MrPotato's picture
added dataset feature
22e9235
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import os
from glob import glob
import numpy as np
from PIL import Image
from transformers import LayoutXLMTokenizerFast
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"sample": "http://hyperion.bbirke.de/data/docbank/sample_resized.zip",
"data": {
'train': 'http://hyperion.bbirke.de/data/geocite/train.zip',
'test': 'http://hyperion.bbirke.de/data/geocite/test.zip',
},
}
_FEATURES = datasets.Features(
{
"id": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
# "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
# "fonts": datasets.Sequence(datasets.Value("string")),
#"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
"original_image": datasets.features.Image(),
"dataset": datasets.Value("string"),
#"labels": datasets.Sequence(feature=datasets.Value(dtype='int64'))
"labels": datasets.Sequence(datasets.features.ClassLabel(
names=['abstract', 'author', 'caption', 'equation', 'figure', 'footer', 'paragraph',
'reference', 'section', 'table', 'title']
# names=['abstract', 'author', 'caption', 'date', 'equation', 'figure', 'footer', 'list', 'paragraph',
# 'reference', 'section', 'table', 'title']
))
# These are the features of your dataset like images, labels ...
}
)
def load_image(image_path, size=None):
image = Image.open(image_path).convert("RGB")
w, h = image.size
if size is not None:
# resize image
image = image.resize((size, size))
image = np.asarray(image)
image = image[:, :, ::-1] # flip color channels from RGB to BGR
image = image.transpose(2, 0, 1) # move channels to first dimension
return image, (w, h)
# def normalize_bbox(bbox, size):
# return [
# int(1000 * int(bbox[0]) / size[0]),
# int(1000 * int(bbox[1]) / size[1]),
# int(1000 * int(bbox[2]) / size[0]),
# int(1000 * int(bbox[3]) / size[1]),
# ]
#
#
# def simplify_bbox(bbox):
# return [
# min(bbox[0::2]),
# min(bbox[1::2]),
# max(bbox[2::2]),
# max(bbox[3::2]),
# ]
#
#
# def merge_bbox(bbox_list):
# x0, y0, x1, y1 = list(zip(*bbox_list))
# return [min(x0), min(y0), max(x1), max(y1)]
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class Docbank(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
CHUNK_SIZE = 512
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="sample", version=VERSION,
description="This part of my dataset covers a first domain"),
datasets.BuilderConfig(name="data", version=VERSION,
description="This part of my dataset covers a second domain"),
]
# DEFAULT_CONFIG_NAME = "small" # It's not mandatory to have a default configuration. Just use one if it make sense.
TOKENIZER = LayoutXLMTokenizerFast.from_pretrained("microsoft/layoutxlm-base", only_label_first_subword=False)
LABELS = ['abstract', 'author', 'caption', 'date', 'equation', 'figure', 'footer', 'list', 'paragraph', 'reference', 'section', 'table', 'title']
ID2LABEL = {k: v for k, v in enumerate(LABELS)}
LABEL2ID = {v: k for k, v in enumerate(LABELS)}
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=_FEATURES, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
#print(data_dir)
train_txts = glob(data_dir['train'] + '/train/txt/*.csv')
#print(train_txts[0])
train_data = [(txt, data_dir['train'] + '/train/img/' + os.path.basename(txt)[:-4] + '.jpg') for txt in train_txts]
test_txts = glob(data_dir['test'] + '/test/txt/*.csv')
test_data = [(txt, data_dir['test'] + '/test/img/' + os.path.basename(txt)[:-4] + '.jpg') for txt in test_txts]
# with open(os.path.join(data_dir, "train.csv")) as f:
# files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
# with open(os.path.join(data_dir, "test.csv")) as f:
# files_test = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
# with open(os.path.join(data_dir, "validation.csv")) as f:
# files_validation = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": train_data,
"split": "train",
},
),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": files_validation,
# "split": "validation",
# },
# ),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": test_data,
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# print(filepath)
key = 0
for f_fp_txt, f_fp_img in filepath:
dataset = f_fp_txt.split(".")[-2].split("_")[-1]
#print(f_fp_txt)
f_id = key
#f_fp_txt = f['filepath_txt']
#f_fp_img = f['filepath_img']
tokens = []
bboxes = []
# rgbs = []
# fonts = []
labels = []
#image, size = load_image(f_fp_img, size=224)
original_image, _ = load_image(f_fp_img)
try:
with open(f_fp_txt, encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile, delimiter=',')
for row in reader:
#print(row)
# normalized_bbox = normalize_bbox(row[1:5], size)
normalized_bbox = [int(row['x0']), int(row['y0']), int(row['x1']), int(row['y1'])]
tokens.append(row['token'])
bboxes.append(normalized_bbox)
#print(f'Before: {row[9]}')
label = row['label']
if (label == "list") or (label == "date"):
label = "paragraph"
labels.append(label)
#print(f'After: {row[9]}')
# tokenized_input = self.TOKENIZER(
# row[0],
# add_special_tokens=False,
# return_offsets_mapping=False,
# return_attention_mask=False,
# max_length=512, truncation=True
# )
#
# for tkn in tokenized_input['input_ids']:
# tokens.append(tkn)
# bboxes.append(normalized_bbox)
# # rgbs.append(row[5:8])
# # fonts.append(row[8])
# labels.append(row[9])
except:
continue
#print('Processing...')
# processed = self.TOKENIZER(
# tokens,
# boxes=bboxes,
# word_labels=labels,
# add_special_tokens=False,
# return_offsets_mapping=False,
# return_attention_mask=False,
# )
#print(processed)
# for chunk_id, index in enumerate(range(0, len(tokens), self.CHUNK_SIZE)):
# split_tokens = tokens[index:index + self.CHUNK_SIZE]
# split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
# # split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
# # split_fonts = fonts[index:index + self.CHUNK_SIZE]
# split_labels = labels[index:index + self.CHUNK_SIZE]
#tokenized = self.TOKENIZER(processed['words'], boxes=processed['boxes'])
yield key, {
"id": f"file_{f_id}",
'words': tokens,
"bbox": bboxes,
# "RGBs": split_rgbs,
# "fonts": split_fonts,
#"image": image,
"original_image": original_image,
"dataset": dataset,
"labels": labels
}
key += 1