = r_v_atk + Q_next_v_atk * (hp.GAMMA**hp.REWARD_STEPS) Q_loss_v_atk = F.mse_loss(Q_v_atk, Q_ref_v_atk.detach()) Q_loss_v_atk.backward() Q_opt_atk.step() metrics["train/loss_Q_atk"] = Q_loss_v_atk.cpu().detach().numpy() Q_opt_gk.zero_grad() Q_v_gk = Q_gk(S_v_gk, A_v_gk) # expected Q for S,A A_next_v_gk = tgt_pi_gk(S_next_v_gk) # Get an Bootstrap Action for S_next Q_next_v_gk = tgt_Q_gk(S_next_v_gk, A_next_v_gk) # Bootstrap Q_next Q_next_v_gk[dones_gk == 1.] = 0.0 # No bootstrap if transition is terminal # Calculate_gk a reference Q value using the bootstrap Q Q_ref_v_gk = r_v_gk + Q_next_v_gk * (hp.GAMMA**hp.REWARD_STEPS) Q_loss_v_gk = F.mse_loss(Q_v_gk, Q_ref_v_gk.detach
import gym
random_line_split
spatialfr.py
length-cropped_length)/2) return matrix[i1:i2, i1:i2] def determine_radius(df): # Determine the radius of the primary beam. # Fit a Gaussian to the distribution of RA and Dec positions. # Use 2x the determined sigma as a cutoff for sources, in steps of 2.5 deg. ra_hist, ra_bins = np.histogram(df.ra, bins=50) dec_hist, dec_bins = np.histogram(df.dec, bins=50) ra_p0 = [max(ra_hist), np.mean(ra_bins), 8] dec_p0 = [max(dec_hist), np.mean(dec_bins), 8] def gaussian(x, a, b, c): return a * np.exp(-(x-b)**2 / (2*c**2)) try: ra_popt, _ = curve_fit(gaussian, ra_bins[:-1], ra_hist, p0=ra_p0) dec_popt, _ = curve_fit(gaussian, dec_bins[:-1], dec_hist, p0=dec_p0) radius = np.ceil( (2*np.mean([abs(ra_popt[2]), abs(dec_popt[2])]))/2.5)*2.5 # Check this radius against the extent of source available. if radius > max(df.ra) - min(df.ra) or radius > max(df.dec) - min(df.dec): radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 print('gaussian fit done') except: radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 # print(radius) return radius def interpfr( radius, ra, dec, fr, fr_err, ra_centre, dec_centre, obsid, hr, interp_method='linear', resolution=200): grid_x, grid_y = np.meshgrid( np.linspace(-radius+5.25, radius-5.25, resolution), np.linspace(-radius+5.25, radius-5.25, resolution)) grid_x += ra_centre grid_y += dec_centre grid_fr = np.fliplr( griddata( np.vstack((ra, dec)).T, fr, (grid_x, grid_y), method=interp_method, fill_value=0)) beam_extent = ( ra_centre+radius, ra_centre-radius, dec_centre-radius, dec_centre+radius) print(beam_extent) crop_factor = 1./np.sqrt(2) cropped_beam_extent = ( ra_centre+radius*crop_factor, (ra_centre-radius*crop_factor), dec_centre-radius*crop_factor, dec_centre+radius*crop_factor) print(cropped_beam_extent) grid_fr = cropper(grid_fr) # np.savetxt("%s_%shr_interpfr_grid.csv" % (obsid, hr), grid_fr, delimiter=",") return grid_fr, cropped_beam_extent def plot_interp_fr(grid, beam_extent): fig, ax = plt.subplots(1, 1, figsize=(15, 12)) img1 = ax.imshow( grid, cmap="plasma", extent=beam_extent, origin="lower") ax.set_xlabel("RA [deg]") ax.set_ylabel("Dec [deg]") fig.colorbar(img1, ax=ax, format="%.2f", fraction=0.046, pad=0.04) fig.suptitle('Interpolated Faraday depth at %shrs %s' % (hr, str(obsid))) plt.savefig('%s_%shrs_ionfr_interped.png' % (obsid, hr)) def plane_fit(grid, obsid, hr): print('shape', grid.shape) m = grid.shape[0] # size of the matrix X1, X2 = np.mgrid[:m, :m] # Regression X = np.hstack((np.reshape(X1, (m*m, 1)), np.reshape(X2, (m*m, 1)))) X = np.hstack((np.ones((m*m, 1)), X)) YY = np.reshape(grid, (m*m, 1)) theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.transpose(), X)), X.transpose()), YY) # ax.scatter(grid[:, 0], grid[:, 1], grid[:, 2], c='r', s=20) plane = np.reshape(np.dot(X, theta), (m, m)) # Subtraction grid_sub = grid - plane return X1, X2, grid, plane, grid_sub def plot_3d_plane_fit(X1, X2, grid, grid_sub, plane, obsid, hr): fig = plt.figure(figsize=(18, 15)) ax = fig.add_subplot(3, 1, 1, projection='3d') # jet = plt.get_cmap('jet') plasma = plt.get_cmap('plasma') ff = ax.plot_surface(X1, X2, grid, rstride=1, cstride=1, cmap=plasma, linewidth=0) fig.colorbar(ff, shrink=0.8) ax = fig.add_subplot(3, 1, 2, projection='3d') surf = ax.plot_surface(X1, X2, plane) # , cmap=jet) ax.plot_surface(X1, X2, grid, rstride=1, cstride=1, cmap=plasma, linewidth=0) fig.colorbar(surf, shrink=0.8) ax = fig.add_subplot(3, 1, 3, projection='3d') subt = ax.plot_surface(X1, X2, grid_sub, rstride=1, cstride=1, cmap=plasma, linewidth=0) fig.colorbar(subt, shrink=0.8) plt.savefig('%s_%shrs_ionfr_plane_fit_resids.png' % (obsid, hr)) plt.show() def linefit(grid, obsid, beam_lim): slicepoints = np.linspace(60, 76, 8) fig, ax = plt.subplots(1, 1, figsize=(15, 12)) for i in slicepoints: y = grid[int(i), :] ras = np.linspace(beam_lim[0], beam_lim[1], len(y)) x = np.linspace(beam_lim[2], beam_lim[3], len(y)) ax.plot(x, y, label=str(round(ras[int(i)], 1))) # regplot = sns.regplot(x=x, y=y) # yy = sns.residplot(x, y, lowess=True, scatter_kws={"color": "black"}, line_kws={"color": "red"}) # yy.set(xlabel='Dec (deg)', ylabel='Residuals', title='Fitted rotation measure curve and residuals (constant Ra)') ax.legend(loc="upper center", title='RA [deg]') ax.set_title('Faraday depth residuals along constant RA') ax.set_xlabel('DEC [deg]') ax.set_ylabel("r'$\phi$' Residuals") plt.savefig('%s_14hrs_residuals_constdeg.png' % (obsid)) #fig = regplot.get_figure() #fig.savefig('1065880128_14hrs_1ra_ionfr.png') def spatial_fr_plot(ra, dec, fr, fr_err, obsid, title='xx'): print('Using plotly') size = fr_err fig = go.Figure(data=[go.Scatter( x=ra, y=dec, mode='markers', text=fr, hoverinfo='text', marker=dict( color=fr, colorscale='Magma_r', size=fr_err, # sizemode = 'diameter', showscale=True, sizeref=2. * max(size) / (5**2) ) )]) fig.update_layout( autosize=False, width=1000, height=800, title='colour=Faraday rotation, size=error', xaxis=dict(title='Ra [deg]'), yaxis=dict(title='Dec [deg]')) # xaxis=dict(range=[beam_lim[0], beam_lim[1]], title='Ra [deg]'), # yaxis=dict(range=[beam_lim[2], beam_lim[3]], title='Dec [deg]')) fig.update_xaxes(autorange="reversed") #fig.show() fig.write_image(title) def fr_resids_plot(grid_sub, ra, dec, beam_extent, obsid):
fig, ax = plt.subplots(1, 1, figsize=(15, 12)) img1 = ax.imshow(grid_sub, extent=beam_extent, cmap="plasma") ax.set_xlabel("RA [deg]") ax.set_ylabel("Dec [deg]") ax.set_title("Faraday depth residuals after plane surface fit") fig.colorbar(img1, ax=ax, format="%.2f", fraction=0.046, pad=0.04) plt.savefig('%s_14hrs_fr_resids.png' % (obsid)) # plt.show()
identifier_body
spatialfr.py
file who's path is given. ''' yaml_file = '/home/chege/Desktop/curtin_work/vega/%s.yaml' % (obsid) ras = [] decs = [] fluxes = [] ampscales = [] stds = [] with open(yaml_file, 'r') as f: unpacked = yaml.load(f, Loader=SafeLoader) for sos in sources: for soc in unpacked['sources']: if unpacked['sources'][soc]['name'] == sos: print('.........found source') print('................getting its ra & dec') ras.append(float(unpacked['sources'][soc]['ra'])) decs.append(float(unpacked['sources'][soc]['dec'])) ampscales.append(float(np.nanmedian(unpacked['sources'][soc]['amp_scales'][1:13]))) stds.append(float(np.nanstd(unpacked['sources'][soc]['amp_scales'][1:13]))) fluxes.append(float(unpacked['sources'][soc]['flux_density'])) return ras, decs, fluxes, ampscales, stds def make_df(hour, obsid, csvfyl=None): if csvfyl is not None: # if we have a csv file with ra dec, fr, and fr_err df = pd.read_csv(csvfyl) df = df.drop(df.columns[0], axis=1) else: txtdir = '/home/chege/Desktop/curtin_work/run_ionfr/singleLOScomparisons/1066568224_frtxts' fyls = sorted([fyl for fyl in os.listdir(txtdir) if fyl.split('.')[-1] == 'txt']) sources = [fyl.split('_')[0] for fyl in fyls] print(len(sources)) ras, decs, fluxes, ampscales, stds = get_radec(sources, obsid) frs = [] frs_errs = [] i = 1 for fyl in fyls: print(i) i += 1 fylpath = txtdir + '/' + fyl fr_value, fr_value_err = get_fr_value(fylpath, hour) frs.append(float(fr_value)) frs_errs.append(float(fr_value_err)) df = pd.DataFrame( list(zip(ras, decs, fluxes, ampscales, stds, frs, frs_errs)), columns=['ra', 'dec', 'flux', 'ampscales', 'stds', 'fr', 'fr_err']) print('made dataframe with radec and fr values') df = df.dropna(axis=0) # blacklist = df[((df.stds - df.stds.median()) / df.stds.std()).abs() > 3] # print(blacklist) # blacklist.to_csv('blacklist_sources.csv', mode='a', header=False) df = df[((df.stds - df.stds.median()) / df.stds.std()).abs() < 3] print(df.head()) df = df.nlargest(700, 'flux', keep="'all'") # df.to_csv('%s_%shrs_ionfr.csv' % (obsid, hour)) return df def get_center(df): bulk_centre_ra = np.mean(df.ra) bulk_centre_dec = np.mean(df.dec) radius = determine_radius(df) # Recalculate the centre, based on the sources within the radius, # and specify the sources to be used for analysis. filtered = np.array( [[a, b, c, d, e, f, g] for a, b, c, d, e, f, g in zip(df.ra, df.dec, df.flux, df.ampscales, df.stds, df.fr, df.fr_err) if abs(a-bulk_centre_ra) < radius and abs(b-bulk_centre_dec) < radius]) fra = filtered[:, 0] fdec = filtered[:, 1] fflux = filtered[:, 2] fampscales = filtered[:, 3] fstds = filtered[:, 4] f_fr = filtered[:, 5] f_fr_err = filtered[:, 6] ra_centre = fra.mean() dec_centre = fdec.mean() return radius, fra, fdec, fflux, fampscales, fstds, f_fr, f_fr_err, ra_centre, dec_centre def cropper(matrix, crop_factor=1./np.sqrt(2)): length = len(matrix) cropped_length = int(length * crop_factor) i1 = int((length-cropped_length)/2) i2 = length-int((length-cropped_length)/2) return matrix[i1:i2, i1:i2] def
(df): # Determine the radius of the primary beam. # Fit a Gaussian to the distribution of RA and Dec positions. # Use 2x the determined sigma as a cutoff for sources, in steps of 2.5 deg. ra_hist, ra_bins = np.histogram(df.ra, bins=50) dec_hist, dec_bins = np.histogram(df.dec, bins=50) ra_p0 = [max(ra_hist), np.mean(ra_bins), 8] dec_p0 = [max(dec_hist), np.mean(dec_bins), 8] def gaussian(x, a, b, c): return a * np.exp(-(x-b)**2 / (2*c**2)) try: ra_popt, _ = curve_fit(gaussian, ra_bins[:-1], ra_hist, p0=ra_p0) dec_popt, _ = curve_fit(gaussian, dec_bins[:-1], dec_hist, p0=dec_p0) radius = np.ceil( (2*np.mean([abs(ra_popt[2]), abs(dec_popt[2])]))/2.5)*2.5 # Check this radius against the extent of source available. if radius > max(df.ra) - min(df.ra) or radius > max(df.dec) - min(df.dec): radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 print('gaussian fit done') except: radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 # print(radius) return radius def interpfr( radius, ra, dec, fr, fr_err, ra_centre, dec_centre, obsid, hr, interp_method='linear', resolution=200): grid_x, grid_y = np.meshgrid( np.linspace(-radius+5.25, radius-5.25, resolution), np.linspace(-radius+5.25, radius-5.25, resolution)) grid_x += ra_centre grid_y += dec_centre grid_fr = np.fliplr( griddata( np.vstack((ra, dec)).T, fr, (grid_x, grid_y), method=interp_method, fill_value=0)) beam_extent = ( ra_centre+radius, ra_centre-radius, dec_centre-radius, dec_centre+radius) print(beam_extent) crop_factor = 1./np.sqrt(2) cropped_beam_extent = ( ra_centre+radius*crop_factor, (ra_centre-radius*crop_factor), dec_centre-radius*crop_factor, dec_centre+radius*crop_factor) print(cropped_beam_extent) grid_fr = cropper(grid_fr) # np.savetxt("%s_%shr_interpfr_grid.csv" % (obsid, hr), grid_fr, delimiter=",") return grid_fr, cropped_beam_extent def plot_interp_fr(grid, beam_extent): fig, ax = plt.subplots(1, 1, figsize=(15, 12)) img1 = ax.imshow( grid, cmap="plasma", extent=beam_extent, origin="lower") ax.set_xlabel("RA [deg]") ax.set_ylabel("Dec [deg]") fig.colorbar(img1, ax=ax, format="%.2f", fraction=0.046, pad=0.04) fig.suptitle('Interpolated Faraday depth at %shrs %s' % (hr, str(obsid))) plt.savefig('%s_%shrs_ionfr_interped.png' % (obsid, hr)) def plane_fit(grid, obsid, hr): print('shape', grid.shape) m = grid.shape[0] # size of the matrix X1, X2 = np.mgrid[:m, :m] # Regression X = np.hstack((np.reshape(X1, (m*m, 1)), np.reshape(X2, (m*m, 1)))) X = np.hstack((np.ones((m*m, 1)), X)) YY = np.reshape(grid, (m*m, 1)) theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.transpose(), X)), X.transpose()), YY) # ax.scatter(grid[:, 0], grid[:, 1], grid[:, 2], c='r', s=20) plane = np.reshape(np.dot(X, theta), (m, m
determine_radius
identifier_name
spatialfr.py
yaml file who's path is given. ''' yaml_file = '/home/chege/Desktop/curtin_work/vega/%s.yaml' % (obsid) ras = [] decs = [] fluxes = [] ampscales = [] stds = [] with open(yaml_file, 'r') as f: unpacked = yaml.load(f, Loader=SafeLoader) for sos in sources: for soc in unpacked['sources']: if unpacked['sources'][soc]['name'] == sos: print('.........found source') print('................getting its ra & dec') ras.append(float(unpacked['sources'][soc]['ra'])) decs.append(float(unpacked['sources'][soc]['dec'])) ampscales.append(float(np.nanmedian(unpacked['sources'][soc]['amp_scales'][1:13]))) stds.append(float(np.nanstd(unpacked['sources'][soc]['amp_scales'][1:13]))) fluxes.append(float(unpacked['sources'][soc]['flux_density'])) return ras, decs, fluxes, ampscales, stds def make_df(hour, obsid, csvfyl=None): if csvfyl is not None: # if we have a csv file with ra dec, fr, and fr_err df = pd.read_csv(csvfyl) df = df.drop(df.columns[0], axis=1) else: txtdir = '/home/chege/Desktop/curtin_work/run_ionfr/singleLOScomparisons/1066568224_frtxts' fyls = sorted([fyl for fyl in os.listdir(txtdir) if fyl.split('.')[-1] == 'txt']) sources = [fyl.split('_')[0] for fyl in fyls] print(len(sources)) ras, decs, fluxes, ampscales, stds = get_radec(sources, obsid) frs = [] frs_errs = [] i = 1 for fyl in fyls: print(i) i += 1 fylpath = txtdir + '/' + fyl fr_value, fr_value_err = get_fr_value(fylpath, hour) frs.append(float(fr_value)) frs_errs.append(float(fr_value_err)) df = pd.DataFrame( list(zip(ras, decs, fluxes, ampscales, stds, frs, frs_errs)), columns=['ra', 'dec', 'flux', 'ampscales', 'stds', 'fr', 'fr_err']) print('made dataframe with radec and fr values') df = df.dropna(axis=0) # blacklist = df[((df.stds - df.stds.median()) / df.stds.std()).abs() > 3] # print(blacklist) # blacklist.to_csv('blacklist_sources.csv', mode='a', header=False) df = df[((df.stds - df.stds.median()) / df.stds.std()).abs() < 3] print(df.head()) df = df.nlargest(700, 'flux', keep="'all'") # df.to_csv('%s_%shrs_ionfr.csv' % (obsid, hour)) return df def get_center(df): bulk_centre_ra = np.mean(df.ra) bulk_centre_dec = np.mean(df.dec) radius = determine_radius(df) # Recalculate the centre, based on the sources within the radius, # and specify the sources to be used for analysis. filtered = np.array( [[a, b, c, d, e, f, g] for a, b, c, d, e, f, g in zip(df.ra, df.dec, df.flux, df.ampscales, df.stds, df.fr, df.fr_err) if abs(a-bulk_centre_ra) < radius and abs(b-bulk_centre_dec) < radius]) fra = filtered[:, 0] fdec = filtered[:, 1] fflux = filtered[:, 2] fampscales = filtered[:, 3] fstds = filtered[:, 4] f_fr = filtered[:, 5] f_fr_err = filtered[:, 6] ra_centre = fra.mean() dec_centre = fdec.mean() return radius, fra, fdec, fflux, fampscales, fstds, f_fr, f_fr_err, ra_centre, dec_centre def cropper(matrix, crop_factor=1./np.sqrt(2)): length = len(matrix) cropped_length = int(length * crop_factor) i1 = int((length-cropped_length)/2) i2 = length-int((length-cropped_length)/2) return matrix[i1:i2, i1:i2] def determine_radius(df): # Determine the radius of the primary beam. # Fit a Gaussian to the distribution of RA and Dec positions. # Use 2x the determined sigma as a cutoff for sources, in steps of 2.5 deg. ra_hist, ra_bins = np.histogram(df.ra, bins=50) dec_hist, dec_bins = np.histogram(df.dec, bins=50) ra_p0 = [max(ra_hist), np.mean(ra_bins), 8] dec_p0 = [max(dec_hist), np.mean(dec_bins), 8] def gaussian(x, a, b, c): return a * np.exp(-(x-b)**2 / (2*c**2)) try: ra_popt, _ = curve_fit(gaussian, ra_bins[:-1], ra_hist, p0=ra_p0) dec_popt, _ = curve_fit(gaussian, dec_bins[:-1], dec_hist, p0=dec_p0) radius = np.ceil( (2*np.mean([abs(ra_popt[2]), abs(dec_popt[2])]))/2.5)*2.5 # Check this radius against the extent of source available. if radius > max(df.ra) - min(df.ra) or radius > max(df.dec) - min(df.dec): radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 print('gaussian fit done') except: radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 # print(radius) return radius def interpfr( radius, ra, dec, fr, fr_err, ra_centre, dec_centre, obsid, hr, interp_method='linear', resolution=200): grid_x, grid_y = np.meshgrid( np.linspace(-radius+5.25, radius-5.25, resolution), np.linspace(-radius+5.25, radius-5.25, resolution)) grid_x += ra_centre grid_y += dec_centre
np.vstack((ra, dec)).T, fr, (grid_x, grid_y), method=interp_method, fill_value=0)) beam_extent = ( ra_centre+radius, ra_centre-radius, dec_centre-radius, dec_centre+radius) print(beam_extent) crop_factor = 1./np.sqrt(2) cropped_beam_extent = ( ra_centre+radius*crop_factor, (ra_centre-radius*crop_factor), dec_centre-radius*crop_factor, dec_centre+radius*crop_factor) print(cropped_beam_extent) grid_fr = cropper(grid_fr) # np.savetxt("%s_%shr_interpfr_grid.csv" % (obsid, hr), grid_fr, delimiter=",") return grid_fr, cropped_beam_extent def plot_interp_fr(grid, beam_extent): fig, ax = plt.subplots(1, 1, figsize=(15, 12)) img1 = ax.imshow( grid, cmap="plasma", extent=beam_extent, origin="lower") ax.set_xlabel("RA [deg]") ax.set_ylabel("Dec [deg]") fig.colorbar(img1, ax=ax, format="%.2f", fraction=0.046, pad=0.04) fig.suptitle('Interpolated Faraday depth at %shrs %s' % (hr, str(obsid))) plt.savefig('%s_%shrs_ionfr_interped.png' % (obsid, hr)) def plane_fit(grid, obsid, hr): print('shape', grid.shape) m = grid.shape[0] # size of the matrix X1, X2 = np.mgrid[:m, :m] # Regression X = np.hstack((np.reshape(X1, (m*m, 1)), np.reshape(X2, (m*m, 1)))) X = np.hstack((np.ones((m*m, 1)), X)) YY = np.reshape(grid, (m*m, 1)) theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.transpose(), X)), X.transpose()), YY) # ax.scatter(grid[:, 0], grid[:, 1], grid[:, 2], c='r', s=20) plane = np.reshape(np.dot(X, theta), (m, m))
grid_fr = np.fliplr( griddata(
random_line_split
spatialfr.py
return fr_value, fr_value_err def get_radec(sources, obsid): ''' Gets the Ra and Dec of a source from the yaml file who's path is given. ''' yaml_file = '/home/chege/Desktop/curtin_work/vega/%s.yaml' % (obsid) ras = [] decs = [] fluxes = [] ampscales = [] stds = [] with open(yaml_file, 'r') as f: unpacked = yaml.load(f, Loader=SafeLoader) for sos in sources: for soc in unpacked['sources']: if unpacked['sources'][soc]['name'] == sos: print('.........found source') print('................getting its ra & dec') ras.append(float(unpacked['sources'][soc]['ra'])) decs.append(float(unpacked['sources'][soc]['dec'])) ampscales.append(float(np.nanmedian(unpacked['sources'][soc]['amp_scales'][1:13]))) stds.append(float(np.nanstd(unpacked['sources'][soc]['amp_scales'][1:13]))) fluxes.append(float(unpacked['sources'][soc]['flux_density'])) return ras, decs, fluxes, ampscales, stds def make_df(hour, obsid, csvfyl=None): if csvfyl is not None: # if we have a csv file with ra dec, fr, and fr_err df = pd.read_csv(csvfyl) df = df.drop(df.columns[0], axis=1) else: txtdir = '/home/chege/Desktop/curtin_work/run_ionfr/singleLOScomparisons/1066568224_frtxts' fyls = sorted([fyl for fyl in os.listdir(txtdir) if fyl.split('.')[-1] == 'txt']) sources = [fyl.split('_')[0] for fyl in fyls] print(len(sources)) ras, decs, fluxes, ampscales, stds = get_radec(sources, obsid) frs = [] frs_errs = [] i = 1 for fyl in fyls: print(i) i += 1 fylpath = txtdir + '/' + fyl fr_value, fr_value_err = get_fr_value(fylpath, hour) frs.append(float(fr_value)) frs_errs.append(float(fr_value_err)) df = pd.DataFrame( list(zip(ras, decs, fluxes, ampscales, stds, frs, frs_errs)), columns=['ra', 'dec', 'flux', 'ampscales', 'stds', 'fr', 'fr_err']) print('made dataframe with radec and fr values') df = df.dropna(axis=0) # blacklist = df[((df.stds - df.stds.median()) / df.stds.std()).abs() > 3] # print(blacklist) # blacklist.to_csv('blacklist_sources.csv', mode='a', header=False) df = df[((df.stds - df.stds.median()) / df.stds.std()).abs() < 3] print(df.head()) df = df.nlargest(700, 'flux', keep="'all'") # df.to_csv('%s_%shrs_ionfr.csv' % (obsid, hour)) return df def get_center(df): bulk_centre_ra = np.mean(df.ra) bulk_centre_dec = np.mean(df.dec) radius = determine_radius(df) # Recalculate the centre, based on the sources within the radius, # and specify the sources to be used for analysis. filtered = np.array( [[a, b, c, d, e, f, g] for a, b, c, d, e, f, g in zip(df.ra, df.dec, df.flux, df.ampscales, df.stds, df.fr, df.fr_err) if abs(a-bulk_centre_ra) < radius and abs(b-bulk_centre_dec) < radius]) fra = filtered[:, 0] fdec = filtered[:, 1] fflux = filtered[:, 2] fampscales = filtered[:, 3] fstds = filtered[:, 4] f_fr = filtered[:, 5] f_fr_err = filtered[:, 6] ra_centre = fra.mean() dec_centre = fdec.mean() return radius, fra, fdec, fflux, fampscales, fstds, f_fr, f_fr_err, ra_centre, dec_centre def cropper(matrix, crop_factor=1./np.sqrt(2)): length = len(matrix) cropped_length = int(length * crop_factor) i1 = int((length-cropped_length)/2) i2 = length-int((length-cropped_length)/2) return matrix[i1:i2, i1:i2] def determine_radius(df): # Determine the radius of the primary beam. # Fit a Gaussian to the distribution of RA and Dec positions. # Use 2x the determined sigma as a cutoff for sources, in steps of 2.5 deg. ra_hist, ra_bins = np.histogram(df.ra, bins=50) dec_hist, dec_bins = np.histogram(df.dec, bins=50) ra_p0 = [max(ra_hist), np.mean(ra_bins), 8] dec_p0 = [max(dec_hist), np.mean(dec_bins), 8] def gaussian(x, a, b, c): return a * np.exp(-(x-b)**2 / (2*c**2)) try: ra_popt, _ = curve_fit(gaussian, ra_bins[:-1], ra_hist, p0=ra_p0) dec_popt, _ = curve_fit(gaussian, dec_bins[:-1], dec_hist, p0=dec_p0) radius = np.ceil( (2*np.mean([abs(ra_popt[2]), abs(dec_popt[2])]))/2.5)*2.5 # Check this radius against the extent of source available. if radius > max(df.ra) - min(df.ra) or radius > max(df.dec) - min(df.dec): radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 print('gaussian fit done') except: radius = max([df.ra.max() - df.ra.min(), df.dec.max() - df.dec.min()])/2 # print(radius) return radius def interpfr( radius, ra, dec, fr, fr_err, ra_centre, dec_centre, obsid, hr, interp_method='linear', resolution=200): grid_x, grid_y = np.meshgrid( np.linspace(-radius+5.25, radius-5.25, resolution), np.linspace(-radius+5.25, radius-5.25, resolution)) grid_x += ra_centre grid_y += dec_centre grid_fr = np.fliplr( griddata( np.vstack((ra, dec)).T, fr, (grid_x, grid_y), method=interp_method, fill_value=0)) beam_extent = ( ra_centre+radius, ra_centre-radius, dec_centre-radius, dec_centre+radius) print(beam_extent) crop_factor = 1./np.sqrt(2) cropped_beam_extent = ( ra_centre+radius*crop_factor, (ra_centre-radius*crop_factor), dec_centre-radius*crop_factor, dec_centre+radius*crop_factor) print(cropped_beam_extent) grid_fr = cropper(grid_fr) # np.savetxt("%s_%shr_interpfr_grid.csv" % (obsid, hr), grid_fr, delimiter=",") return grid_fr, cropped_beam_extent def plot_interp_fr(grid, beam_extent): fig, ax = plt.subplots(1, 1, figsize=(15, 12)) img1 = ax.imshow( grid, cmap="plasma", extent=beam_extent, origin="lower") ax.set_xlabel("RA [deg]") ax.set_ylabel("Dec [deg]") fig.colorbar(img1, ax=ax, format="%.2f", fraction=0.046, pad=0.04) fig.suptitle('Interpolated Faraday depth at %shrs %s' % (hr, str(obsid))) plt.savefig('%s_%shrs_ionfr_interped.png' % (obsid, hr)) def plane_fit(grid, obsid, hr): print('shape', grid.shape) m = grid.shape[0] # size of the matrix X1, X2 = np.mgrid[:m, :m] # Regression X = np.hstack((np.reshape(X1, (m*m, 1)), np.reshape(X2, (m*m, 1)))) X = np.hstack((np.ones((m*m, 1)), X)) YY = np.reshape(grid, (m*m, 1)) theta = np.dot(np
print('found the hr, reading its fr value') fr_value = row[3] fr_value_err = row[4]
conditional_block
functions.py
)/3) plt.rc('axes', labelsize=22) plt.grid(b=True, which='major', color='#666666', linestyle='-', alpha=0.2) trans1 = Affine2D().translate(-0.1, 0.0) + ax.transData trans2 = Affine2D().translate(+0.1, 0.0) + ax.transData er1 = ax.errorbar(y1, x, xerr=yerr1, marker="o", linestyle="none", transform=trans1) ax.axvline(x=0, color="black") ax.set_ylim(-0.3, len(df) - 1 + 0.3) return plt.savefig('static/'+name + '.png', bbox_inches='tight') def clean_string2(liste): liste = re.sub(r"[\W\_]|\d+", ' ', liste) liste = " ".join(liste.split()) liste = liste.lower() return liste def get_main_text(soup): text = soup.find(id="ad_description_text").text text = clean_string2(text) cut_string = "ihr wg gesucht team" try: return text.split(cut_string, 1)[1] except: return text def get_text(link): bs = get_bs_from_http(link) text = get_main_text(bs) return clean_string2(text) def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_text_from_clean(text, liste, direction="right"): pairs = [] if direction == "right": for item in liste: try: if item in text: pairs.append([item, text.split(item)[1].split()[0]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) if direction == "left": for item in liste: try: if item in text: pairs.append([item, text.split(item)[0].split()[-1]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) return pairs def clean_string(liste): liste = Flatten(liste) liste = " ".join(liste) liste = " ".join(liste.split()) return liste def get_text_from_html(bs, class_name): string_list = [] soup = bs.find_all(class_=class_name) for entry in soup: string_list.append(entry.text) return string_list def Flatten(ul): fl = [] for i in ul: if type(i) is list: fl += Flatten(i) else: fl += [i] return fl def get_all_data_from_site(bs, link): names = ["Wohnung", "Zimmergröße", "Sonstige", "Nebenkosten", "Miete", "Gesamtmiete", "Kaution", "Ablösevereinbarung"] my_list = get_text_from_html(bs, "col-sm-12 hidden-xs") my_list = clean_string(my_list) dict1 = dict(get_text_from_clean(my_list, names, "left")) names = ["frei ab: ", "frei bis: "] my_list = get_text_from_html(bs, "col-sm-3") my_list = clean_string(my_list) dict2 = dict(get_text_from_clean(my_list, names, "right")) names = [" Zimmer in "] my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) dict3 = dict(get_text_from_clean(my_list, names, "right")) names = ["Malmännliche", "weiblich", 'height="17"'] count = [] for name in names: try: string = str(bs.find( class_="mr5 detail-list-fav-button display-inline-block hidden-xs create_favourite").next_sibling.next_sibling) count.append(string.count(name)) except: count.append("none") dict4 = dict(zip(names, count)) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict5 = dict(get_text_from_clean(my_list[1], ["zwischen"], "left")) except: dict5 = dict(get_text_from_clean(my_list, ["zwischen"], "left")) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict8 = dict(get_text_from_clean(my_list[1], ["Geschlecht"], "right")) except: dict8 = dict(get_text_from_clean(my_list, ["Geschlecht"], "right")) item_list = ["glyphicons glyphicons-bath-bathtub noprint", "glyphicons glyphicons-wifi-alt noprint", "glyphicons glyphicons-car noprint", "glyphicons glyphicons-fabric noprint", "glyphicons glyphicons-display noprint", "glyphicons glyphicons-folder-closed noprint", "glyphicons glyphicons-mixed-buildings noprint", "glyphicons glyphicons-building noprint", "glyphicons glyphicons-bus noprint", "glyphicons glyphicons-bed noprint", "glyphicons glyphicons-fire noprint"] data_list = [] for item in item_list: try: data_list.append([item[22:-8], clean_string([bs.find(class_=item).next_sibling.next_sibling.next_sibling])]) except: data_list.append([item[22:-8], "none"]) dict6 = dict(data_list) liste = get_text_from_html(bs, "col-sm-4 mb10") adress_string = clean_string(liste).replace("Adresse ", "").replace("Umzugsfirma beauftragen1", "").replace( "Umzugsfirma beauftragen 1", "") dict7 = {"Adresse": adress_string, "Link": link} names = "Miete pro Tag: " my_list = get_text_from_html(bs, "col-sm-5") my_list = clean_string(my_list) if names in my_list: dict9 = {"taeglich": 1} else: dict9 = {"taeglich": 0} div_id = 'popover-energy-certification' try: cs = clean_string([bs.find(id=div_id).next_sibling]) dict10 = {"baujahr": cs} except: dict10 = {"baujahr": "none"} rauchen = "Rauchen nicht erwünscht" nichrauchen = "Rauchen überall erlaubt" my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if rauchen in my_list: dict11 = {"rauchen": "raucher"} if nichrauchen in my_list: dict11 = {"rauchen": "nichtraucher"} if rauchen not in my_list and nichrauchen not in my_list: dict11 = {"rauchen": "keine_Angabe"} wg_list = ["Zweck-WG", "keine Zweck-WG", "Berufstätigen-WG", "gemischte WG", "Studenten-WG", "Frauen-WG", "Azubi-WG"] dict12 = [] for wg in wg_list: my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if wg in my_list: dict12.append([wg, 1]) else: dict12.append([wg, 0]) dict12 = dict(dict12) dict_list = [dict1, dict2, dict3, dict4, dict5, dict8, dict6, dict7, dict7, dict9, dict10, dict11, dict12] for item in dict_list: dict1.update(item) return dict1 def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser")
def get_bs_from_http(link): html = requests.get(link) return BeautifulSoup(html.text, "html.parser") def get_html_request(link): return requests.get(link) def merge_dicts(dic1, dic2): try: dic3 = dict(dic2) for k, v in dic1.items(): dic3[k] = Flatten([dic3[k], v]) if k in dic3 else v return dic3 except: return dic1 def replace_viertel(x, viertel_liste): if x in viertel_liste: return x elif any([i in x for i in viertel_liste]): return [i for (i, v) in zip(viertel_liste, [i in x for i in viertel_liste]) if v][0] else: return x def link_to_pandas(full_link, df_saved): stem = full_link[:57] link = full_link[57:] bs = get_bs_from_http(stem + link) data = get_all_data
random_line_split
functions.py
)/3) plt.rc('axes', labelsize=22) plt.grid(b=True, which='major', color='#666666', linestyle='-', alpha=0.2) trans1 = Affine2D().translate(-0.1, 0.0) + ax.transData trans2 = Affine2D().translate(+0.1, 0.0) + ax.transData er1 = ax.errorbar(y1, x, xerr=yerr1, marker="o", linestyle="none", transform=trans1) ax.axvline(x=0, color="black") ax.set_ylim(-0.3, len(df) - 1 + 0.3) return plt.savefig('static/'+name + '.png', bbox_inches='tight') def clean_string2(liste): liste = r
_main_text(soup): text = soup.find(id="ad_description_text").text text = clean_string2(text) cut_string = "ihr wg gesucht team" try: return text.split(cut_string, 1)[1] except: return text def get_text(link): bs = get_bs_from_http(link) text = get_main_text(bs) return clean_string2(text) def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_text_from_clean(text, liste, direction="right"): pairs = [] if direction == "right": for item in liste: try: if item in text: pairs.append([item, text.split(item)[1].split()[0]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) if direction == "left": for item in liste: try: if item in text: pairs.append([item, text.split(item)[0].split()[-1]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) return pairs def clean_string(liste): liste = Flatten(liste) liste = " ".join(liste) liste = " ".join(liste.split()) return liste def get_text_from_html(bs, class_name): string_list = [] soup = bs.find_all(class_=class_name) for entry in soup: string_list.append(entry.text) return string_list def Flatten(ul): fl = [] for i in ul: if type(i) is list: fl += Flatten(i) else: fl += [i] return fl def get_all_data_from_site(bs, link): names = ["Wohnung", "Zimmergröße", "Sonstige", "Nebenkosten", "Miete", "Gesamtmiete", "Kaution", "Ablösevereinbarung"] my_list = get_text_from_html(bs, "col-sm-12 hidden-xs") my_list = clean_string(my_list) dict1 = dict(get_text_from_clean(my_list, names, "left")) names = ["frei ab: ", "frei bis: "] my_list = get_text_from_html(bs, "col-sm-3") my_list = clean_string(my_list) dict2 = dict(get_text_from_clean(my_list, names, "right")) names = [" Zimmer in "] my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) dict3 = dict(get_text_from_clean(my_list, names, "right")) names = ["Malmännliche", "weiblich", 'height="17"'] count = [] for name in names: try: string = str(bs.find( class_="mr5 detail-list-fav-button display-inline-block hidden-xs create_favourite").next_sibling.next_sibling) count.append(string.count(name)) except: count.append("none") dict4 = dict(zip(names, count)) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict5 = dict(get_text_from_clean(my_list[1], ["zwischen"], "left")) except: dict5 = dict(get_text_from_clean(my_list, ["zwischen"], "left")) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict8 = dict(get_text_from_clean(my_list[1], ["Geschlecht"], "right")) except: dict8 = dict(get_text_from_clean(my_list, ["Geschlecht"], "right")) item_list = ["glyphicons glyphicons-bath-bathtub noprint", "glyphicons glyphicons-wifi-alt noprint", "glyphicons glyphicons-car noprint", "glyphicons glyphicons-fabric noprint", "glyphicons glyphicons-display noprint", "glyphicons glyphicons-folder-closed noprint", "glyphicons glyphicons-mixed-buildings noprint", "glyphicons glyphicons-building noprint", "glyphicons glyphicons-bus noprint", "glyphicons glyphicons-bed noprint", "glyphicons glyphicons-fire noprint"] data_list = [] for item in item_list: try: data_list.append([item[22:-8], clean_string([bs.find(class_=item).next_sibling.next_sibling.next_sibling])]) except: data_list.append([item[22:-8], "none"]) dict6 = dict(data_list) liste = get_text_from_html(bs, "col-sm-4 mb10") adress_string = clean_string(liste).replace("Adresse ", "").replace("Umzugsfirma beauftragen1", "").replace( "Umzugsfirma beauftragen 1", "") dict7 = {"Adresse": adress_string, "Link": link} names = "Miete pro Tag: " my_list = get_text_from_html(bs, "col-sm-5") my_list = clean_string(my_list) if names in my_list: dict9 = {"taeglich": 1} else: dict9 = {"taeglich": 0} div_id = 'popover-energy-certification' try: cs = clean_string([bs.find(id=div_id).next_sibling]) dict10 = {"baujahr": cs} except: dict10 = {"baujahr": "none"} rauchen = "Rauchen nicht erwünscht" nichrauchen = "Rauchen überall erlaubt" my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if rauchen in my_list: dict11 = {"rauchen": "raucher"} if nichrauchen in my_list: dict11 = {"rauchen": "nichtraucher"} if rauchen not in my_list and nichrauchen not in my_list: dict11 = {"rauchen": "keine_Angabe"} wg_list = ["Zweck-WG", "keine Zweck-WG", "Berufstätigen-WG", "gemischte WG", "Studenten-WG", "Frauen-WG", "Azubi-WG"] dict12 = [] for wg in wg_list: my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if wg in my_list: dict12.append([wg, 1]) else: dict12.append([wg, 0]) dict12 = dict(dict12) dict_list = [dict1, dict2, dict3, dict4, dict5, dict8, dict6, dict7, dict7, dict9, dict10, dict11, dict12] for item in dict_list: dict1.update(item) return dict1 def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_bs_from_http(link): html = requests.get(link) return BeautifulSoup(html.text, "html.parser") def get_html_request(link): return requests.get(link) def merge_dicts(dic1, dic2): try: dic3 = dict(dic2) for k, v in dic1.items(): dic3[k] = Flatten([dic3[k], v]) if k in dic3 else v return dic3 except: return dic1 def replace_viertel(x, viertel_liste): if x in viertel_liste: return x elif any([i in x for i in viertel_liste]): return [i for (i, v) in zip(viertel_liste, [i in x for i in viertel_liste]) if v][0] else: return x def link_to_pandas(full_link, df_saved): stem = full_link[:57] link = full_link[57:] bs = get_bs_from_http(stem + link) data = get_all_data
e.sub(r"[\W\_]|\d+", ' ', liste) liste = " ".join(liste.split()) liste = liste.lower() return liste def get
identifier_body
functions.py
)/3) plt.rc('axes', labelsize=22) plt.grid(b=True, which='major', color='#666666', linestyle='-', alpha=0.2) trans1 = Affine2D().translate(-0.1, 0.0) + ax.transData trans2 = Affine2D().translate(+0.1, 0.0) + ax.transData er1 = ax.errorbar(y1, x, xerr=yerr1, marker="o", linestyle="none", transform=trans1) ax.axvline(x=0, color="black") ax.set_ylim(-0.3, len(df) - 1 + 0.3) return plt.savefig('static/'+name + '.png', bbox_inches='tight') def clean_string2(liste): liste = re.sub(r"[\W\_]|\d+", ' ', liste) liste = " ".join(liste.split()) liste = liste.lower() return liste def get_main_text(soup): text = soup.find(id="ad_description_text").text text = clean_string2(text) cut_string = "ihr wg gesucht team" try: return text.split(cut_string, 1)[1] except: return text def get_text(link): bs = get_bs_from_http(link) text = get_main_text(bs) return clean_string2(text) def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_text_from_clean(text, liste, direction="right"): pairs = [] if direction == "right": for item in liste: try: if item in text: pairs.append([item, text.split(item)[1].split()[0]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) if direction == "left": for item in liste: try: if item in text: pairs.append([item, text.split(item)[0].split()[-1]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) return pairs def clean_string(liste): liste = Flatten(liste) liste = " ".join(liste) liste = " ".join(liste.split()) return liste def get_text_from_html(bs, class_name): string_list = [] soup = bs.find_all(class_=class_name) for entry in soup: string_list.append(entry.text) return string_list def Flatten(ul): fl = [] for i in ul: if type(i) is list: fl += Flatten(i) else: fl += [i] return fl def get_all_data_from_site(bs, link): names = ["Wohnung", "Zimmergröße", "Sonstige", "Nebenkosten", "Miete", "Gesamtmiete", "Kaution", "Ablösevereinbarung"] my_list = get_text_from_html(bs, "col-sm-12 hidden-xs") my_list = clean_string(my_list) dict1 = dict(get_text_from_clean(my_list, names, "left")) names = ["frei ab: ", "frei bis: "] my_list = get_text_from_html(bs, "col-sm-3") my_list = clean_string(my_list) dict2 = dict(get_text_from_clean(my_list, names, "right")) names = [" Zimmer in "] my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) dict3 = dict(get_text_from_clean(my_list, names, "right")) names = ["Malmännliche", "weiblich", 'height="17"'] count = [] for name in names: try: string = str(bs.find( class_="mr5 detail-list-fav-button display-inline-block hidden-xs create_favourite").next_sibling.next_sibling) count.append(string.count(name)) except: count.append("none") dict4 = dict(zip(names, count)) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict5 = dict(get_text_from_clean(my_list[1], ["zwischen"], "left")) except: dict5 = dict(get_text_from_clean(my_list, ["zwischen"], "left")) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict8 = dict(get_text_from_clean(my_list[1], ["Geschlecht"], "right")) except: dict8 = dict(get_text_from_clean(my_list, ["Geschlecht"], "right")) item_list = ["glyphicons glyphicons-bath-bathtub noprint", "glyphicons glyphicons-wifi-alt noprint", "glyphicons glyphicons-car noprint", "glyphicons glyphicons-fabric noprint", "glyphicons glyphicons-display noprint", "glyphicons glyphicons-folder-closed noprint", "glyphicons glyphicons-mixed-buildings noprint", "glyphicons glyphicons-building noprint", "glyphicons glyphicons-bus noprint", "glyphicons glyphicons-bed noprint", "glyphicons glyphicons-fire noprint"] data_list = [] for item in item_list: try: data_list.append([item[22:-8], clean_string([bs.find(class_=item).next_sibling.next_sibling.next_sibling])]) except: data_list.append([item[22:-8], "none"]) dict6 = dict(data_list) liste = get_text_from_html(bs, "col-sm-4 mb10") adress_string = clean_string(liste).replace("Adresse ", "").replace("Umzugsfirma beauftragen1", "").replace( "Umzugsfirma beauftragen 1", "") dict7 = {"Adresse": adress_string, "Link": link} names = "Miete pro Tag: " my_list = get_text_from_html(bs, "col-sm-5") my_list = clean_string(my_list) if names in my_list: dict9 = {"taeglich": 1} else: dict9 = {"taeglich": 0} div_id = 'popover-energy-certification' try: cs = clean_string([bs.find(id=div_id).next_sibling]) dict10 = {"baujahr": cs} except: dict10 = {"baujahr": "none"} rauchen = "Rauchen nicht erwünscht" nichrauchen = "Rauchen überall erlaubt" my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if rauchen in my_list: dict11 = {"rauchen": "raucher"} if nichrauchen in my_list: dict11 = {"rauchen": "nichtraucher"} if rauchen not in my_list and nichrauchen not in my_list: dict11 = {"rauchen": "keine_Angabe"} wg_list = ["Zweck-WG", "keine Zweck-WG", "Berufstätigen-WG", "gemischte WG", "Studenten-WG", "Frauen-WG", "Azubi-WG"] dict12 = [] for wg in wg_list: my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if wg in my_list: dict12.append([wg, 1]) else: dict12.append([w
ct(dict12) dict_list = [dict1, dict2, dict3, dict4, dict5, dict8, dict6, dict7, dict7, dict9, dict10, dict11, dict12] for item in dict_list: dict1.update(item) return dict1 def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_bs_from_http(link): html = requests.get(link) return BeautifulSoup(html.text, "html.parser") def get_html_request(link): return requests.get(link) def merge_dicts(dic1, dic2): try: dic3 = dict(dic2) for k, v in dic1.items(): dic3[k] = Flatten([dic3[k], v]) if k in dic3 else v return dic3 except: return dic1 def replace_viertel(x, viertel_liste): if x in viertel_liste: return x elif any([i in x for i in viertel_liste]): return [i for (i, v) in zip(viertel_liste, [i in x for i in viertel_liste]) if v][0] else: return x def link_to_pandas(full_link, df_saved): stem = full_link[:57] link = full_link[57:] bs = get_bs_from_http(stem + link) data = get_all
g, 0]) dict12 = di
conditional_block
functions.py
)/3) plt.rc('axes', labelsize=22) plt.grid(b=True, which='major', color='#666666', linestyle='-', alpha=0.2) trans1 = Affine2D().translate(-0.1, 0.0) + ax.transData trans2 = Affine2D().translate(+0.1, 0.0) + ax.transData er1 = ax.errorbar(y1, x, xerr=yerr1, marker="o", linestyle="none", transform=trans1) ax.axvline(x=0, color="black") ax.set_ylim(-0.3, len(df) - 1 + 0.3) return plt.savefig('static/'+name + '.png', bbox_inches='tight') def clean_string2(liste): liste = re.sub(r"[\W\_]|\d+", ' ', liste) liste = " ".join(liste.split()) liste = liste.lower() return liste def get_main_
text = soup.find(id="ad_description_text").text text = clean_string2(text) cut_string = "ihr wg gesucht team" try: return text.split(cut_string, 1)[1] except: return text def get_text(link): bs = get_bs_from_http(link) text = get_main_text(bs) return clean_string2(text) def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_text_from_clean(text, liste, direction="right"): pairs = [] if direction == "right": for item in liste: try: if item in text: pairs.append([item, text.split(item)[1].split()[0]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) if direction == "left": for item in liste: try: if item in text: pairs.append([item, text.split(item)[0].split()[-1]]) else: pairs.append([item, "none"]) except: pairs.append([item, "none"]) return pairs def clean_string(liste): liste = Flatten(liste) liste = " ".join(liste) liste = " ".join(liste.split()) return liste def get_text_from_html(bs, class_name): string_list = [] soup = bs.find_all(class_=class_name) for entry in soup: string_list.append(entry.text) return string_list def Flatten(ul): fl = [] for i in ul: if type(i) is list: fl += Flatten(i) else: fl += [i] return fl def get_all_data_from_site(bs, link): names = ["Wohnung", "Zimmergröße", "Sonstige", "Nebenkosten", "Miete", "Gesamtmiete", "Kaution", "Ablösevereinbarung"] my_list = get_text_from_html(bs, "col-sm-12 hidden-xs") my_list = clean_string(my_list) dict1 = dict(get_text_from_clean(my_list, names, "left")) names = ["frei ab: ", "frei bis: "] my_list = get_text_from_html(bs, "col-sm-3") my_list = clean_string(my_list) dict2 = dict(get_text_from_clean(my_list, names, "right")) names = [" Zimmer in "] my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) dict3 = dict(get_text_from_clean(my_list, names, "right")) names = ["Malmännliche", "weiblich", 'height="17"'] count = [] for name in names: try: string = str(bs.find( class_="mr5 detail-list-fav-button display-inline-block hidden-xs create_favourite").next_sibling.next_sibling) count.append(string.count(name)) except: count.append("none") dict4 = dict(zip(names, count)) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict5 = dict(get_text_from_clean(my_list[1], ["zwischen"], "left")) except: dict5 = dict(get_text_from_clean(my_list, ["zwischen"], "left")) my_list = get_text_from_html(bs, "ul-detailed-view-datasheet print_text_left") my_list = [x.strip() for x in my_list] try: dict8 = dict(get_text_from_clean(my_list[1], ["Geschlecht"], "right")) except: dict8 = dict(get_text_from_clean(my_list, ["Geschlecht"], "right")) item_list = ["glyphicons glyphicons-bath-bathtub noprint", "glyphicons glyphicons-wifi-alt noprint", "glyphicons glyphicons-car noprint", "glyphicons glyphicons-fabric noprint", "glyphicons glyphicons-display noprint", "glyphicons glyphicons-folder-closed noprint", "glyphicons glyphicons-mixed-buildings noprint", "glyphicons glyphicons-building noprint", "glyphicons glyphicons-bus noprint", "glyphicons glyphicons-bed noprint", "glyphicons glyphicons-fire noprint"] data_list = [] for item in item_list: try: data_list.append([item[22:-8], clean_string([bs.find(class_=item).next_sibling.next_sibling.next_sibling])]) except: data_list.append([item[22:-8], "none"]) dict6 = dict(data_list) liste = get_text_from_html(bs, "col-sm-4 mb10") adress_string = clean_string(liste).replace("Adresse ", "").replace("Umzugsfirma beauftragen1", "").replace( "Umzugsfirma beauftragen 1", "") dict7 = {"Adresse": adress_string, "Link": link} names = "Miete pro Tag: " my_list = get_text_from_html(bs, "col-sm-5") my_list = clean_string(my_list) if names in my_list: dict9 = {"taeglich": 1} else: dict9 = {"taeglich": 0} div_id = 'popover-energy-certification' try: cs = clean_string([bs.find(id=div_id).next_sibling]) dict10 = {"baujahr": cs} except: dict10 = {"baujahr": "none"} rauchen = "Rauchen nicht erwünscht" nichrauchen = "Rauchen überall erlaubt" my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if rauchen in my_list: dict11 = {"rauchen": "raucher"} if nichrauchen in my_list: dict11 = {"rauchen": "nichtraucher"} if rauchen not in my_list and nichrauchen not in my_list: dict11 = {"rauchen": "keine_Angabe"} wg_list = ["Zweck-WG", "keine Zweck-WG", "Berufstätigen-WG", "gemischte WG", "Studenten-WG", "Frauen-WG", "Azubi-WG"] dict12 = [] for wg in wg_list: my_list = get_text_from_html(bs, "col-sm-6") my_list = clean_string(my_list) if wg in my_list: dict12.append([wg, 1]) else: dict12.append([wg, 0]) dict12 = dict(dict12) dict_list = [dict1, dict2, dict3, dict4, dict5, dict8, dict6, dict7, dict7, dict9, dict10, dict11, dict12] for item in dict_list: dict1.update(item) return dict1 def get_bs_from_html(html): return BeautifulSoup(html.text, "html.parser") def get_bs_from_http(link): html = requests.get(link) return BeautifulSoup(html.text, "html.parser") def get_html_request(link): return requests.get(link) def merge_dicts(dic1, dic2): try: dic3 = dict(dic2) for k, v in dic1.items(): dic3[k] = Flatten([dic3[k], v]) if k in dic3 else v return dic3 except: return dic1 def replace_viertel(x, viertel_liste): if x in viertel_liste: return x elif any([i in x for i in viertel_liste]): return [i for (i, v) in zip(viertel_liste, [i in x for i in viertel_liste]) if v][0] else: return x def link_to_pandas(full_link, df_saved): stem = full_link[:57] link = full_link[57:] bs = get_bs_from_http(stem + link) data = get_all
text(soup):
identifier_name
agent_sample_stats.py
s))) any_ungrounded_ratio = 100 * (any_ungrounded / float(len(stmts))) return all_ungrounded_ratio, any_ungrounded_ratio def get_agent_counts(stmts): agents = gm.ungrounded_texts(stmts) agent_counts = [t[1] for t in agents] return agent_counts fname = '../step3_sample_training_test/famplex_test_stmts_mapped.pkl' stmts = ac.load_statements(fname) allu_test, anyu_test = get_ungrounded_stats(stmts) counts_test = get_agent_counts(stmts) fname = '../step3_sample_training_test/training_pmid_stmts.pkl' stmts = ac.load_statements(fname) allu_train, anyu_train = get_ungrounded_stats(stmts) counts_train = get_agent_counts(stmts) return (allu_test, anyu_test, allu_train, anyu_train, counts_train, counts_test) def plot_ungrounded_stats(allu_test, anyu_test, allu_train, anyu_train): """Plot training vs test corpus any and all arguments ungrounded pcts.""" pf.set_fig_params() plt.figure(figsize=(2, 2.2), dpi=300) xticks = np.array([0, 1]) col_width = 0.3 btrain = plt.bar(xticks - 0.5*col_width, [allu_train, anyu_train], col_width, align='center', color=pf.ORANGE) btest = plt.bar(xticks + 0.5*col_width, [allu_test, anyu_test], col_width, align='center', color=pf.GREEN) plt.xticks(xticks, ('All args\nungrounded', 'Any args\nungrounded')) plt.ylabel('Pct. Extracted Events') plt.ylim((0, 35)) ax = plt.gca() pf.format_axis(ax) plt.subplots_adjust(left=0.17, bottom=0.14, top=0.94, right=0.93) plt.legend((btrain, btest), (without_fplx_label, with_fplx_label), loc='upper left', frameon=False, fontsize=pf.fontsize) plt.savefig('ungrounded_stats.pdf') def plot_ungrounded_frequencies(counts_list, labels, colors, plot_filename):
plt.ion() ax = fig.gca() for i, (bin_starts, fracs_total) in \ enumerate(zip(bin_starts_list, fracs_total_list)): xvals = np.array(bin_starts) / len(counts_list[i]) yvals = fracs_total / float(np.sum(counts_list[i])) ax.plot(xvals, yvals, color=colors[i]) ax.plot(xvals, xvals, color='gray', linestyle='dotted') labels = list(labels) labels.append('Uniform distribution') pf.format_axis(ax) ax.legend(labels, loc='lower right', frameon=False, fontsize=pf.fontsize) plt.xlim([0,1]) plt.ylim([0,1]) plt.subplots_adjust(left=0.18, bottom=0.15, right=0.96, top=0.92) ax.set_xlabel('String rank (normalized)') ax.set_ylabel('Rel. freq. of occurrences') plt.savefig(plot_filename) cats = (['P'], ['F', 'C', 'X'], ['S'], ['B'], ['U'], ['M']) cat_names = ('Protein/gene', 'Family/complex', 'Small molecule', 'Biological process', 'Other/unknown', 'microRNA') def grounding_stats(data, plot=False): rows = [] num_agents = len(data) if plot: plt.figure(figsize=(2.2, 2), dpi=300) for ix, cat in enumerate(cats): cat_rows = data[data.EntityType.apply(lambda et: et in cat)] cat_number = len(cat_rows) cat_pct = (100 * cat_number / float(num_agents)) cat_pct_str = '%.1f' % cat_pct correct_rows = cat_rows[cat_rows.Grounding == 1] correct_number = len(correct_rows) correct_pct = (100 * correct_number / float(cat_number)) if \ cat_number > 0 else 0 correct_pct_of_total = (100 * correct_number) / float(num_agents) correct_pct_str = '%.1f' % correct_pct def stderr(k, n): return np.sqrt(((k/float(n)) * (1-(k/float(n)))) / float(n)) stderr_inc = 100 * stderr(cat_number - correct_number, cat_number) stderr_corr = 100 * stderr(correct_number, cat_number) rows.append((cat, cat_number, cat_pct, correct_number, correct_pct, stderr_corr)) if plot: inc_handle = plt.bar(ix, cat_pct, color=pf.ORANGE, align='center', yerr=stderr_inc, linewidth=0.5) corr_handle = plt.bar(ix, correct_pct_of_total, color=pf.GREEN, align='center', yerr=stderr_corr, linewidth=0.5) if plot: plt.xticks(range(len(cats)), cat_names, rotation=90) plt.ylabel('Pct. Curated Entities') plt.subplots_adjust(left=0.18, bottom=0.43, top=0.96) ax = plt.gca() pf.format_axis(ax) plt.legend((corr_handle, inc_handle), ('Correct', 'Incorrect'), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.show() write_unicode_csv('agents_sample_stats.csv', rows) return rows def combined_graph(results): prot_bef, prot_bef_err = results['training'][0][4:6] fam_bef, fam_bef_err = results['training'][1][4:6] prot_aft, prot_aft_err = results['test'][0][4:6] fam_aft, fam_aft_err = results['test'][1][4:6] plt.figure(figsize=(2.8, 2.2), dpi=300) width = 0.3 bef_color = pf.ORANGE aft_color = pf.GREEN ax = plt.gca() error_kw = dict(ecolor='black', lw=1, capsize=2, capthick=1) befh = plt.bar(-0.5*width, prot_bef, width=width, yerr=prot_bef_err, color=bef_color, error_kw=error_kw) afth = plt.bar(0.5*width, prot_aft, width=width, yerr=prot_aft_err, color=aft_color, error_kw=error_kw) plt.bar(1 - 0.5*width, fam_bef, width=width, yerr=fam_bef_err, color=bef_color, error_kw=error_kw) plt.bar(1 + 0.5*width, fam_aft, width=width, yerr=fam_aft_err, color=aft_color, error_kw=error_kw) plt.xticks((0+(width/2.), 1+(width/2.)), ('Protein/\ngene', 'Family/\ncomplex')) plt.ylabel('Grounding accuracy') pf.format_axis(ax, tick_padding=3) plt.legend((befh, afth), (without_fplx_label, with_fplx_label), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.subplots_adjust(left=0.22, bottom=0.15, top=0.94, right=0.94) plt.savefig('combined_results.pdf') plt.show() def print_combined_table(results): rows = [] header = ['\\#', 'Entity \\%', '\\# Corr.', '\\% Corr.', '\\#', 'Entity \\%', '\\# Corr.', '\\% Corr.'] rows.append(header) r_tr = results['training'] r_te = results['test'] def format(res): return (res[1], '%.1f' % res[2], res[3], '%.1f $\pm$ %.1f' % (res[4], res[5])) for row_ix in range(6): row =
"""Plot the distribution of ungrounded strings in training vs test corpus. """ bin_interval = 1 fracs_total_list = [] bin_starts_list = [] for counts in counts_list: freq_dist = [] bin_starts = list(range(0, len(counts), bin_interval)) bin_starts_list.append(bin_starts) for bin_start_ix in bin_starts: bin_end_ix = bin_start_ix + bin_interval if bin_end_ix < len(counts): freq_dist.append(np.sum(counts[bin_start_ix:bin_end_ix])) else: freq_dist.append(np.sum(counts[bin_start_ix:])) freq_dist = np.array(freq_dist) fracs_total = np.cumsum(freq_dist) fracs_total_list.append(fracs_total) fig = plt.figure(figsize=(2.3, 2.2), dpi=300)
identifier_body
agent_sample_stats.py
s))) any_ungrounded_ratio = 100 * (any_ungrounded / float(len(stmts))) return all_ungrounded_ratio, any_ungrounded_ratio def get_agent_counts(stmts): agents = gm.ungrounded_texts(stmts) agent_counts = [t[1] for t in agents] return agent_counts fname = '../step3_sample_training_test/famplex_test_stmts_mapped.pkl' stmts = ac.load_statements(fname) allu_test, anyu_test = get_ungrounded_stats(stmts) counts_test = get_agent_counts(stmts) fname = '../step3_sample_training_test/training_pmid_stmts.pkl' stmts = ac.load_statements(fname) allu_train, anyu_train = get_ungrounded_stats(stmts) counts_train = get_agent_counts(stmts) return (allu_test, anyu_test, allu_train, anyu_train, counts_train, counts_test) def plot_ungrounded_stats(allu_test, anyu_test, allu_train, anyu_train): """Plot training vs test corpus any and all arguments ungrounded pcts.""" pf.set_fig_params() plt.figure(figsize=(2, 2.2), dpi=300) xticks = np.array([0, 1]) col_width = 0.3 btrain = plt.bar(xticks - 0.5*col_width, [allu_train, anyu_train], col_width, align='center', color=pf.ORANGE) btest = plt.bar(xticks + 0.5*col_width, [allu_test, anyu_test], col_width, align='center', color=pf.GREEN) plt.xticks(xticks, ('All args\nungrounded', 'Any args\nungrounded')) plt.ylabel('Pct. Extracted Events') plt.ylim((0, 35)) ax = plt.gca() pf.format_axis(ax) plt.subplots_adjust(left=0.17, bottom=0.14, top=0.94, right=0.93) plt.legend((btrain, btest), (without_fplx_label, with_fplx_label), loc='upper left', frameon=False, fontsize=pf.fontsize) plt.savefig('ungrounded_stats.pdf') def plot_ungrounded_frequencies(counts_list, labels, colors, plot_filename): """Plot the distribution of ungrounded strings in training vs test corpus. """ bin_interval = 1 fracs_total_list = [] bin_starts_list = [] for counts in counts_list: freq_dist = [] bin_starts = list(range(0, len(counts), bin_interval)) bin_starts_list.append(bin_starts) for bin_start_ix in bin_starts: bin_end_ix = bin_start_ix + bin_interval if bin_end_ix < len(counts): freq_dist.append(np.sum(counts[bin_start_ix:bin_end_ix])) else: freq_dist.append(np.sum(counts[bin_start_ix:])) freq_dist = np.array(freq_dist) fracs_total = np.cumsum(freq_dist) fracs_total_list.append(fracs_total) fig = plt.figure(figsize=(2.3, 2.2), dpi=300) plt.ion() ax = fig.gca() for i, (bin_starts, fracs_total) in \ enumerate(zip(bin_starts_list, fracs_total_list)): xvals = np.array(bin_starts) / len(counts_list[i]) yvals = fracs_total / float(np.sum(counts_list[i])) ax.plot(xvals, yvals, color=colors[i]) ax.plot(xvals, xvals, color='gray', linestyle='dotted') labels = list(labels) labels.append('Uniform distribution') pf.format_axis(ax) ax.legend(labels, loc='lower right', frameon=False, fontsize=pf.fontsize) plt.xlim([0,1]) plt.ylim([0,1]) plt.subplots_adjust(left=0.18, bottom=0.15, right=0.96, top=0.92) ax.set_xlabel('String rank (normalized)') ax.set_ylabel('Rel. freq. of occurrences') plt.savefig(plot_filename) cats = (['P'], ['F', 'C', 'X'], ['S'], ['B'], ['U'], ['M']) cat_names = ('Protein/gene', 'Family/complex', 'Small molecule', 'Biological process', 'Other/unknown', 'microRNA') def grounding_stats(data, plot=False): rows = [] num_agents = len(data) if plot: plt.figure(figsize=(2.2, 2), dpi=300) for ix, cat in enumerate(cats): cat_rows = data[data.EntityType.apply(lambda et: et in cat)] cat_number = len(cat_rows) cat_pct = (100 * cat_number / float(num_agents)) cat_pct_str = '%.1f' % cat_pct correct_rows = cat_rows[cat_rows.Grounding == 1] correct_number = len(correct_rows) correct_pct = (100 * correct_number / float(cat_number)) if \ cat_number > 0 else 0 correct_pct_of_total = (100 * correct_number) / float(num_agents) correct_pct_str = '%.1f' % correct_pct def stderr(k, n): return np.sqrt(((k/float(n)) * (1-(k/float(n)))) / float(n)) stderr_inc = 100 * stderr(cat_number - correct_number, cat_number) stderr_corr = 100 * stderr(correct_number, cat_number) rows.append((cat, cat_number, cat_pct, correct_number, correct_pct, stderr_corr)) if plot: inc_handle = plt.bar(ix, cat_pct, color=pf.ORANGE, align='center', yerr=stderr_inc, linewidth=0.5) corr_handle = plt.bar(ix, correct_pct_of_total, color=pf.GREEN, align='center', yerr=stderr_corr, linewidth=0.5) if plot: plt.xticks(range(len(cats)), cat_names, rotation=90) plt.ylabel('Pct. Curated Entities') plt.subplots_adjust(left=0.18, bottom=0.43, top=0.96) ax = plt.gca() pf.format_axis(ax) plt.legend((corr_handle, inc_handle), ('Correct', 'Incorrect'), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.show() write_unicode_csv('agents_sample_stats.csv', rows) return rows def combined_graph(results): prot_bef, prot_bef_err = results['training'][0][4:6] fam_bef, fam_bef_err = results['training'][1][4:6] prot_aft, prot_aft_err = results['test'][0][4:6] fam_aft, fam_aft_err = results['test'][1][4:6] plt.figure(figsize=(2.8, 2.2), dpi=300)
width = 0.3 bef_color = pf.ORANGE aft_color = pf.GREEN ax = plt.gca() error_kw = dict(ecolor='black', lw=1, capsize=2, capthick=1) befh = plt.bar(-0.5*width, prot_bef, width=width, yerr=prot_bef_err, color=bef_color, error_kw=error_kw) afth = plt.bar(0.5*width, prot_aft, width=width, yerr=prot_aft_err, color=aft_color, error_kw=error_kw) plt.bar(1 - 0.5*width, fam_bef, width=width, yerr=fam_bef_err, color=bef_color, error_kw=error_kw) plt.bar(1 + 0.5*width, fam_aft, width=width, yerr=fam_aft_err, color=aft_color, error_kw=error_kw) plt.xticks((0+(width/2.), 1+(width/2.)), ('Protein/\ngene', 'Family/\ncomplex')) plt.ylabel('Grounding accuracy') pf.format_axis(ax, tick_padding=3) plt.legend((befh, afth), (without_fplx_label, with_fplx_label), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.subplots_adjust(left=0.22, bottom=0.15, top=0.94, right=0.94) plt.savefig('combined_results.pdf') plt.show() def print_combined_table(results): rows = [] header = ['\\#', 'Entity \\%', '\\# Corr.', '\\% Corr.', '\\#', 'Entity \\%', '\\# Corr.', '\\% Corr.'] rows.append(header) r_tr = results['training'] r_te = results['test'] def format(res): return (res[1], '%.1f' % res[2], res[3], '%.1f $\pm$ %.1f' % (res[4], res[5])) for row_ix in range(6): row =
random_line_split
agent_sample_stats.py
all_ungrounded_ratio = 100 * (all_ungrounded / float(len(stmts))) any_ungrounded_ratio = 100 * (any_ungrounded / float(len(stmts))) return all_ungrounded_ratio, any_ungrounded_ratio def get_agent_counts(stmts): agents = gm.ungrounded_texts(stmts) agent_counts = [t[1] for t in agents] return agent_counts fname = '../step3_sample_training_test/famplex_test_stmts_mapped.pkl' stmts = ac.load_statements(fname) allu_test, anyu_test = get_ungrounded_stats(stmts) counts_test = get_agent_counts(stmts) fname = '../step3_sample_training_test/training_pmid_stmts.pkl' stmts = ac.load_statements(fname) allu_train, anyu_train = get_ungrounded_stats(stmts) counts_train = get_agent_counts(stmts) return (allu_test, anyu_test, allu_train, anyu_train, counts_train, counts_test) def plot_ungrounded_stats(allu_test, anyu_test, allu_train, anyu_train): """Plot training vs test corpus any and all arguments ungrounded pcts.""" pf.set_fig_params() plt.figure(figsize=(2, 2.2), dpi=300) xticks = np.array([0, 1]) col_width = 0.3 btrain = plt.bar(xticks - 0.5*col_width, [allu_train, anyu_train], col_width, align='center', color=pf.ORANGE) btest = plt.bar(xticks + 0.5*col_width, [allu_test, anyu_test], col_width, align='center', color=pf.GREEN) plt.xticks(xticks, ('All args\nungrounded', 'Any args\nungrounded')) plt.ylabel('Pct. Extracted Events') plt.ylim((0, 35)) ax = plt.gca() pf.format_axis(ax) plt.subplots_adjust(left=0.17, bottom=0.14, top=0.94, right=0.93) plt.legend((btrain, btest), (without_fplx_label, with_fplx_label), loc='upper left', frameon=False, fontsize=pf.fontsize) plt.savefig('ungrounded_stats.pdf') def plot_ungrounded_frequencies(counts_list, labels, colors, plot_filename): """Plot the distribution of ungrounded strings in training vs test corpus. """ bin_interval = 1 fracs_total_list = [] bin_starts_list = [] for counts in counts_list: freq_dist = [] bin_starts = list(range(0, len(counts), bin_interval)) bin_starts_list.append(bin_starts) for bin_start_ix in bin_starts: bin_end_ix = bin_start_ix + bin_interval if bin_end_ix < len(counts): freq_dist.append(np.sum(counts[bin_start_ix:bin_end_ix])) else: freq_dist.append(np.sum(counts[bin_start_ix:])) freq_dist = np.array(freq_dist) fracs_total = np.cumsum(freq_dist) fracs_total_list.append(fracs_total) fig = plt.figure(figsize=(2.3, 2.2), dpi=300) plt.ion() ax = fig.gca() for i, (bin_starts, fracs_total) in \ enumerate(zip(bin_starts_list, fracs_total_list)): xvals = np.array(bin_starts) / len(counts_list[i]) yvals = fracs_total / float(np.sum(counts_list[i])) ax.plot(xvals, yvals, color=colors[i]) ax.plot(xvals, xvals, color='gray', linestyle='dotted') labels = list(labels) labels.append('Uniform distribution') pf.format_axis(ax) ax.legend(labels, loc='lower right', frameon=False, fontsize=pf.fontsize) plt.xlim([0,1]) plt.ylim([0,1]) plt.subplots_adjust(left=0.18, bottom=0.15, right=0.96, top=0.92) ax.set_xlabel('String rank (normalized)') ax.set_ylabel('Rel. freq. of occurrences') plt.savefig(plot_filename) cats = (['P'], ['F', 'C', 'X'], ['S'], ['B'], ['U'], ['M']) cat_names = ('Protein/gene', 'Family/complex', 'Small molecule', 'Biological process', 'Other/unknown', 'microRNA') def grounding_stats(data, plot=False): rows = [] num_agents = len(data) if plot: plt.figure(figsize=(2.2, 2), dpi=300) for ix, cat in enumerate(cats): cat_rows = data[data.EntityType.apply(lambda et: et in cat)] cat_number = len(cat_rows) cat_pct = (100 * cat_number / float(num_agents)) cat_pct_str = '%.1f' % cat_pct correct_rows = cat_rows[cat_rows.Grounding == 1] correct_number = len(correct_rows) correct_pct = (100 * correct_number / float(cat_number)) if \ cat_number > 0 else 0 correct_pct_of_total = (100 * correct_number) / float(num_agents) correct_pct_str = '%.1f' % correct_pct def stderr(k, n): return np.sqrt(((k/float(n)) * (1-(k/float(n)))) / float(n)) stderr_inc = 100 * stderr(cat_number - correct_number, cat_number) stderr_corr = 100 * stderr(correct_number, cat_number) rows.append((cat, cat_number, cat_pct, correct_number, correct_pct, stderr_corr)) if plot: inc_handle = plt.bar(ix, cat_pct, color=pf.ORANGE, align='center', yerr=stderr_inc, linewidth=0.5) corr_handle = plt.bar(ix, correct_pct_of_total, color=pf.GREEN, align='center', yerr=stderr_corr, linewidth=0.5) if plot: plt.xticks(range(len(cats)), cat_names, rotation=90) plt.ylabel('Pct. Curated Entities') plt.subplots_adjust(left=0.18, bottom=0.43, top=0.96) ax = plt.gca() pf.format_axis(ax) plt.legend((corr_handle, inc_handle), ('Correct', 'Incorrect'), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.show() write_unicode_csv('agents_sample_stats.csv', rows) return rows def combined_graph(results): prot_bef, prot_bef_err = results['training'][0][4:6] fam_bef, fam_bef_err = results['training'][1][4:6] prot_aft, prot_aft_err = results['test'][0][4:6] fam_aft, fam_aft_err = results['test'][1][4:6] plt.figure(figsize=(2.8, 2.2), dpi=300) width = 0.3 bef_color = pf.ORANGE aft_color = pf.GREEN ax = plt.gca() error_kw = dict(ecolor='black', lw=1, capsize=2, capthick=1) befh = plt.bar(-0.5*width, prot_bef, width=width, yerr=prot_bef_err, color=bef_color, error_kw=error_kw) afth = plt.bar(0.5*width, prot_aft, width=width, yerr=prot_aft_err, color=aft_color, error_kw=error_kw) plt.bar(1 - 0.5*width, fam_bef, width=width, yerr=fam_bef_err, color=bef_color, error_kw=error_kw) plt.bar(1 + 0.5*width, fam_aft, width=width, yerr=fam_aft_err, color=aft_color, error_kw=error_kw) plt.xticks((0+(width/2.), 1+(width/2.)), ('Protein/\ngene', 'Family/\ncomplex')) plt.ylabel('Grounding accuracy') pf.format_axis(ax, tick_padding=3) plt.legend((befh, afth), (without_fplx_label, with_fplx_label), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.subplots_adjust(left=0.22, bottom=0.15, top=0.94, right=0.94) plt.savefig('combined_results.pdf') plt.show() def print_combined_table(results): rows = [] header = ['\\#', 'Entity \\%', '\\# Cor
agents_ungrounded = [] for ag in stmt.agent_list(): if ag is not None and list(ag.db_refs.keys()) == ['TEXT']: agents_ungrounded.append(True) else: agents_ungrounded.append(False) if all(agents_ungrounded): all_ungrounded += 1 if any(agents_ungrounded): any_ungrounded += 1
conditional_block
agent_sample_stats.py
s))) any_ungrounded_ratio = 100 * (any_ungrounded / float(len(stmts))) return all_ungrounded_ratio, any_ungrounded_ratio def get_agent_counts(stmts): agents = gm.ungrounded_texts(stmts) agent_counts = [t[1] for t in agents] return agent_counts fname = '../step3_sample_training_test/famplex_test_stmts_mapped.pkl' stmts = ac.load_statements(fname) allu_test, anyu_test = get_ungrounded_stats(stmts) counts_test = get_agent_counts(stmts) fname = '../step3_sample_training_test/training_pmid_stmts.pkl' stmts = ac.load_statements(fname) allu_train, anyu_train = get_ungrounded_stats(stmts) counts_train = get_agent_counts(stmts) return (allu_test, anyu_test, allu_train, anyu_train, counts_train, counts_test) def plot_ungrounded_stats(allu_test, anyu_test, allu_train, anyu_train): """Plot training vs test corpus any and all arguments ungrounded pcts.""" pf.set_fig_params() plt.figure(figsize=(2, 2.2), dpi=300) xticks = np.array([0, 1]) col_width = 0.3 btrain = plt.bar(xticks - 0.5*col_width, [allu_train, anyu_train], col_width, align='center', color=pf.ORANGE) btest = plt.bar(xticks + 0.5*col_width, [allu_test, anyu_test], col_width, align='center', color=pf.GREEN) plt.xticks(xticks, ('All args\nungrounded', 'Any args\nungrounded')) plt.ylabel('Pct. Extracted Events') plt.ylim((0, 35)) ax = plt.gca() pf.format_axis(ax) plt.subplots_adjust(left=0.17, bottom=0.14, top=0.94, right=0.93) plt.legend((btrain, btest), (without_fplx_label, with_fplx_label), loc='upper left', frameon=False, fontsize=pf.fontsize) plt.savefig('ungrounded_stats.pdf') def plot_ungrounded_frequencies(counts_list, labels, colors, plot_filename): """Plot the distribution of ungrounded strings in training vs test corpus. """ bin_interval = 1 fracs_total_list = [] bin_starts_list = [] for counts in counts_list: freq_dist = [] bin_starts = list(range(0, len(counts), bin_interval)) bin_starts_list.append(bin_starts) for bin_start_ix in bin_starts: bin_end_ix = bin_start_ix + bin_interval if bin_end_ix < len(counts): freq_dist.append(np.sum(counts[bin_start_ix:bin_end_ix])) else: freq_dist.append(np.sum(counts[bin_start_ix:])) freq_dist = np.array(freq_dist) fracs_total = np.cumsum(freq_dist) fracs_total_list.append(fracs_total) fig = plt.figure(figsize=(2.3, 2.2), dpi=300) plt.ion() ax = fig.gca() for i, (bin_starts, fracs_total) in \ enumerate(zip(bin_starts_list, fracs_total_list)): xvals = np.array(bin_starts) / len(counts_list[i]) yvals = fracs_total / float(np.sum(counts_list[i])) ax.plot(xvals, yvals, color=colors[i]) ax.plot(xvals, xvals, color='gray', linestyle='dotted') labels = list(labels) labels.append('Uniform distribution') pf.format_axis(ax) ax.legend(labels, loc='lower right', frameon=False, fontsize=pf.fontsize) plt.xlim([0,1]) plt.ylim([0,1]) plt.subplots_adjust(left=0.18, bottom=0.15, right=0.96, top=0.92) ax.set_xlabel('String rank (normalized)') ax.set_ylabel('Rel. freq. of occurrences') plt.savefig(plot_filename) cats = (['P'], ['F', 'C', 'X'], ['S'], ['B'], ['U'], ['M']) cat_names = ('Protein/gene', 'Family/complex', 'Small molecule', 'Biological process', 'Other/unknown', 'microRNA') def grounding_stats(data, plot=False): rows = [] num_agents = len(data) if plot: plt.figure(figsize=(2.2, 2), dpi=300) for ix, cat in enumerate(cats): cat_rows = data[data.EntityType.apply(lambda et: et in cat)] cat_number = len(cat_rows) cat_pct = (100 * cat_number / float(num_agents)) cat_pct_str = '%.1f' % cat_pct correct_rows = cat_rows[cat_rows.Grounding == 1] correct_number = len(correct_rows) correct_pct = (100 * correct_number / float(cat_number)) if \ cat_number > 0 else 0 correct_pct_of_total = (100 * correct_number) / float(num_agents) correct_pct_str = '%.1f' % correct_pct def stderr(k, n): return np.sqrt(((k/float(n)) * (1-(k/float(n)))) / float(n)) stderr_inc = 100 * stderr(cat_number - correct_number, cat_number) stderr_corr = 100 * stderr(correct_number, cat_number) rows.append((cat, cat_number, cat_pct, correct_number, correct_pct, stderr_corr)) if plot: inc_handle = plt.bar(ix, cat_pct, color=pf.ORANGE, align='center', yerr=stderr_inc, linewidth=0.5) corr_handle = plt.bar(ix, correct_pct_of_total, color=pf.GREEN, align='center', yerr=stderr_corr, linewidth=0.5) if plot: plt.xticks(range(len(cats)), cat_names, rotation=90) plt.ylabel('Pct. Curated Entities') plt.subplots_adjust(left=0.18, bottom=0.43, top=0.96) ax = plt.gca() pf.format_axis(ax) plt.legend((corr_handle, inc_handle), ('Correct', 'Incorrect'), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.show() write_unicode_csv('agents_sample_stats.csv', rows) return rows def
(results): prot_bef, prot_bef_err = results['training'][0][4:6] fam_bef, fam_bef_err = results['training'][1][4:6] prot_aft, prot_aft_err = results['test'][0][4:6] fam_aft, fam_aft_err = results['test'][1][4:6] plt.figure(figsize=(2.8, 2.2), dpi=300) width = 0.3 bef_color = pf.ORANGE aft_color = pf.GREEN ax = plt.gca() error_kw = dict(ecolor='black', lw=1, capsize=2, capthick=1) befh = plt.bar(-0.5*width, prot_bef, width=width, yerr=prot_bef_err, color=bef_color, error_kw=error_kw) afth = plt.bar(0.5*width, prot_aft, width=width, yerr=prot_aft_err, color=aft_color, error_kw=error_kw) plt.bar(1 - 0.5*width, fam_bef, width=width, yerr=fam_bef_err, color=bef_color, error_kw=error_kw) plt.bar(1 + 0.5*width, fam_aft, width=width, yerr=fam_aft_err, color=aft_color, error_kw=error_kw) plt.xticks((0+(width/2.), 1+(width/2.)), ('Protein/\ngene', 'Family/\ncomplex')) plt.ylabel('Grounding accuracy') pf.format_axis(ax, tick_padding=3) plt.legend((befh, afth), (without_fplx_label, with_fplx_label), loc='upper right', frameon=False, fontsize=pf.fontsize) plt.subplots_adjust(left=0.22, bottom=0.15, top=0.94, right=0.94) plt.savefig('combined_results.pdf') plt.show() def print_combined_table(results): rows = [] header = ['\\#', 'Entity \\%', '\\# Corr.', '\\% Corr.', '\\#', 'Entity \\%', '\\# Corr.', '\\% Corr.'] rows.append(header) r_tr = results['training'] r_te = results['test'] def format(res): return (res[1], '%.1f' % res[2], res[3], '%.1f $\pm$ %.1f' % (res[4], res[5])) for row_ix in range(6): row
combined_graph
identifier_name
nextbus_test.go
.77513" lon="-122.41946" secsSinceReport="4" predictable="true" heading="225" speedKmHr="0" leadingVehicleId="1112"/> <vehicle id="2222" routeTag="2" dirTag="2_inbound" lat="37.74891" lon="-122.45848" secsSinceReport="5" predictable="true" heading="217" speedKmHr="0" leadingVehicleId="2223"/> <lastTime time="1234567890123"/> </body> `, makeURL("predictions", "a", "alpha", "stopId", "11123"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564618948" seconds="623" minutes="10" isDeparture="false" dirTag="7____O_F00" vehicle="6581" block="0712" tripTag="7447642"/> <prediction epochTime="1490565376790" seconds="1381" minutes="23" isDeparture="false" affectedByLayover="true" dirTag="7____O_F00" vehicle="6720" block="0705" tripTag="7447643"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The Second" routeTag="2" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564681782" seconds="686" minutes="11" isDeparture="false" dirTag="6____O_F00" vehicle="8618" block="0609" tripTag="7447028"/> <prediction epochTime="1490565307084" seconds="1311" minutes="21" isDeparture="false" dirTag="6____O_F00" vehicle="8807" block="0602" tripTag="7447029"/> </direction> </predictions> </body> `, makeURL("predictionsForMultiStops", "a", "alpha", "stops", "1|1123", "stops", "1|1124"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1487277081162" seconds="181" minutes="3" isDeparture="false" dirTag="1____O_F00" vehicle="1111" vehiclesInConsist="2" block="9999" tripTag="7318265"/> <prediction epochTime="1487277463429" seconds="563" minutes="9" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="2222" vehiclesInConsist="2" block="8888" tripTag="7318264"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Other Station Outbound" stopTag="1124"> <direction title="Outbound"> <prediction epochTime="1487278019915" seconds="1120" minutes="18" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="4444" vehiclesInConsist="2" block="6666" tripTag="7318264"/> </direction> <message text="No Elevator at Blah blah Station" priority="Normal"/> </predictions> </body> `} type fakeRoundTripper struct { t *testing.T } func (f fakeRoundTripper) RoundTrip(req *http.Request) (*http.Response, error) { if req.Body != nil { req.Body.Close() req.Body = nil } url := req.URL.String() xml, ok := fakes[url] if !ok { valid := []string{} for k := range fakes { valid = append(valid, k) } f.t.Fatalf("Unexpected url %q. allowable urls are=%q", url, valid) return nil, nil } res := http.Response{} res.StatusCode = http.StatusOK res.Body = ioutil.NopCloser(strings.NewReader(xml)) res.Request = req return &res, nil } func testingClient(t *testing.T) *http.Client { httpClient := http.Client{} httpClient.Transport = fakeRoundTripper{t} return &httpClient } func xmlName(s string) xml.Name { return xml.Name{Space: "", Local: s} } func stopMarkers(tags ...string) []StopMarker { var result []StopMarker for _, t := range tags { result = append(result, StopMarker{xmlName("stop"), t}) } return result } func TestGetAgencyList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetAgencyList() ok(t, err) expected := []Agency{ Agency{xmlName("agency"), "alpha", "The First", "What a Transit Agency"}, Agency{xmlName("agency"), "beta", "The Second", "Never never land"}, } equals(t, expected, found) } func TestGetRouteList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteList("alpha") ok(t, err) expected := []Route{ Route{xmlName("route"), "1", "1-first"}, Route{xmlName("route"), "2", "2-second"}, } equals(t, expected, found) } func TestGetRouteConfig(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteConfig("alpha") ok(t, err) expected := []RouteConfig{ RouteConfig{ xmlName("route"), []Stop{ Stop{ xmlName("stop"), "1123", "First stop", "12.3456789", "-123.45789", "98765", }, Stop{ xmlName("stop"), "1234", "Second stop", "23.4567890", "-456.78901", "87654", }, }, "1", "1-first", "660000", "ffffff", "12.3456789", "45.6789012", "-123.4567890", "-456.78901", []Direction{ Direction{ xmlName("direction"), "1out", "Outbound to somewhere", "Outbound", "true", stopMarkers("1123", "1234"), }, Direction{ xmlName("direction"), "1in", "Inbound to somewhere", "Inbound", "true", stopMarkers("1234", "1123"), }, }, nil, }, } equals(t, expected, found) } func TestGetVehicleLocations(t *testing.T)
}, VehicleLocation{ xmlName("vehicle"), "2222", "2", "2_inbound", "37.74891", "-122.45848", "5", "true", "217", "0", "2
{ nb := NewClient(testingClient(t)) found, err := nb.GetVehicleLocations("alpha") ok(t, err) expected := LocationResponse{ xmlName("body"), []VehicleLocation{ VehicleLocation{ xmlName("vehicle"), "1111", "1", "1_outbound", "37.77513", "-122.41946", "4", "true", "225", "0", "1112",
identifier_body
nextbus_test.go
.77513" lon="-122.41946" secsSinceReport="4" predictable="true" heading="225" speedKmHr="0" leadingVehicleId="1112"/> <vehicle id="2222" routeTag="2" dirTag="2_inbound" lat="37.74891" lon="-122.45848" secsSinceReport="5" predictable="true" heading="217" speedKmHr="0" leadingVehicleId="2223"/> <lastTime time="1234567890123"/> </body> `, makeURL("predictions", "a", "alpha", "stopId", "11123"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564618948" seconds="623" minutes="10" isDeparture="false" dirTag="7____O_F00" vehicle="6581" block="0712" tripTag="7447642"/> <prediction epochTime="1490565376790" seconds="1381" minutes="23" isDeparture="false" affectedByLayover="true" dirTag="7____O_F00" vehicle="6720" block="0705" tripTag="7447643"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The Second" routeTag="2" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564681782" seconds="686" minutes="11" isDeparture="false" dirTag="6____O_F00" vehicle="8618" block="0609" tripTag="7447028"/> <prediction epochTime="1490565307084" seconds="1311" minutes="21" isDeparture="false" dirTag="6____O_F00" vehicle="8807" block="0602" tripTag="7447029"/> </direction> </predictions> </body> `, makeURL("predictionsForMultiStops", "a", "alpha", "stops", "1|1123", "stops", "1|1124"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1487277081162" seconds="181" minutes="3" isDeparture="false" dirTag="1____O_F00" vehicle="1111" vehiclesInConsist="2" block="9999" tripTag="7318265"/> <prediction epochTime="1487277463429" seconds="563" minutes="9" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="2222" vehiclesInConsist="2" block="8888" tripTag="7318264"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Other Station Outbound" stopTag="1124"> <direction title="Outbound"> <prediction epochTime="1487278019915" seconds="1120" minutes="18" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="4444" vehiclesInConsist="2" block="6666" tripTag="7318264"/> </direction> <message text="No Elevator at Blah blah Station" priority="Normal"/> </predictions> </body> `} type fakeRoundTripper struct { t *testing.T } func (f fakeRoundTripper) RoundTrip(req *http.Request) (*http.Response, error) { if req.Body != nil { req.Body.Close() req.Body = nil } url := req.URL.String() xml, ok := fakes[url] if !ok { valid := []string{} for k := range fakes { valid = append(valid, k) } f.t.Fatalf("Unexpected url %q. allowable urls are=%q", url, valid) return nil, nil } res := http.Response{} res.StatusCode = http.StatusOK res.Body = ioutil.NopCloser(strings.NewReader(xml)) res.Request = req return &res, nil } func testingClient(t *testing.T) *http.Client { httpClient := http.Client{} httpClient.Transport = fakeRoundTripper{t} return &httpClient } func xmlName(s string) xml.Name { return xml.Name{Space: "", Local: s} } func stopMarkers(tags ...string) []StopMarker { var result []StopMarker for _, t := range tags { result = append(result, StopMarker{xmlName("stop"), t}) } return result } func
(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetAgencyList() ok(t, err) expected := []Agency{ Agency{xmlName("agency"), "alpha", "The First", "What a Transit Agency"}, Agency{xmlName("agency"), "beta", "The Second", "Never never land"}, } equals(t, expected, found) } func TestGetRouteList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteList("alpha") ok(t, err) expected := []Route{ Route{xmlName("route"), "1", "1-first"}, Route{xmlName("route"), "2", "2-second"}, } equals(t, expected, found) } func TestGetRouteConfig(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteConfig("alpha") ok(t, err) expected := []RouteConfig{ RouteConfig{ xmlName("route"), []Stop{ Stop{ xmlName("stop"), "1123", "First stop", "12.3456789", "-123.45789", "98765", }, Stop{ xmlName("stop"), "1234", "Second stop", "23.4567890", "-456.78901", "87654", }, }, "1", "1-first", "660000", "ffffff", "12.3456789", "45.6789012", "-123.4567890", "-456.78901", []Direction{ Direction{ xmlName("direction"), "1out", "Outbound to somewhere", "Outbound", "true", stopMarkers("1123", "1234"), }, Direction{ xmlName("direction"), "1in", "Inbound to somewhere", "Inbound", "true", stopMarkers("1234", "1123"), }, }, nil, }, } equals(t, expected, found) } func TestGetVehicleLocations(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetVehicleLocations("alpha") ok(t, err) expected := LocationResponse{ xmlName("body"), []VehicleLocation{ VehicleLocation{ xmlName("vehicle"), "1111", "1", "1_outbound", "37.77513", "-122.41946", "4", "true", "225", "0", "1112", }, VehicleLocation{ xmlName("vehicle"), "2222", "2", "2_inbound", "37.74891", "-122.45848", "5", "true", "217", "0", "2
TestGetAgencyList
identifier_name
nextbus_test.go
.77513" lon="-122.41946" secsSinceReport="4" predictable="true" heading="225" speedKmHr="0" leadingVehicleId="1112"/> <vehicle id="2222" routeTag="2" dirTag="2_inbound" lat="37.74891" lon="-122.45848" secsSinceReport="5" predictable="true" heading="217" speedKmHr="0" leadingVehicleId="2223"/> <lastTime time="1234567890123"/> </body> `, makeURL("predictions", "a", "alpha", "stopId", "11123"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564618948" seconds="623" minutes="10" isDeparture="false" dirTag="7____O_F00" vehicle="6581" block="0712" tripTag="7447642"/> <prediction epochTime="1490565376790" seconds="1381" minutes="23" isDeparture="false" affectedByLayover="true" dirTag="7____O_F00" vehicle="6720" block="0705" tripTag="7447643"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The Second" routeTag="2" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564681782" seconds="686" minutes="11" isDeparture="false" dirTag="6____O_F00" vehicle="8618" block="0609" tripTag="7447028"/> <prediction epochTime="1490565307084" seconds="1311" minutes="21" isDeparture="false" dirTag="6____O_F00" vehicle="8807" block="0602" tripTag="7447029"/> </direction> </predictions> </body> `, makeURL("predictionsForMultiStops", "a", "alpha", "stops", "1|1123", "stops", "1|1124"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1487277081162" seconds="181" minutes="3" isDeparture="false" dirTag="1____O_F00" vehicle="1111" vehiclesInConsist="2" block="9999" tripTag="7318265"/> <prediction epochTime="1487277463429" seconds="563" minutes="9" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="2222" vehiclesInConsist="2" block="8888" tripTag="7318264"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Other Station Outbound" stopTag="1124"> <direction title="Outbound"> <prediction epochTime="1487278019915" seconds="1120" minutes="18" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="4444" vehiclesInConsist="2" block="6666" tripTag="7318264"/> </direction> <message text="No Elevator at Blah blah Station" priority="Normal"/> </predictions> </body> `} type fakeRoundTripper struct { t *testing.T } func (f fakeRoundTripper) RoundTrip(req *http.Request) (*http.Response, error) { if req.Body != nil { req.Body.Close() req.Body = nil } url := req.URL.String() xml, ok := fakes[url] if !ok { valid := []string{} for k := range fakes { valid = append(valid, k) } f.t.Fatalf("Unexpected url %q. allowable urls are=%q", url, valid) return nil, nil } res := http.Response{} res.StatusCode = http.StatusOK res.Body = ioutil.NopCloser(strings.NewReader(xml)) res.Request = req return &res, nil } func testingClient(t *testing.T) *http.Client { httpClient := http.Client{} httpClient.Transport = fakeRoundTripper{t} return &httpClient } func xmlName(s string) xml.Name { return xml.Name{Space: "", Local: s} } func stopMarkers(tags ...string) []StopMarker { var result []StopMarker for _, t := range tags { result = append(result, StopMarker{xmlName("stop"), t}) } return result } func TestGetAgencyList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetAgencyList() ok(t, err) expected := []Agency{ Agency{xmlName("agency"), "alpha", "The First", "What a Transit Agency"}, Agency{xmlName("agency"), "beta", "The Second", "Never never land"}, } equals(t, expected, found) } func TestGetRouteList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteList("alpha") ok(t, err) expected := []Route{ Route{xmlName("route"), "1", "1-first"}, Route{xmlName("route"), "2", "2-second"}, } equals(t, expected, found) } func TestGetRouteConfig(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteConfig("alpha") ok(t, err) expected := []RouteConfig{ RouteConfig{ xmlName("route"), []Stop{ Stop{ xmlName("stop"), "1123", "First stop", "12.3456789", "-123.45789", "98765", }, Stop{ xmlName("stop"), "1234", "Second stop", "23.4567890", "-456.78901", "87654", }, }, "1",
"ffffff", "12.3456789", "45.6789012", "-123.4567890", "-456.78901", []Direction{ Direction{ xmlName("direction"), "1out", "Outbound to somewhere", "Outbound", "true", stopMarkers("1123", "1234"), }, Direction{ xmlName("direction"), "1in", "Inbound to somewhere", "Inbound", "true", stopMarkers("1234", "1123"), }, }, nil, }, } equals(t, expected, found) } func TestGetVehicleLocations(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetVehicleLocations("alpha") ok(t, err) expected := LocationResponse{ xmlName("body"), []VehicleLocation{ VehicleLocation{ xmlName("vehicle"), "1111", "1", "1_outbound", "37.77513", "-122.41946", "4", "true", "225", "0", "1112", }, VehicleLocation{ xmlName("vehicle"), "2222", "2", "2_inbound", "37.74891", "-122.45848", "5", "true", "217", "0", "22
"1-first", "660000",
random_line_split
nextbus_test.go
77513" lon="-122.41946" secsSinceReport="4" predictable="true" heading="225" speedKmHr="0" leadingVehicleId="1112"/> <vehicle id="2222" routeTag="2" dirTag="2_inbound" lat="37.74891" lon="-122.45848" secsSinceReport="5" predictable="true" heading="217" speedKmHr="0" leadingVehicleId="2223"/> <lastTime time="1234567890123"/> </body> `, makeURL("predictions", "a", "alpha", "stopId", "11123"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564618948" seconds="623" minutes="10" isDeparture="false" dirTag="7____O_F00" vehicle="6581" block="0712" tripTag="7447642"/> <prediction epochTime="1490565376790" seconds="1381" minutes="23" isDeparture="false" affectedByLayover="true" dirTag="7____O_F00" vehicle="6720" block="0705" tripTag="7447643"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The Second" routeTag="2" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1490564681782" seconds="686" minutes="11" isDeparture="false" dirTag="6____O_F00" vehicle="8618" block="0609" tripTag="7447028"/> <prediction epochTime="1490565307084" seconds="1311" minutes="21" isDeparture="false" dirTag="6____O_F00" vehicle="8807" block="0602" tripTag="7447029"/> </direction> </predictions> </body> `, makeURL("predictionsForMultiStops", "a", "alpha", "stops", "1|1123", "stops", "1|1124"): ` <body copyright="All data copyright some transit company."> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Station Outbound" stopTag="1123"> <direction title="Outbound"> <prediction epochTime="1487277081162" seconds="181" minutes="3" isDeparture="false" dirTag="1____O_F00" vehicle="1111" vehiclesInConsist="2" block="9999" tripTag="7318265"/> <prediction epochTime="1487277463429" seconds="563" minutes="9" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="2222" vehiclesInConsist="2" block="8888" tripTag="7318264"/> </direction> </predictions> <predictions agencyTitle="some transit company" routeTitle="The First" routeTag="1" stopTitle="Some Other Station Outbound" stopTag="1124"> <direction title="Outbound"> <prediction epochTime="1487278019915" seconds="1120" minutes="18" isDeparture="false" affectedByLayover="true" dirTag="1____O_F00" vehicle="4444" vehiclesInConsist="2" block="6666" tripTag="7318264"/> </direction> <message text="No Elevator at Blah blah Station" priority="Normal"/> </predictions> </body> `} type fakeRoundTripper struct { t *testing.T } func (f fakeRoundTripper) RoundTrip(req *http.Request) (*http.Response, error) { if req.Body != nil
url := req.URL.String() xml, ok := fakes[url] if !ok { valid := []string{} for k := range fakes { valid = append(valid, k) } f.t.Fatalf("Unexpected url %q. allowable urls are=%q", url, valid) return nil, nil } res := http.Response{} res.StatusCode = http.StatusOK res.Body = ioutil.NopCloser(strings.NewReader(xml)) res.Request = req return &res, nil } func testingClient(t *testing.T) *http.Client { httpClient := http.Client{} httpClient.Transport = fakeRoundTripper{t} return &httpClient } func xmlName(s string) xml.Name { return xml.Name{Space: "", Local: s} } func stopMarkers(tags ...string) []StopMarker { var result []StopMarker for _, t := range tags { result = append(result, StopMarker{xmlName("stop"), t}) } return result } func TestGetAgencyList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetAgencyList() ok(t, err) expected := []Agency{ Agency{xmlName("agency"), "alpha", "The First", "What a Transit Agency"}, Agency{xmlName("agency"), "beta", "The Second", "Never never land"}, } equals(t, expected, found) } func TestGetRouteList(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteList("alpha") ok(t, err) expected := []Route{ Route{xmlName("route"), "1", "1-first"}, Route{xmlName("route"), "2", "2-second"}, } equals(t, expected, found) } func TestGetRouteConfig(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetRouteConfig("alpha") ok(t, err) expected := []RouteConfig{ RouteConfig{ xmlName("route"), []Stop{ Stop{ xmlName("stop"), "1123", "First stop", "12.3456789", "-123.45789", "98765", }, Stop{ xmlName("stop"), "1234", "Second stop", "23.4567890", "-456.78901", "87654", }, }, "1", "1-first", "660000", "ffffff", "12.3456789", "45.6789012", "-123.4567890", "-456.78901", []Direction{ Direction{ xmlName("direction"), "1out", "Outbound to somewhere", "Outbound", "true", stopMarkers("1123", "1234"), }, Direction{ xmlName("direction"), "1in", "Inbound to somewhere", "Inbound", "true", stopMarkers("1234", "1123"), }, }, nil, }, } equals(t, expected, found) } func TestGetVehicleLocations(t *testing.T) { nb := NewClient(testingClient(t)) found, err := nb.GetVehicleLocations("alpha") ok(t, err) expected := LocationResponse{ xmlName("body"), []VehicleLocation{ VehicleLocation{ xmlName("vehicle"), "1111", "1", "1_outbound", "37.77513", "-122.41946", "4", "true", "225", "0", "1112", }, VehicleLocation{ xmlName("vehicle"), "2222", "2", "2_inbound", "37.74891", "-122.45848", "5", "true", "217", "0", "2
{ req.Body.Close() req.Body = nil }
conditional_block
battle.py
'#': other = unit_at(x, y, units) if other is not None and other.race != self.race and not other.dead: targets.append(other) return targets def find_in_range_tiles(self, arena, units): # Find tiles in range to an enemy in_range_tiles = set() #Set to avoid duplicates for u in units: if u.race == self.race or u.dead: continue in_range_tiles.update(u.find_open_tiles(arena, units)) return in_range_tiles def perform_attack(self, arena, targets): # Sort targets by hit points, and then position target = sorted(targets, key=lambda t: (t.hp, t.x, t.y))[0] # Reduce hit points and check if dead target.hp -= self.attack if target.hp <= 0: target.dead = True return {'target': target} def perform_turn(self, arena, units): """ Returns a result, and a dictionary containing any extra required info about what happened during the turn. """ # Verify that unit hasn't died if self.dead: return 'dead', {} # Verify that enemies are still present targets = [u for u in units if u.race == self.enemy_race() and not u.dead] if len(targets) == 0: return 'no-targets', {} # Check for in-range targets targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'attack', data # Find reachable tiles in_range = self.find_in_range_tiles(arena, units) target, paths = find_target_tile(self.x, self.y, in_range, arena, units) if target is None: return 'no-reachable', {} # If multiple paths exist, pick the starting point using reading order optimal_paths = find_optimal_paths((self.x, self.y), target, paths) choices = sorted([op[0] for op in optimal_paths]) x, y = choices[0] # Update position self.x = x self.y = y # Check for in-range targets after moving targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'move-attack', data else: return 'moved', {'pos': (x, y)} def __repr__(self): return '{}{} {}: {}/{} at ({},{})'.format('Dead ' if self.dead else '', self.race.title(), self.name, self.hp, self.attack, self.x, self.y) def read_arena(): arena = [] units = [] for x, line in enumerate(sys.stdin): line = line.strip() # Extract units from line extracted = '' for y, c in enumerate(line): if c == 'G': goblin = Unit('goblin', x, y, 200, 3) units.append(goblin) extracted += '.' elif c == 'E': elf = Unit('elf', x, y, 200, 3) units.append(elf) extracted += '.' else: extracted += c arena.append(list(extracted)) return arena, units def print_arena(arena, units): arena_copy = copy.deepcopy(arena) #Draw units for unit in units: if unit.dead: continue arena_copy[unit.x][unit.y] = unit for row in arena_copy: row_end = '' for tile in row: if isinstance(tile, Unit): row_end += '{}({}), '.format(tile.name, tile.hp) tile = tile.name print(tile, end='') print(' ', row_end) def unit_at(x, y, units): """ Returns the unit present at x,y or None. """ for u in units: if u.x == x and u.y == y: return u return None def find_target_tile(src_x, src_y, tiles, arena, units): arena_copy = copy.deepcopy(arena) for u in units: if u.dead: continue arena_copy[u.x][u.y] = '#' arena_copy[src_x][src_y] = '.' #Set this back to open as it's our starting point # Initialize Djikstra's Algorithm unvisited = set() dist = {} prev = {} for x, row in enumerate(arena_copy): for y, tile in enumerate(row): if arena_copy[x][y] == '.': dist[(x, y)] = float('inf') prev[(x, y)] = None unvisited.add((x, y)) # Set source to 0 dist[(src_x, src_y)] = 0 # Iterate through set while unvisited: # Find min min_value = float('inf') selected = None for node in unvisited: if dist[node] < min_value: min_value = dist[node] selected = node # End looping is no nodes are accessible if selected is None: break unvisited.remove(selected) node_x, node_y = selected for x, y in [(node_x+1, node_y), (node_x, node_y+1), (node_x-1, node_y), (node_x, node_y-1)]: if (x, y) in unvisited: new_distance = dist[(node_x, node_y)] + 1 if new_distance < dist[(x, y)]: dist[(x, y)] = new_distance prev[(x, y)] = [selected] elif new_distance == dist[(x, y)]: prev[(x, y)].append(selected) # Filter out unreachable and unconsidered values distances = {k: v for k, v in dist.items() if k in tiles and v != float('inf')} if len(distances) == 0: return None, None target = sorted([(v, k[0], k[1]) for k, v in distances.items()])[0] target = (target[1], target[2]) #Extract x,y coords return target, prev def find_optimal_paths(source, target, graph): # Because the graph gives the previous item, work backwards from target def update_paths(source, current, path, graph, optimal_paths): # If we've found the target, record the path if source == current: optimal_paths.append(path) return cur_x, cur_y = current for x, y in graph[current]: path = (current,) + path update_paths(source, (x, y), path, graph, optimal_paths) optimal_paths = [] update_paths(source, target, (), graph, optimal_paths) return optimal_paths def find_next_step(start, end, paths): """ Given initial and final (x,y) coordinates and a dictionary of partial paths, return the next step towards reaching """ def find_paths(start, current, distance, paths, choices): """ Given the start point, and the current point, builds a dictionary indicating the first step and the minimum distance to the end using that step. Distance indicates the distance from current to end. """ # Find all paths resulting in the minimum distance options = [] min_distance = min(paths[current].values()) for option, distance in paths[current].items(): if distance == min_distance: # If we find the beginning, break out if option == start: if option not in choices or choices[current] < distance + min_distance: choices[current] = distance + min_distance return # Add to list of options options.append(option) # For each path, recursively find minimal paths for option in options: find_paths(start, option, min_distance, paths, choices) choices = {} find_paths(start, end, 0, paths, choices) choices = sorted(choices.keys()) return choices[0] def perform_round(arena, units): """ Performs a round of moving and combat, returns True if the full round is executed. """ # Order units and split into goblins and elves units = [u for u in sorted(units, key=lambda u: (u.x, u.y)) if not u.dead] for unit in units: result, data = unit.perform_turn(arena, units) if result == 'no-targets': return False #Nothing to attack, game over return True def battle():
start = time.time() round_end = time.time() arena, units = read_arena() initial_arena = copy.deepcopy(arena) initial_units = copy.deepcopy(units) #Loop until no deaths deaths = 1 power = 2 while deaths > 0: #Update elf powers power += 1 arena = copy.deepcopy(initial_arena) units = copy.deepcopy(initial_units) for u in units: if u.race == 'elf': u.attack = power
identifier_body
battle.py
elf': return 'goblin' else: raise ValueError('Invalid race') def find_open_tiles(self, arena, units): """ Returns a list of all open tiles adjacent to the unit. """ tiles = [] for x, y in [(self.x+1, self.y), (self.x, self.y+1), (self.x-1, self.y), (self.x, self.y-1)]: if arena[x][y] == '.': tiles.append((x, y)) return tiles def find_adjacent_targets(self, arena, units): """ Returns a list of all adjacent targets in range. """ in_range = [] targets = [] for x, y in [(self.x+1, self.y), (self.x, self.y+1), (self.x-1, self.y), (self.x, self.y-1)]: if arena[x][y] != '#': other = unit_at(x, y, units) if other is not None and other.race != self.race and not other.dead: targets.append(other) return targets def find_in_range_tiles(self, arena, units): # Find tiles in range to an enemy in_range_tiles = set() #Set to avoid duplicates for u in units: if u.race == self.race or u.dead: continue in_range_tiles.update(u.find_open_tiles(arena, units)) return in_range_tiles def perform_attack(self, arena, targets): # Sort targets by hit points, and then position target = sorted(targets, key=lambda t: (t.hp, t.x, t.y))[0] # Reduce hit points and check if dead target.hp -= self.attack if target.hp <= 0: target.dead = True return {'target': target} def perform_turn(self, arena, units): """ Returns a result, and a dictionary containing any extra required info about what happened during the turn. """ # Verify that unit hasn't died if self.dead: return 'dead', {} # Verify that enemies are still present targets = [u for u in units if u.race == self.enemy_race() and not u.dead] if len(targets) == 0: return 'no-targets', {} # Check for in-range targets targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'attack', data # Find reachable tiles in_range = self.find_in_range_tiles(arena, units) target, paths = find_target_tile(self.x, self.y, in_range, arena, units)
return 'no-reachable', {} # If multiple paths exist, pick the starting point using reading order optimal_paths = find_optimal_paths((self.x, self.y), target, paths) choices = sorted([op[0] for op in optimal_paths]) x, y = choices[0] # Update position self.x = x self.y = y # Check for in-range targets after moving targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'move-attack', data else: return 'moved', {'pos': (x, y)} def __repr__(self): return '{}{} {}: {}/{} at ({},{})'.format('Dead ' if self.dead else '', self.race.title(), self.name, self.hp, self.attack, self.x, self.y) def read_arena(): arena = [] units = [] for x, line in enumerate(sys.stdin): line = line.strip() # Extract units from line extracted = '' for y, c in enumerate(line): if c == 'G': goblin = Unit('goblin', x, y, 200, 3) units.append(goblin) extracted += '.' elif c == 'E': elf = Unit('elf', x, y, 200, 3) units.append(elf) extracted += '.' else: extracted += c arena.append(list(extracted)) return arena, units def print_arena(arena, units): arena_copy = copy.deepcopy(arena) #Draw units for unit in units: if unit.dead: continue arena_copy[unit.x][unit.y] = unit for row in arena_copy: row_end = '' for tile in row: if isinstance(tile, Unit): row_end += '{}({}), '.format(tile.name, tile.hp) tile = tile.name print(tile, end='') print(' ', row_end) def unit_at(x, y, units): """ Returns the unit present at x,y or None. """ for u in units: if u.x == x and u.y == y: return u return None def find_target_tile(src_x, src_y, tiles, arena, units): arena_copy = copy.deepcopy(arena) for u in units: if u.dead: continue arena_copy[u.x][u.y] = '#' arena_copy[src_x][src_y] = '.' #Set this back to open as it's our starting point # Initialize Djikstra's Algorithm unvisited = set() dist = {} prev = {} for x, row in enumerate(arena_copy): for y, tile in enumerate(row): if arena_copy[x][y] == '.': dist[(x, y)] = float('inf') prev[(x, y)] = None unvisited.add((x, y)) # Set source to 0 dist[(src_x, src_y)] = 0 # Iterate through set while unvisited: # Find min min_value = float('inf') selected = None for node in unvisited: if dist[node] < min_value: min_value = dist[node] selected = node # End looping is no nodes are accessible if selected is None: break unvisited.remove(selected) node_x, node_y = selected for x, y in [(node_x+1, node_y), (node_x, node_y+1), (node_x-1, node_y), (node_x, node_y-1)]: if (x, y) in unvisited: new_distance = dist[(node_x, node_y)] + 1 if new_distance < dist[(x, y)]: dist[(x, y)] = new_distance prev[(x, y)] = [selected] elif new_distance == dist[(x, y)]: prev[(x, y)].append(selected) # Filter out unreachable and unconsidered values distances = {k: v for k, v in dist.items() if k in tiles and v != float('inf')} if len(distances) == 0: return None, None target = sorted([(v, k[0], k[1]) for k, v in distances.items()])[0] target = (target[1], target[2]) #Extract x,y coords return target, prev def find_optimal_paths(source, target, graph): # Because the graph gives the previous item, work backwards from target def update_paths(source, current, path, graph, optimal_paths): # If we've found the target, record the path if source == current: optimal_paths.append(path) return cur_x, cur_y = current for x, y in graph[current]: path = (current,) + path update_paths(source, (x, y), path, graph, optimal_paths) optimal_paths = [] update_paths(source, target, (), graph, optimal_paths) return optimal_paths def find_next_step(start, end, paths): """ Given initial and final (x,y) coordinates and a dictionary of partial paths, return the next step towards reaching """ def find_paths(start, current, distance, paths, choices): """ Given the start point, and the current point, builds a dictionary indicating the first step and the minimum distance to the end using that step. Distance indicates the distance from current to end. """ # Find all paths resulting in the minimum distance options = [] min_distance = min(paths[current].values()) for option, distance in paths[current].items(): if distance == min_distance: # If we find the beginning, break out if option == start: if option not in choices or choices[current] < distance + min_distance: choices[current] = distance + min_distance return # Add to list of options options.append(option) # For each path, recursively find minimal paths for option in options: find_paths(start, option, min_distance, paths, choices) choices = {} find_paths(start, end, 0, paths, choices) choices = sorted(choices.keys()) return choices[0] def perform_round(arena, units): """ Performs a round of moving and combat, returns True if the full round is executed.
if target is None:
random_line_split
battle.py
'elf': return 'goblin' else: raise ValueError('Invalid race') def find_open_tiles(self, arena, units): """ Returns a list of all open tiles adjacent to the unit. """ tiles = [] for x, y in [(self.x+1, self.y), (self.x, self.y+1), (self.x-1, self.y), (self.x, self.y-1)]: if arena[x][y] == '.': tiles.append((x, y)) return tiles def find_adjacent_targets(self, arena, units): """ Returns a list of all adjacent targets in range. """ in_range = [] targets = [] for x, y in [(self.x+1, self.y), (self.x, self.y+1), (self.x-1, self.y), (self.x, self.y-1)]: if arena[x][y] != '#': other = unit_at(x, y, units) if other is not None and other.race != self.race and not other.dead: targets.append(other) return targets def find_in_range_tiles(self, arena, units): # Find tiles in range to an enemy in_range_tiles = set() #Set to avoid duplicates for u in units: if u.race == self.race or u.dead: continue in_range_tiles.update(u.find_open_tiles(arena, units)) return in_range_tiles def perform_attack(self, arena, targets): # Sort targets by hit points, and then position target = sorted(targets, key=lambda t: (t.hp, t.x, t.y))[0] # Reduce hit points and check if dead target.hp -= self.attack if target.hp <= 0: target.dead = True return {'target': target} def perform_turn(self, arena, units): """ Returns a result, and a dictionary containing any extra required info about what happened during the turn. """ # Verify that unit hasn't died if self.dead: return 'dead', {} # Verify that enemies are still present targets = [u for u in units if u.race == self.enemy_race() and not u.dead] if len(targets) == 0: return 'no-targets', {} # Check for in-range targets targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'attack', data # Find reachable tiles in_range = self.find_in_range_tiles(arena, units) target, paths = find_target_tile(self.x, self.y, in_range, arena, units) if target is None: return 'no-reachable', {} # If multiple paths exist, pick the starting point using reading order optimal_paths = find_optimal_paths((self.x, self.y), target, paths) choices = sorted([op[0] for op in optimal_paths]) x, y = choices[0] # Update position self.x = x self.y = y # Check for in-range targets after moving targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'move-attack', data else: return 'moved', {'pos': (x, y)} def __repr__(self): return '{}{} {}: {}/{} at ({},{})'.format('Dead ' if self.dead else '', self.race.title(), self.name, self.hp, self.attack, self.x, self.y) def read_arena(): arena = [] units = [] for x, line in enumerate(sys.stdin): line = line.strip() # Extract units from line extracted = '' for y, c in enumerate(line): if c == 'G': goblin = Unit('goblin', x, y, 200, 3) units.append(goblin) extracted += '.' elif c == 'E': elf = Unit('elf', x, y, 200, 3) units.append(elf) extracted += '.' else: extracted += c arena.append(list(extracted)) return arena, units def print_arena(arena, units): arena_copy = copy.deepcopy(arena) #Draw units for unit in units: if unit.dead: continue arena_copy[unit.x][unit.y] = unit for row in arena_copy: row_end = '' for tile in row: if isinstance(tile, Unit): row_end += '{}({}), '.format(tile.name, tile.hp) tile = tile.name print(tile, end='') print(' ', row_end) def unit_at(x, y, units): """ Returns the unit present at x,y or None. """ for u in units: if u.x == x and u.y == y: return u return None def find_target_tile(src_x, src_y, tiles, arena, units): arena_copy = copy.deepcopy(arena) for u in units: if u.dead: continue arena_copy[u.x][u.y] = '#' arena_copy[src_x][src_y] = '.' #Set this back to open as it's our starting point # Initialize Djikstra's Algorithm unvisited = set() dist = {} prev = {} for x, row in enumerate(arena_copy): for y, tile in enumerate(row): if arena_copy[x][y] == '.': dist[(x, y)] = float('inf') prev[(x, y)] = None unvisited.add((x, y)) # Set source to 0 dist[(src_x, src_y)] = 0 # Iterate through set while unvisited: # Find min min_value = float('inf') selected = None for node in unvisited: if dist[node] < min_value: min_value = dist[node] selected = node # End looping is no nodes are accessible if selected is None: break unvisited.remove(selected) node_x, node_y = selected for x, y in [(node_x+1, node_y), (node_x, node_y+1), (node_x-1, node_y), (node_x, node_y-1)]: if (x, y) in unvisited: new_distance = dist[(node_x, node_y)] + 1 if new_distance < dist[(x, y)]: dist[(x, y)] = new_distance prev[(x, y)] = [selected] elif new_distance == dist[(x, y)]: prev[(x, y)].append(selected) # Filter out unreachable and unconsidered values distances = {k: v for k, v in dist.items() if k in tiles and v != float('inf')} if len(distances) == 0: return None, None target = sorted([(v, k[0], k[1]) for k, v in distances.items()])[0] target = (target[1], target[2]) #Extract x,y coords return target, prev def find_optimal_paths(source, target, graph): # Because the graph gives the previous item, work backwards from target def update_paths(source, current, path, graph, optimal_paths): # If we've found the target, record the path if source == current: optimal_paths.append(path) return cur_x, cur_y = current for x, y in graph[current]:
optimal_paths = [] update_paths(source, target, (), graph, optimal_paths) return optimal_paths def find_next_step(start, end, paths): """ Given initial and final (x,y) coordinates and a dictionary of partial paths, return the next step towards reaching """ def find_paths(start, current, distance, paths, choices): """ Given the start point, and the current point, builds a dictionary indicating the first step and the minimum distance to the end using that step. Distance indicates the distance from current to end. """ # Find all paths resulting in the minimum distance options = [] min_distance = min(paths[current].values()) for option, distance in paths[current].items(): if distance == min_distance: # If we find the beginning, break out if option == start: if option not in choices or choices[current] < distance + min_distance: choices[current] = distance + min_distance return # Add to list of options options.append(option) # For each path, recursively find minimal paths for option in options: find_paths(start, option, min_distance, paths, choices) choices = {} find_paths(start, end, 0, paths, choices) choices = sorted(choices.keys()) return choices[0] def perform_round(arena, units): """ Performs a round of moving and combat, returns True if the full round is executed.
path = (current,) + path update_paths(source, (x, y), path, graph, optimal_paths)
conditional_block
battle.py
'elf': return 'goblin' else: raise ValueError('Invalid race') def find_open_tiles(self, arena, units): """ Returns a list of all open tiles adjacent to the unit. """ tiles = [] for x, y in [(self.x+1, self.y), (self.x, self.y+1), (self.x-1, self.y), (self.x, self.y-1)]: if arena[x][y] == '.': tiles.append((x, y)) return tiles def find_adjacent_targets(self, arena, units): """ Returns a list of all adjacent targets in range. """ in_range = [] targets = [] for x, y in [(self.x+1, self.y), (self.x, self.y+1), (self.x-1, self.y), (self.x, self.y-1)]: if arena[x][y] != '#': other = unit_at(x, y, units) if other is not None and other.race != self.race and not other.dead: targets.append(other) return targets def find_in_range_tiles(self, arena, units): # Find tiles in range to an enemy in_range_tiles = set() #Set to avoid duplicates for u in units: if u.race == self.race or u.dead: continue in_range_tiles.update(u.find_open_tiles(arena, units)) return in_range_tiles def perform_attack(self, arena, targets): # Sort targets by hit points, and then position target = sorted(targets, key=lambda t: (t.hp, t.x, t.y))[0] # Reduce hit points and check if dead target.hp -= self.attack if target.hp <= 0: target.dead = True return {'target': target} def perform_turn(self, arena, units): """ Returns a result, and a dictionary containing any extra required info about what happened during the turn. """ # Verify that unit hasn't died if self.dead: return 'dead', {} # Verify that enemies are still present targets = [u for u in units if u.race == self.enemy_race() and not u.dead] if len(targets) == 0: return 'no-targets', {} # Check for in-range targets targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'attack', data # Find reachable tiles in_range = self.find_in_range_tiles(arena, units) target, paths = find_target_tile(self.x, self.y, in_range, arena, units) if target is None: return 'no-reachable', {} # If multiple paths exist, pick the starting point using reading order optimal_paths = find_optimal_paths((self.x, self.y), target, paths) choices = sorted([op[0] for op in optimal_paths]) x, y = choices[0] # Update position self.x = x self.y = y # Check for in-range targets after moving targets = self.find_adjacent_targets(arena, units) if len(targets) > 0: data = self.perform_attack(arena, targets) return 'move-attack', data else: return 'moved', {'pos': (x, y)} def __repr__(self): return '{}{} {}: {}/{} at ({},{})'.format('Dead ' if self.dead else '', self.race.title(), self.name, self.hp, self.attack, self.x, self.y) def read_arena(): arena = [] units = [] for x, line in enumerate(sys.stdin): line = line.strip() # Extract units from line extracted = '' for y, c in enumerate(line): if c == 'G': goblin = Unit('goblin', x, y, 200, 3) units.append(goblin) extracted += '.' elif c == 'E': elf = Unit('elf', x, y, 200, 3) units.append(elf) extracted += '.' else: extracted += c arena.append(list(extracted)) return arena, units def print_arena(arena, units): arena_copy = copy.deepcopy(arena) #Draw units for unit in units: if unit.dead: continue arena_copy[unit.x][unit.y] = unit for row in arena_copy: row_end = '' for tile in row: if isinstance(tile, Unit): row_end += '{}({}), '.format(tile.name, tile.hp) tile = tile.name print(tile, end='') print(' ', row_end) def unit_at(x, y, units): """ Returns the unit present at x,y or None. """ for u in units: if u.x == x and u.y == y: return u return None def find_target_tile(src_x, src_y, tiles, arena, units): arena_copy = copy.deepcopy(arena) for u in units: if u.dead: continue arena_copy[u.x][u.y] = '#' arena_copy[src_x][src_y] = '.' #Set this back to open as it's our starting point # Initialize Djikstra's Algorithm unvisited = set() dist = {} prev = {} for x, row in enumerate(arena_copy): for y, tile in enumerate(row): if arena_copy[x][y] == '.': dist[(x, y)] = float('inf') prev[(x, y)] = None unvisited.add((x, y)) # Set source to 0 dist[(src_x, src_y)] = 0 # Iterate through set while unvisited: # Find min min_value = float('inf') selected = None for node in unvisited: if dist[node] < min_value: min_value = dist[node] selected = node # End looping is no nodes are accessible if selected is None: break unvisited.remove(selected) node_x, node_y = selected for x, y in [(node_x+1, node_y), (node_x, node_y+1), (node_x-1, node_y), (node_x, node_y-1)]: if (x, y) in unvisited: new_distance = dist[(node_x, node_y)] + 1 if new_distance < dist[(x, y)]: dist[(x, y)] = new_distance prev[(x, y)] = [selected] elif new_distance == dist[(x, y)]: prev[(x, y)].append(selected) # Filter out unreachable and unconsidered values distances = {k: v for k, v in dist.items() if k in tiles and v != float('inf')} if len(distances) == 0: return None, None target = sorted([(v, k[0], k[1]) for k, v in distances.items()])[0] target = (target[1], target[2]) #Extract x,y coords return target, prev def find_optimal_paths(source, target, graph): # Because the graph gives the previous item, work backwards from target def update_paths(source, current, path, graph, optimal_paths): # If we've found the target, record the path if source == current: optimal_paths.append(path) return cur_x, cur_y = current for x, y in graph[current]: path = (current,) + path update_paths(source, (x, y), path, graph, optimal_paths) optimal_paths = [] update_paths(source, target, (), graph, optimal_paths) return optimal_paths def find_next_step(start, end, paths): """ Given initial and final (x,y) coordinates and a dictionary of partial paths, return the next step towards reaching """ def
(start, current, distance, paths, choices): """ Given the start point, and the current point, builds a dictionary indicating the first step and the minimum distance to the end using that step. Distance indicates the distance from current to end. """ # Find all paths resulting in the minimum distance options = [] min_distance = min(paths[current].values()) for option, distance in paths[current].items(): if distance == min_distance: # If we find the beginning, break out if option == start: if option not in choices or choices[current] < distance + min_distance: choices[current] = distance + min_distance return # Add to list of options options.append(option) # For each path, recursively find minimal paths for option in options: find_paths(start, option, min_distance, paths, choices) choices = {} find_paths(start, end, 0, paths, choices) choices = sorted(choices.keys()) return choices[0] def perform_round(arena, units): """ Performs a round of moving and combat, returns True if the full round is executed.
find_paths
identifier_name
lib.rs
(&mut self) { let p = self.data; if p != 0 as *mut _ { self.data = 0 as *mut _; let _ = unsafe { Vec::from_raw_parts(p as *mut u8, 0, self.byte_len()) }; } } } impl Bitmap { /// Create a new bitmap, returning None if the data can't be allocated or /// if the width of each slice can't fit in a usize. entries * width must /// not overflow usize. pub fn new(entries: usize, width: usize) -> Option<Bitmap> { if width > (std::mem::size_of::<usize>() * 8) || width == 0 { None } else { entries.checked_mul(width) .and_then(|bits| bits.checked_add(8 - (bits % 8))) .and_then(|rbits| rbits.checked_div(8)) .and_then(|needed| { let ptr = { let mut alloc = Vec::<u8>::with_capacity(needed); let ptr = alloc.as_mut_ptr(); std::mem::forget(alloc); ptr }; unsafe { std::ptr::write_bytes(ptr, 0, needed); } Some(Bitmap { entries: entries, width: width, data: ptr as *mut u8 }) }) } } /// Create a new Bitmap from raw parts. Will return None if the given /// entry and width would overflow the number of bits or bytes needed to /// store the Bitmap. pub unsafe fn from_raw_parts(entries: usize, width: usize, ptr: *mut u8) -> Option<Bitmap> { if width > (std::mem::size_of::<usize>() * 8) || width == 0 { None } else { entries.checked_mul(width) .and_then(|bits| bits.checked_add(8 - (bits % 8))) .and_then(|rbits| rbits.checked_div(8)) .and_then(|_| { Some(Bitmap { entries: entries, width: width, data: ptr }) }) } } /// Get the `i`th bitslice, returning None on out-of-bounds pub fn get(&self, i: usize) -> Option<usize> { if i >= self.entries { None } else { let mut bit_offset = i * self.width; let mut in_byte_offset = bit_offset % 8; let mut byte_offset = (bit_offset - in_byte_offset) / 8; let mut bits_left = self.width; let mut value: usize = 0; while bits_left > 0 { // how many bits can we need to set in this byte? let can_get = std::cmp::min(8 - in_byte_offset, bits_left); // alright, pull them out. let byte = unsafe { *self.data.offset(byte_offset as isize) }; let got = get_n_bits_at(byte, can_get as u8, in_byte_offset as u8) as usize; // make room for the bits we just read value <<= can_get; value |= got; // update all the state bit_offset += can_get; in_byte_offset = bit_offset % 8; byte_offset = (bit_offset - in_byte_offset) / 8; bits_left -= can_get; } Some(value) } } /// Set the `i`th bitslice to `value`, returning false on out-of-bounds or if `value` contains /// bits outside of the least significant `self.width` bits. pub fn set(&mut self, i: usize, mut value: usize) -> bool { let usize = std::mem::size_of::<usize>() * 8; if i >= self.entries || value & !(usize::max_value() >> (std::cmp::min(usize-1, usize - self.width))) != 0 { false } else { // shift over into the high bits value <<= std::cmp::min(usize - 1, usize - self.width); let mut bit_offset = i * self.width; let mut in_byte_offset = bit_offset % 8; let mut byte_offset = (bit_offset - in_byte_offset) / 8; let mut bits_left = self.width; while bits_left > 0 { let can_set = std::cmp::min(8 - in_byte_offset, bits_left); // pull out the highest can_set bits from value let mut to_set: usize = value >> (usize - can_set); // move them into where they will live to_set <<= 8 - can_set - in_byte_offset; let addr = unsafe { self.data.offset(byte_offset as isize) }; let mut byte = unsafe { *addr }; debug_assert!(to_set <= 255); // clear the bits we'll be setting byte &= !(0xFF >> (7 - in_byte_offset) << (8usize.saturating_sub(in_byte_offset).saturating_sub(self.width))); byte |= to_set as u8; unsafe { *addr = byte }; // update all the state value <<= can_set; bit_offset += can_set; in_byte_offset = bit_offset % 8; byte_offset = (bit_offset - in_byte_offset) / 8; bits_left -= can_set; } true } } /// Length in number of bitslices cointained. pub fn len(&self) -> usize { self.entries } /// Size of the internal buffer, in bytes. pub fn byte_len(&self) -> usize { // can't overflow, since creation asserts that it doesn't. let w = self.entries * self.width; let r = w % 8; (w + r) / 8 } pub fn iter(&self) -> Slices { Slices { idx: 0, bm: self } } /// Get the raw pointer to this Bitmap's data. pub unsafe fn get_ptr(&self) -> *mut u8 { self.data } /// Set the raw pointer to this Bitmap's data, returning the old one. It needs to be free'd /// with `Vec`'s destructor if the Bitmap was not made with `from_raw_parts`. In general this /// operation should really be avoided. The destructor will call `Vec`s destructor on the /// internal pointer. pub unsafe fn set_ptr(&mut self, ptr: *mut u8) -> *mut u8 { let p = self.data; self.data = ptr; p } } /// Iterator over the bitslices in the bitmap pub struct Slices<'a> { idx: usize, bm: &'a Bitmap } impl<'a> Iterator for Slices<'a> { type Item = usize; /// *NOTE*: This iterator is not "well-behaved", in that if you keep calling /// `next` after it returns None, eventually it will overflow and start /// yielding elements again. Use the `fuse` method to make this /// "well-behaved". fn next(&mut self) -> Option<usize> { let rv = self.bm.get(self.idx); self.idx += 1; rv } fn size_hint(&self) -> (usize, Option<usize>) { (self.bm.len(), Some(self.bm.len())) } } impl<'a> std::iter::IntoIterator for &'a Bitmap { type Item = usize; type IntoIter = Slices<'a>; fn into_iter(self) -> Slices<'a> { self.iter() } } #[cfg(test)] mod test { extern crate quickcheck; use self::quickcheck::quickcheck; use super::{get_n_bits_at, Bitmap}; use std; #[test] fn empty() { let bm = Bitmap::new(10, 10).unwrap(); for i in 0..10 { assert_eq!(bm.get(i), Some(0)); } assert_eq!(bm.get(11), None); } #[test] fn get() { let mut data: [u8; 4] = [0b000_001_01, 0b0_011_100_1, 0b01_110_111, 0]; let bm = Bitmap { entries: 8, width: 3, data: &mut data as *mut [u8; 4] as *mut u8 }; for i in 0..8 { assert_eq!(bm.get(i), Some(i)); } assert_eq!(bm.get(8), None); assert_eq!(bm.get(9), None); // we don't use real data here, so don't bother freeing it let mut bm = bm; unsafe { bm.set_ptr(std::ptr::null_mut()); } } #[test] fn set() { let mut bm = Bitmap::new(10, 3).unwrap(); for i in 0..8 { assert!(bm.set(i, i)); assert_eq!(bm.get(i
drop
identifier_name
lib.rs
: usize, width: usize) -> Option<Bitmap> { if width > (std::mem::size_of::<usize>() * 8) || width == 0 { None } else { entries.checked_mul(width) .and_then(|bits| bits.checked_add(8 - (bits % 8))) .and_then(|rbits| rbits.checked_div(8)) .and_then(|needed| { let ptr = { let mut alloc = Vec::<u8>::with_capacity(needed); let ptr = alloc.as_mut_ptr(); std::mem::forget(alloc); ptr }; unsafe { std::ptr::write_bytes(ptr, 0, needed); } Some(Bitmap { entries: entries, width: width, data: ptr as *mut u8 }) }) } } /// Create a new Bitmap from raw parts. Will return None if the given /// entry and width would overflow the number of bits or bytes needed to /// store the Bitmap. pub unsafe fn from_raw_parts(entries: usize, width: usize, ptr: *mut u8) -> Option<Bitmap> { if width > (std::mem::size_of::<usize>() * 8) || width == 0 { None } else { entries.checked_mul(width) .and_then(|bits| bits.checked_add(8 - (bits % 8))) .and_then(|rbits| rbits.checked_div(8)) .and_then(|_| { Some(Bitmap { entries: entries, width: width, data: ptr }) }) } } /// Get the `i`th bitslice, returning None on out-of-bounds pub fn get(&self, i: usize) -> Option<usize> { if i >= self.entries
else { let mut bit_offset = i * self.width; let mut in_byte_offset = bit_offset % 8; let mut byte_offset = (bit_offset - in_byte_offset) / 8; let mut bits_left = self.width; let mut value: usize = 0; while bits_left > 0 { // how many bits can we need to set in this byte? let can_get = std::cmp::min(8 - in_byte_offset, bits_left); // alright, pull them out. let byte = unsafe { *self.data.offset(byte_offset as isize) }; let got = get_n_bits_at(byte, can_get as u8, in_byte_offset as u8) as usize; // make room for the bits we just read value <<= can_get; value |= got; // update all the state bit_offset += can_get; in_byte_offset = bit_offset % 8; byte_offset = (bit_offset - in_byte_offset) / 8; bits_left -= can_get; } Some(value) } } /// Set the `i`th bitslice to `value`, returning false on out-of-bounds or if `value` contains /// bits outside of the least significant `self.width` bits. pub fn set(&mut self, i: usize, mut value: usize) -> bool { let usize = std::mem::size_of::<usize>() * 8; if i >= self.entries || value & !(usize::max_value() >> (std::cmp::min(usize-1, usize - self.width))) != 0 { false } else { // shift over into the high bits value <<= std::cmp::min(usize - 1, usize - self.width); let mut bit_offset = i * self.width; let mut in_byte_offset = bit_offset % 8; let mut byte_offset = (bit_offset - in_byte_offset) / 8; let mut bits_left = self.width; while bits_left > 0 { let can_set = std::cmp::min(8 - in_byte_offset, bits_left); // pull out the highest can_set bits from value let mut to_set: usize = value >> (usize - can_set); // move them into where they will live to_set <<= 8 - can_set - in_byte_offset; let addr = unsafe { self.data.offset(byte_offset as isize) }; let mut byte = unsafe { *addr }; debug_assert!(to_set <= 255); // clear the bits we'll be setting byte &= !(0xFF >> (7 - in_byte_offset) << (8usize.saturating_sub(in_byte_offset).saturating_sub(self.width))); byte |= to_set as u8; unsafe { *addr = byte }; // update all the state value <<= can_set; bit_offset += can_set; in_byte_offset = bit_offset % 8; byte_offset = (bit_offset - in_byte_offset) / 8; bits_left -= can_set; } true } } /// Length in number of bitslices cointained. pub fn len(&self) -> usize { self.entries } /// Size of the internal buffer, in bytes. pub fn byte_len(&self) -> usize { // can't overflow, since creation asserts that it doesn't. let w = self.entries * self.width; let r = w % 8; (w + r) / 8 } pub fn iter(&self) -> Slices { Slices { idx: 0, bm: self } } /// Get the raw pointer to this Bitmap's data. pub unsafe fn get_ptr(&self) -> *mut u8 { self.data } /// Set the raw pointer to this Bitmap's data, returning the old one. It needs to be free'd /// with `Vec`'s destructor if the Bitmap was not made with `from_raw_parts`. In general this /// operation should really be avoided. The destructor will call `Vec`s destructor on the /// internal pointer. pub unsafe fn set_ptr(&mut self, ptr: *mut u8) -> *mut u8 { let p = self.data; self.data = ptr; p } } /// Iterator over the bitslices in the bitmap pub struct Slices<'a> { idx: usize, bm: &'a Bitmap } impl<'a> Iterator for Slices<'a> { type Item = usize; /// *NOTE*: This iterator is not "well-behaved", in that if you keep calling /// `next` after it returns None, eventually it will overflow and start /// yielding elements again. Use the `fuse` method to make this /// "well-behaved". fn next(&mut self) -> Option<usize> { let rv = self.bm.get(self.idx); self.idx += 1; rv } fn size_hint(&self) -> (usize, Option<usize>) { (self.bm.len(), Some(self.bm.len())) } } impl<'a> std::iter::IntoIterator for &'a Bitmap { type Item = usize; type IntoIter = Slices<'a>; fn into_iter(self) -> Slices<'a> { self.iter() } } #[cfg(test)] mod test { extern crate quickcheck; use self::quickcheck::quickcheck; use super::{get_n_bits_at, Bitmap}; use std; #[test] fn empty() { let bm = Bitmap::new(10, 10).unwrap(); for i in 0..10 { assert_eq!(bm.get(i), Some(0)); } assert_eq!(bm.get(11), None); } #[test] fn get() { let mut data: [u8; 4] = [0b000_001_01, 0b0_011_100_1, 0b01_110_111, 0]; let bm = Bitmap { entries: 8, width: 3, data: &mut data as *mut [u8; 4] as *mut u8 }; for i in 0..8 { assert_eq!(bm.get(i), Some(i)); } assert_eq!(bm.get(8), None); assert_eq!(bm.get(9), None); // we don't use real data here, so don't bother freeing it let mut bm = bm; unsafe { bm.set_ptr(std::ptr::null_mut()); } } #[test] fn set() { let mut bm = Bitmap::new(10, 3).unwrap(); for i in 0..8 { assert!(bm.set(i, i)); assert_eq!(bm.get(i), Some(i)); } assert_eq!(bm.get(8), Some(0)); assert_eq!(bm.get(9), Some(0)); assert_eq!(bm.get(10), None); } #[test] fn get_n_bits() { macro_rules! t { ( $( $e:expr, $n:expr, $s:expr, $g:expr; )* ) => ( { $( assert_eq!(get_n_bits_at($e, $n, $s), $g); )* }
{ None }
conditional_block