entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
ResidualUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sr/csrg6irduolxnaubd5v3tlh5eeuhw27sxkg3o56t4veh47sq6ce3.py # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] # Source node to ATen node mapping: # res => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ch/cchqfn77hgdz3w4ctp6pjfp4bouddm5eb6iqxroh6llwgfgjn4o7.py # Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # mul_1 => mul_1 # res_1 => mul # x => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul), kwargs = {}) triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_out_ptr0 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp1 tmp7 = tmp2 + tmp6 tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add] triton_poi_fused_add_convolution_mul_1.run(buf3, primals_3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias) class ResidualUnit(nn.Module): def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True ): super().__init__() self.reduction = default_conv(inChannel, outChannel // 2, kernelSize, bias) self.expansion = default_conv(outChannel // 2, inChannel, kernelSize, bias) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): res = self.reduction(x) res = self.lamRes * self.expansion(res) x = self.lamX * x + res return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inChannel': 4, 'outChannel': 4, 'reScale': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_out_ptr0 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp1 tmp7 = tmp2 + tmp6 tl.store(in_out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_mul_1[grid(256)](buf3, primals_3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias) class ResidualUnitNew(nn.Module): def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True ): super().__init__() self.reduction = default_conv(inChannel, outChannel // 2, kernelSize, bias) self.expansion = default_conv(outChannel // 2, inChannel, kernelSize, bias) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, input_0): primals_1 = self.reduction.weight primals_2 = self.reduction.bias primals_4 = self.expansion.weight primals_5 = self.expansion.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
NawaNae/ESRT-Huawei
ResidualUnit
false
2,664
[ "MIT" ]
0
edea1c0bafec940dc7ea8e5110c355a83188665c
https://github.com/NawaNae/ESRT-Huawei/tree/edea1c0bafec940dc7ea8e5110c355a83188665c
AdaptiveAvgMaxPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/z6/cz6sjxticxb3nt6bhpwoxerwtehbxd7ekub6mg3sgd5roeku34jw.py # Topologically Sorted Source Nodes: [x_max, x_avg, add, mul], Original ATen: [aten.adaptive_max_pool2d, aten.mean, aten.add, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # x_avg => mean # x_max => adaptive_max_pool2d # Graph fragment: # %adaptive_max_pool2d : [num_users=1] = call_function[target=torch.ops.aten.adaptive_max_pool2d.default](args = (%arg0_1, [1, 1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %getitem), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) triton_per_fused_adaptive_max_pool2d_add_mean_mul_0 = async_compile.triton('triton_per_fused_adaptive_max_pool2d_add_mean_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_adaptive_max_pool2d_add_mean_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_adaptive_max_pool2d_add_mean_mul_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp5 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp17 = triton_helpers.maximum(tmp16, tmp15) tmp19 = triton_helpers.maximum(tmp18, tmp17) tmp21 = triton_helpers.maximum(tmp20, tmp19) tmp23 = triton_helpers.maximum(tmp22, tmp21) tmp25 = triton_helpers.maximum(tmp24, tmp23) tmp27 = triton_helpers.maximum(tmp26, tmp25) tmp29 = triton_helpers.maximum(tmp28, tmp27) tmp31 = triton_helpers.maximum(tmp30, tmp29) tmp33 = triton_helpers.maximum(tmp32, tmp31) tmp35 = triton_helpers.maximum(tmp34, tmp33) tmp36 = 16.0 tmp37 = tmp4 / tmp36 tmp38 = tmp37 + tmp35 tmp39 = 0.5 tmp40 = tmp38 * tmp39 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp40, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_max, x_avg, add, mul], Original ATen: [aten.adaptive_max_pool2d, aten.mean, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_adaptive_max_pool2d_add_mean_mul_0.run(buf2, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F from torch import optim as optim import torch.nn.parallel def adaptive_avgmax_pool2d(x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return 0.5 * (x_avg + x_max) class AdaptiveAvgMaxPool2d(nn.Module): def __init__(self, output_size=1): super(AdaptiveAvgMaxPool2d, self).__init__() self.output_size = output_size def forward(self, x): return adaptive_avgmax_pool2d(x, self.output_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F from torch import optim as optim import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_adaptive_max_pool2d_add_mean_mul_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp5 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp17 = triton_helpers.maximum(tmp16, tmp15) tmp19 = triton_helpers.maximum(tmp18, tmp17) tmp21 = triton_helpers.maximum(tmp20, tmp19) tmp23 = triton_helpers.maximum(tmp22, tmp21) tmp25 = triton_helpers.maximum(tmp24, tmp23) tmp27 = triton_helpers.maximum(tmp26, tmp25) tmp29 = triton_helpers.maximum(tmp28, tmp27) tmp31 = triton_helpers.maximum(tmp30, tmp29) tmp33 = triton_helpers.maximum(tmp32, tmp31) tmp35 = triton_helpers.maximum(tmp34, tmp33) tmp36 = 16.0 tmp37 = tmp4 / tmp36 tmp38 = tmp37 + tmp35 tmp39 = 0.5 tmp40 = tmp38 * tmp39 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp40, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_adaptive_max_pool2d_add_mean_mul_0[grid(16)](buf2, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, def adaptive_avgmax_pool2d(x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return 0.5 * (x_avg + x_max) class AdaptiveAvgMaxPool2dNew(nn.Module): def __init__(self, output_size=1): super(AdaptiveAvgMaxPool2dNew, self).__init__() self.output_size = output_size def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Exir-lxr/crldr-prune-pytorch
AdaptiveAvgMaxPool2d
false
2,665
[ "Apache-2.0" ]
0
adeb5e0b24ce66ff9531d4d947f72412c1b5c033
https://github.com/Exir-lxr/crldr-prune-pytorch/tree/adeb5e0b24ce66ff9531d4d947f72412c1b5c033
InverseDepthSmoothnessLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xo/cxopkxo47z5lmvyq2gx2n4exgeyhweclzftd73pco236dokn54dm.py # Topologically Sorted Source Nodes: [image_dx, abs_1, mean, neg, weights_x], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp] # Source node to ATen node mapping: # abs_1 => abs_1 # image_dx => sub_2 # mean => mean # neg => neg # weights_x => exp # Graph fragment: # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_20, %slice_24), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_1, [1], True), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) triton_poi_fused_abs_exp_mean_neg_sub_0 = async_compile.triton('triton_poi_fused_abs_exp_mean_neg_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_exp_mean_neg_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_exp_mean_neg_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) % 4 x2 = (xindex // 12) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (64*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (64*x2)), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + (4*x1) + (64*x2)), xmask) tmp5 = tl.load(in_ptr0 + (17 + x0 + (4*x1) + (64*x2)), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + (4*x1) + (64*x2)), xmask) tmp10 = tl.load(in_ptr0 + (33 + x0 + (4*x1) + (64*x2)), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + (4*x1) + (64*x2)), xmask) tmp15 = tl.load(in_ptr0 + (49 + x0 + (4*x1) + (64*x2)), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tmp13 + tmp17 tmp19 = 4.0 tmp20 = tmp18 / tmp19 tmp21 = -tmp20 tmp22 = tl_math.exp(tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wl/cwl6yd7l3sndnb22swumccpruxx46plry27po4wlv5ktz7r5sl5b.py # Topologically Sorted Source Nodes: [image_dy, abs_2, mean_1, neg_1, weights_y], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp] # Source node to ATen node mapping: # abs_2 => abs_2 # image_dy => sub_3 # mean_1 => mean_1 # neg_1 => neg_1 # weights_y => exp_1 # Graph fragment: # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_27, %slice_31), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_2, [1], True), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) triton_poi_fused_abs_exp_mean_neg_sub_1 = async_compile.triton('triton_poi_fused_abs_exp_mean_neg_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_exp_mean_neg_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_exp_mean_neg_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tmp13 + tmp17 tmp19 = 4.0 tmp20 = tmp18 / tmp19 tmp21 = -tmp20 tmp22 = tl_math.exp(tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/o7/co77hkmtzy5ubvbrmxqqwu5n4mggkr3ljkpuheg7zy4q2bdaspun.py # Topologically Sorted Source Nodes: [idepth_dx, image_dx, abs_1, mean, neg, weights_x, mul, smoothness_x, mean_2, idepth_dy, image_dy, abs_2, mean_1, neg_1, weights_y, mul_1, smoothness_y, mean_3, add], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp, aten.mul, aten.add] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # add => add # idepth_dx => sub # idepth_dy => sub_1 # image_dx => sub_2 # image_dy => sub_3 # mean => mean # mean_1 => mean_1 # mean_2 => mean_2 # mean_3 => mean_3 # mul => mul # mul_1 => mul_1 # neg => neg # neg_1 => neg_1 # smoothness_x => abs_3 # smoothness_y => abs_4 # weights_x => exp # weights_y => exp_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_4, %slice_8), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_20, %slice_24), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_1, [1], True), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %exp), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul,), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_11, %slice_15), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_27, %slice_31), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_2, [1], True), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %exp_1), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_1,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %mean_3), kwargs = {}) triton_per_fused_abs_add_exp_mean_mul_neg_sub_2 = async_compile.triton('triton_per_fused_abs_add_exp_mean_mul_neg_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_exp_mean_mul_neg_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_exp_mean_mul_neg_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r0 = rindex % 3 r5 = (rindex // 3) r3 = (rindex // 48) r4 = rindex % 12 r6 = (rindex // 12) tmp0 = tl.load(in_ptr0 + (r0 + (4*r5)), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (1 + r0 + (4*r5)), rmask, other=0.0) tmp3 = tl.load(in_ptr1 + (r4 + (12*r3)), rmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr0 + (r4 + (16*r6)), rmask, other=0.0) tmp11 = tl.load(in_ptr0 + (4 + r4 + (16*r6)), rmask, other=0.0) tmp13 = tl.load(in_ptr2 + (r4 + (12*r3)), rmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp5 = tl_math.abs(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(rmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp12 = tmp10 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tl_math.abs(tmp14) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(rmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tmp20 = 192.0 tmp21 = tmp9 / tmp20 tmp22 = tmp19 / tmp20 tmp23 = tmp21 + tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 3), (12, 48, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [image_dx, abs_1, mean, neg, weights_x], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_abs_exp_mean_neg_sub_0.run(arg1_1, buf0, 48, grid=grid(48), stream=stream0) buf2 = empty_strided_cuda((4, 1, 3, 4), (12, 48, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [image_dy, abs_2, mean_1, neg_1, weights_y], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp] triton_poi_fused_abs_exp_mean_neg_sub_1.run(arg1_1, buf2, 48, grid=grid(48), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [idepth_dx, image_dx, abs_1, mean, neg, weights_x, mul, smoothness_x, mean_2, idepth_dy, image_dy, abs_2, mean_1, neg_1, weights_y, mul_1, smoothness_y, mean_3, add], Original ATen: [aten.sub, aten.abs, aten.mean, aten.neg, aten.exp, aten.mul, aten.add] triton_per_fused_abs_add_exp_mean_mul_neg_sub_2.run(buf4, arg0_1, buf0, buf2, 1, 192, grid=grid(1), stream=stream0) del arg0_1 del buf0 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class InverseDepthSmoothnessLoss(nn.Module): """Criterion that computes image-aware inverse depth smoothness loss. .. math:: \\text{loss} = \\left | \\partial_x d_{ij} \\right | e^{-\\left \\| \\partial_x I_{ij} \\right \\|} + \\left | \\partial_y d_{ij} \\right | e^{-\\left \\| \\partial_y I_{ij} \\right \\|} Shape: - Inverse Depth: :math:`(N, 1, H, W)` - Image: :math:`(N, 3, H, W)` - Output: scalar Examples:: >>> idepth = torch.rand(1, 1, 4, 5) >>> image = torch.rand(1, 3, 4, 5) >>> smooth = kornia.losses.DepthSmoothnessLoss() >>> loss = smooth(idepth, image) """ def __init__(self) ->None: super(InverseDepthSmoothnessLoss, self).__init__() @staticmethod def gradient_x(img: 'torch.Tensor') ->torch.Tensor: assert len(img.shape) == 4, img.shape return img[:, :, :, :-1] - img[:, :, :, 1:] @staticmethod def gradient_y(img: 'torch.Tensor') ->torch.Tensor: assert len(img.shape) == 4, img.shape return img[:, :, :-1, :] - img[:, :, 1:, :] def forward(self, idepth: 'torch.Tensor', image: 'torch.Tensor' ) ->torch.Tensor: if not torch.is_tensor(idepth): raise TypeError('Input idepth type is not a torch.Tensor. Got {}' .format(type(idepth))) if not torch.is_tensor(image): raise TypeError('Input image type is not a torch.Tensor. Got {}' .format(type(image))) if not len(idepth.shape) == 4: raise ValueError('Invalid idepth shape, we expect BxCxHxW. Got: {}' .format(idepth.shape)) if not len(image.shape) == 4: raise ValueError('Invalid image shape, we expect BxCxHxW. Got: {}' .format(image.shape)) if not idepth.shape[-2:] == image.shape[-2:]: raise ValueError( 'idepth and image shapes must be the same. Got: {}'.format( idepth.shape)) if not idepth.device == image.device: raise ValueError( 'idepth and image must be in the same device. Got: {}'. format(idepth.device)) if not idepth.dtype == image.dtype: raise ValueError( 'idepth and image must be in the same dtype. Got: {}'. format(idepth.dtype)) idepth_dx: 'torch.Tensor' = self.gradient_x(idepth) idepth_dy: 'torch.Tensor' = self.gradient_y(idepth) image_dx: 'torch.Tensor' = self.gradient_x(image) image_dy: 'torch.Tensor' = self.gradient_y(image) weights_x: 'torch.Tensor' = torch.exp(-torch.mean(torch.abs( image_dx), dim=1, keepdim=True)) weights_y: 'torch.Tensor' = torch.exp(-torch.mean(torch.abs( image_dy), dim=1, keepdim=True)) smoothness_x: 'torch.Tensor' = torch.abs(idepth_dx * weights_x) smoothness_y: 'torch.Tensor' = torch.abs(idepth_dy * weights_y) return torch.mean(smoothness_x) + torch.mean(smoothness_y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_exp_mean_neg_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 % 4 x2 = xindex // 12 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 64 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 64 * x2), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + 4 * x1 + 64 * x2), xmask) tmp5 = tl.load(in_ptr0 + (17 + x0 + 4 * x1 + 64 * x2), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + 4 * x1 + 64 * x2), xmask) tmp10 = tl.load(in_ptr0 + (33 + x0 + 4 * x1 + 64 * x2), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + 4 * x1 + 64 * x2), xmask) tmp15 = tl.load(in_ptr0 + (49 + x0 + 4 * x1 + 64 * x2), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tmp13 + tmp17 tmp19 = 4.0 tmp20 = tmp18 / tmp19 tmp21 = -tmp20 tmp22 = tl_math.exp(tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) @triton.jit def triton_poi_fused_abs_exp_mean_neg_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tmp13 + tmp17 tmp19 = 4.0 tmp20 = tmp18 / tmp19 tmp21 = -tmp20 tmp22 = tl_math.exp(tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) @triton.jit def triton_per_fused_abs_add_exp_mean_mul_neg_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex % 3 r5 = rindex // 3 r3 = rindex // 48 r4 = rindex % 12 r6 = rindex // 12 tmp0 = tl.load(in_ptr0 + (r0 + 4 * r5), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (1 + r0 + 4 * r5), rmask, other=0.0) tmp3 = tl.load(in_ptr1 + (r4 + 12 * r3), rmask, eviction_policy= 'evict_last', other=0.0) tmp10 = tl.load(in_ptr0 + (r4 + 16 * r6), rmask, other=0.0) tmp11 = tl.load(in_ptr0 + (4 + r4 + 16 * r6), rmask, other=0.0) tmp13 = tl.load(in_ptr2 + (r4 + 12 * r3), rmask, eviction_policy= 'evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp5 = tl_math.abs(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(rmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp12 = tmp10 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tl_math.abs(tmp14) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(rmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tmp20 = 192.0 tmp21 = tmp9 / tmp20 tmp22 = tmp19 / tmp20 tmp23 = tmp21 + tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 3), (12, 48, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_exp_mean_neg_sub_0[grid(48)](arg1_1, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 1, 3, 4), (12, 48, 4, 1), torch.float32) triton_poi_fused_abs_exp_mean_neg_sub_1[grid(48)](arg1_1, buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1 del buf1 triton_per_fused_abs_add_exp_mean_mul_neg_sub_2[grid(1)](buf4, arg0_1, buf0, buf2, 1, 192, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 del buf2 return buf4, class InverseDepthSmoothnessLossNew(nn.Module): """Criterion that computes image-aware inverse depth smoothness loss. .. math:: \\text{loss} = \\left | \\partial_x d_{ij} \\right | e^{-\\left \\| \\partial_x I_{ij} \\right \\|} + \\left | \\partial_y d_{ij} \\right | e^{-\\left \\| \\partial_y I_{ij} \\right \\|} Shape: - Inverse Depth: :math:`(N, 1, H, W)` - Image: :math:`(N, 3, H, W)` - Output: scalar Examples:: >>> idepth = torch.rand(1, 1, 4, 5) >>> image = torch.rand(1, 3, 4, 5) >>> smooth = kornia.losses.DepthSmoothnessLoss() >>> loss = smooth(idepth, image) """ def __init__(self) ->None: super(InverseDepthSmoothnessLossNew, self).__init__() @staticmethod def gradient_x(img: 'torch.Tensor') ->torch.Tensor: assert len(img.shape) == 4, img.shape return img[:, :, :, :-1] - img[:, :, :, 1:] @staticmethod def gradient_y(img: 'torch.Tensor') ->torch.Tensor: assert len(img.shape) == 4, img.shape return img[:, :, :-1, :] - img[:, :, 1:, :] def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
MareenaKunjachan/kornia
InverseDepthSmoothnessLoss
false
2,666
[ "Apache-2.0" ]
0
0a3cbb02850ac78059e0615da93144b5a64d3330
https://github.com/MareenaKunjachan/kornia/tree/0a3cbb02850ac78059e0615da93144b5a64d3330
CE_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jh/cjhafiazvhnqzahvgpeyzzxgeb5atp7ebiv4plitnblial63qxb6.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1), kwargs = {}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k4/ck4jcdo7pholu6j7hyu5a5wtavlli6c52bnxxxqwlta7ah2dps4s.py # Topologically Sorted Source Nodes: [teacher_outputs], Original ATen: [aten._softmax] # Source node to ATen node mapping: # teacher_outputs => exp_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mn/cmnlidmjpz2yihyn6sanrop2yyzhcy2ynecgwnndb5sydmmmfwas.py # Topologically Sorted Source Nodes: [output_batch, teacher_outputs, mul, sum_1, mul_1, loss], Original ATen: [aten._log_softmax, aten._softmax, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # loss => div_3 # mul => mul # mul_1 => mul_1 # output_batch => exp, log, sub_1, sum_1 # sum_1 => sum_3 # teacher_outputs => div_2, sum_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor_1, %log), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %div_2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, -1), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 4), kwargs = {}) triton_per_fused__log_softmax__softmax_div_mul_sum_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_div_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_div_mul_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__softmax_div_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp15 = tl.load(in_ptr1 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 / tmp21 tmp23 = tmp13 * tmp22 tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp27 = -1.0 tmp28 = tmp26 * tmp27 tmp29 = 0.25 tmp30 = tmp28 * tmp29 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp30, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [teacher_outputs], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(arg1_1, buf1, 256, grid=grid(256), stream=stream0) del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [output_batch, teacher_outputs, mul, sum_1, mul_1, loss], Original ATen: [aten._log_softmax, aten._softmax, aten.mul, aten.sum, aten.div] triton_per_fused__log_softmax__softmax_div_mul_sum_2.run(buf4, buf0, buf1, 1, 256, grid=grid(1), stream=stream0) del buf0 del buf1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F import torch.utils class CE_Loss(nn.Module): def __init__(self, temperature=1): super(CE_Loss, self).__init__() self.T = temperature def forward(self, output_batch, teacher_outputs): output_batch = F.log_softmax(output_batch / self.T, dim=1) teacher_outputs = F.softmax(teacher_outputs / self.T, dim=1) loss = -self.T * self.T * torch.sum(torch.mul(output_batch, teacher_outputs)) / teacher_outputs.size(0) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_per_fused__log_softmax__softmax_div_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp15 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 / tmp21 tmp23 = tmp13 * tmp22 tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp27 = -1.0 tmp28 = tmp26 * tmp27 tmp29 = 0.25 tmp30 = tmp28 * tmp29 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp30, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](arg1_1, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused__log_softmax__softmax_div_mul_sum_2[grid(1)](buf4, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del buf0 del buf1 return buf4, class CE_LossNew(nn.Module): def __init__(self, temperature=1): super(CE_LossNew, self).__init__() self.T = temperature def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NeutrinoLiu/FedML
CE_Loss
false
2,667
[ "Apache-2.0" ]
0
1670b2a3f0b2d63c374a9a4a19449090c694bc78
https://github.com/NeutrinoLiu/FedML/tree/1670b2a3f0b2d63c374a9a4a19449090c694bc78
ARFB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sr/csrg6irduolxnaubd5v3tlh5eeuhw27sxkg3o56t4veh47sq6ce3.py # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] # Source node to ATen node mapping: # res => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ch/cchqfn77hgdz3w4ctp6pjfp4bouddm5eb6iqxroh6llwgfgjn4o7.py # Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # mul_1 => mul_1 # res_1 => mul # x => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 4), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 4), kwargs = {}) # %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul), kwargs = {}) triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_out_ptr0 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp1 tmp7 = tmp2 + tmp6 tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ue/cuehc7u7feddnn7nl7zmlfn6dafg575ohyddnvfzmsnogrm7ijp7.py # Topologically Sorted Source Nodes: [x_ru], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_ru => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %add_1], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 8 x0 = xindex % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0) tmp10 = 4.0 tmp11 = tmp9 * tmp10 tmp12 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0) tmp13 = tl.load(in_ptr2 + ((-4) + x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp12 + tmp13 tmp15 = tmp14 * tmp10 tmp16 = tmp11 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp6, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tl.store(out_ptr0 + (x3), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/u6/cu6ppqw2tef2csmqih3m6yevzpiffzzc2gccmddl472xincnyixn.py # Topologically Sorted Source Nodes: [x_ru_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_ru_1 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (2, ), (1, )) assert_size_stride(primals_8, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (8, 8, 1, 1), (8, 1, 1, 1)) assert_size_stride(primals_11, (8, ), (1, )) assert_size_stride(primals_12, (4, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add] triton_poi_fused_add_convolution_mul_1.run(buf3, primals_3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [res_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [res_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf5, primals_7, 128, grid=grid(128), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_ru], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, buf6, primals_9, buf7, 512, grid=grid(512), stream=stream0) del buf6 del primals_9 # Topologically Sorted Source Nodes: [x_ru_1], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_ru_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf9, primals_11, 512, grid=grid(512), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_ru_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [mul_1, x_ru_2, x_ru_3, x_2], Original ATen: [aten.mul, aten.convolution, aten.add] triton_poi_fused_add_convolution_mul_1.run(buf11, primals_3, primals_13, 256, grid=grid(256), stream=stream0) del primals_13 return (buf11, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5, buf7, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias) class ResidualUnit(nn.Module): def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True ): super().__init__() self.reduction = default_conv(inChannel, outChannel // 2, kernelSize, bias) self.expansion = default_conv(outChannel // 2, inChannel, kernelSize, bias) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): res = self.reduction(x) res = self.lamRes * self.expansion(res) x = self.lamX * x + res return x class ARFB(nn.Module): def __init__(self, inChannel, outChannel, reScale): super().__init__() self.RU1 = ResidualUnit(inChannel, outChannel, reScale) self.RU2 = ResidualUnit(inChannel, outChannel, reScale) self.conv1 = default_conv(2 * inChannel, 2 * outChannel, kernel_size=1) self.conv3 = default_conv(2 * inChannel, outChannel, kernel_size=3) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): x_ru1 = self.RU1(x) x_ru2 = self.RU2(x_ru1) x_ru = torch.cat((x_ru1, x_ru2), 1) x_ru = self.conv1(x_ru) x_ru = self.conv3(x_ru) x_ru = self.lamRes * x_ru x = x * self.lamX + x_ru return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inChannel': 4, 'outChannel': 4, 'reScale': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_out_ptr0 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp1 tmp7 = tmp2 + tmp6 tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 8 x0 = xindex % 16 x2 = xindex // 128 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask, other=0.0) tmp10 = 4.0 tmp11 = tmp9 * tmp10 tmp12 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask, other=0.0) tmp13 = tl.load(in_ptr2 + (-4 + x1), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp14 = tmp12 + tmp13 tmp15 = tmp14 * tmp10 tmp16 = tmp11 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp6, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tl.store(out_ptr0 + x3, tmp19, xmask) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (2,), (1,)) assert_size_stride(primals_8, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (8, 8, 1, 1), (8, 1, 1, 1)) assert_size_stride(primals_11, (8,), (1,)) assert_size_stride(primals_12, (4, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_mul_1[grid(256)](buf3, primals_3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_0[grid(128)](buf5, primals_7, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) triton_poi_fused_cat_2[grid(512)](buf3, buf6, primals_9, buf7, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_3[grid(512)](buf9, primals_11, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf11 = buf10 del buf10 triton_poi_fused_add_convolution_mul_1[grid(256)](buf11, primals_3, primals_13, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 return (buf11, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5, buf7, buf9) def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias) class ResidualUnit(nn.Module): def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True ): super().__init__() self.reduction = default_conv(inChannel, outChannel // 2, kernelSize, bias) self.expansion = default_conv(outChannel // 2, inChannel, kernelSize, bias) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): res = self.reduction(x) res = self.lamRes * self.expansion(res) x = self.lamX * x + res return x class ARFBNew(nn.Module): def __init__(self, inChannel, outChannel, reScale): super().__init__() self.RU1 = ResidualUnit(inChannel, outChannel, reScale) self.RU2 = ResidualUnit(inChannel, outChannel, reScale) self.conv1 = default_conv(2 * inChannel, 2 * outChannel, kernel_size=1) self.conv3 = default_conv(2 * inChannel, outChannel, kernel_size=3) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, input_0): primals_1 = self.RU1.reduction.weight primals_2 = self.RU1.reduction.bias primals_4 = self.RU1.expansion.weight primals_5 = self.RU1.expansion.bias primals_6 = self.RU2.reduction.weight primals_7 = self.RU2.reduction.bias primals_8 = self.RU2.expansion.weight primals_9 = self.RU2.expansion.bias primals_10 = self.conv1.weight primals_11 = self.conv1.bias primals_12 = self.conv3.weight primals_13 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
NawaNae/ESRT-Huawei
ARFB
false
2,668
[ "MIT" ]
0
edea1c0bafec940dc7ea8e5110c355a83188665c
https://github.com/NawaNae/ESRT-Huawei/tree/edea1c0bafec940dc7ea8e5110c355a83188665c
KL_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl3mqwaki56dc4zcxfjjgkbopnejxzhksqm6egdinynmjrsrw2qw.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pf/cpfkvifhrhobwuxls65xhwdpkryeblqmmtghouii4lp3rhe3crx4.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/d5/cd5jvj2xtf5vbrydrjr7gjura3e2lbc3fjgbn4anltegd6a6wh3n.py # Topologically Sorted Source Nodes: [softmax, teacher_outputs, kl_div, output_batch, loss], Original ATen: [aten._softmax, aten.add, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div] # Source node to ATen node mapping: # kl_div => div_3, eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub_3, sum_3, where, where_1 # loss => mul_2 # output_batch => exp, log, sub_1, sum_1 # softmax => div_2, sum_2 # teacher_outputs => add # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %add : [num_users=5] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_2, 1e-07), kwargs = {}) # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%add,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %log_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor_1, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, 1), kwargs = {}) triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (r3), None) tmp20 = tl.load(in_ptr1 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 1e-07 tmp10 = tmp8 + tmp9 tmp11 = libdevice.isnan(tmp10).to(tl.int1) tmp12 = 0.0 tmp13 = tmp10 == tmp12 tmp14 = tl_math.log(tmp10) tmp15 = tmp10 * tmp14 tmp16 = tl.where(tmp13, tmp12, tmp15) tmp17 = float("nan") tmp18 = tl.where(tmp11, tmp17, tmp16) tmp21 = tl_math.exp(tmp20) tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp32 = tmp19 - tmp31 tmp33 = tmp10 * tmp32 tmp34 = tmp18 - tmp33 tmp35 = tl.broadcast_to(tmp34, [RBLOCK]) tmp37 = triton_helpers.promote_to_tensor(tl.sum(tmp35, 0)) tmp38 = 0.25 tmp39 = tmp37 * tmp38 tmp40 = 1.0 tmp41 = tmp39 * tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp41, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(arg0_1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax, teacher_outputs, kl_div, output_batch, loss], Original ATen: [aten._softmax, aten.add, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div] triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2.run(buf4, buf0, buf2, 1, 256, grid=grid(1), stream=stream0) del buf0 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F import torch.utils class KL_Loss(nn.Module): def __init__(self, temperature=1): super(KL_Loss, self).__init__() self.T = temperature def forward(self, output_batch, teacher_outputs): output_batch = F.log_softmax(output_batch / self.T, dim=1) teacher_outputs = F.softmax(teacher_outputs / self.T, dim=1) + 10 ** -7 loss = self.T * self.T * nn.KLDivLoss(reduction='batchmean')( output_batch, teacher_outputs) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr1 + r3, None) tmp20 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 1e-07 tmp10 = tmp8 + tmp9 tmp11 = libdevice.isnan(tmp10).to(tl.int1) tmp12 = 0.0 tmp13 = tmp10 == tmp12 tmp14 = tl_math.log(tmp10) tmp15 = tmp10 * tmp14 tmp16 = tl.where(tmp13, tmp12, tmp15) tmp17 = float('nan') tmp18 = tl.where(tmp11, tmp17, tmp16) tmp21 = tl_math.exp(tmp20) tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp32 = tmp19 - tmp31 tmp33 = tmp10 * tmp32 tmp34 = tmp18 - tmp33 tmp35 = tl.broadcast_to(tmp34, [RBLOCK]) tmp37 = triton_helpers.promote_to_tensor(tl.sum(tmp35, 0)) tmp38 = 0.25 tmp39 = tmp37 * tmp38 tmp40 = 1.0 tmp41 = tmp39 * tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp41, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](arg0_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2[grid (1)](buf4, buf0, buf2, 1, 256, num_warps=2, num_stages=1) del buf0 del buf2 return buf4, class KL_LossNew(nn.Module): def __init__(self, temperature=1): super(KL_LossNew, self).__init__() self.T = temperature def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NeutrinoLiu/FedML
KL_Loss
false
2,669
[ "Apache-2.0" ]
0
1670b2a3f0b2d63c374a9a4a19449090c694bc78
https://github.com/NeutrinoLiu/FedML/tree/1670b2a3f0b2d63c374a9a4a19449090c694bc78
SmallDecoder4_16x
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qz/cqz2rbvbxkrzxkla4tsvnvl2bfpsyravtu2nuyuef657luu7fvhi.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_1 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xl/cxlvflabt3qtgizdi4mapr74rn4h32hq5duymp6n4ywbvyv3cceu.py # Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d => convolution # pad_1 => _unsafe_index_3, _unsafe_index_4 # y => relu # y_1 => _unsafe_index_2 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 10) % 10 x0 = xindex % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i2/ci2dp6hwk3cwmyt6qycmkdd63v5237ewhy4impa26eqor4clwsfr.py # Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_2 => _unsafe_index_5, _unsafe_index_6 # y_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/p4/cp4iqoawim5g5b6lcigc5gtn6zaqu6tgpp3z5c7pv4eddpxaw5cq.py # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange] # Source node to ATen node mapping: # y_6 => iota_12 # Graph fragment: # %iota_12 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_4 = async_compile.triton('triton_poi_fused_arange_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_4(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oi/coik5p6vp7gpgli2c742eorprieg3ksiwhta5jh2rgrjqcmzhvdb.py # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_6 => add_4, add_5, convert_element_type_4, convert_element_type_5, mul_4, mul_5 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_12, 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zp/czp2iqqtvyvpgcd5kawvbxqzgqd5kl7odqhugf46loi5tg4atm7j.py # Topologically Sorted Source Nodes: [conv2d_4, y_5, y_6, pad_5], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # pad_5 => _unsafe_index_12, _unsafe_index_13 # y_5 => relu_4 # y_6 => _unsafe_index_11 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_11, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_13 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_12, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 18) % 18 x0 = xindex % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 32 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bn/cbnz5pblokjfmswlmsyg25ev6pwboeua5fszf6jyvtaixdxlheav.py # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # pad_6 => _unsafe_index_14, _unsafe_index_15 # y_7 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_7 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5t/c5tlquflxxaujmroptgjk5gxhvh6uavhillrappvidws76piiyjq.py # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.arange] # Source node to ATen node mapping: # y_9 => iota_18 # Graph fragment: # %iota_18 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_8 = async_compile.triton('triton_poi_fused_arange_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_8(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/os/cos64vjywkkhomceeqz24mjju7brp7wa43m5dr4ratpsntpe5pjx.py # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_9 => add_8, add_9, convert_element_type_8, convert_element_type_9, mul_8, mul_9 # Graph fragment: # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_18, 1), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_9 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_9(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/a6/ca62ziouw2ayya4iltp4jfwi4p6bg6c2pdqfdp3lpbezloffai5x.py # Topologically Sorted Source Nodes: [conv2d_6, y_8, y_9, pad_7], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # pad_7 => _unsafe_index_17, _unsafe_index_18 # y_8 => relu_6 # y_9 => _unsafe_index_16 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %_unsafe_index_16 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_6, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) # %_unsafe_index_17 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_16, [None, None, %sub_29, None]), kwargs = {}) # %_unsafe_index_18 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_17, [None, None, None, %sub_29]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 34) % 34 x0 = xindex % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 16 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cu/ccumrbyjg5sizsxfgcmyvgbsmyx36emfdg52m2fvdkvf6sk47lhh.py # Topologically Sorted Source Nodes: [conv2d_7, y_10, pad_8], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # pad_8 => _unsafe_index_19, _unsafe_index_20 # y_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_18, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %_unsafe_index_19 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %sub_29, None]), kwargs = {}) # %_unsafe_index_20 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_19, [None, None, None, %sub_29]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_11 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/w2/cw2cwyatn372ict7lbbufruvxwyeryyuddzsod72yowigohgc7xw.py # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y_11 => convolution_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_20, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_12 = async_compile.triton('triton_poi_fused_convolution_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/d7/cd7nllhaosvizzk64wcj6rq74xfshtkhmlsdla7maeqaz4mgvryg.py # Topologically Sorted Source Nodes: [conv2d_7, y_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # y_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_18, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_13 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 16 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ep/cepg6vqtgunohwlponidbedaqtnnavbi3wv74ystikianizis52n.py # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # y_8 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 16 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qv/cqv2gp4qa3misxndmqngio3emte7z2nllil2twla7d5kmh37a23l.py # Topologically Sorted Source Nodes: [conv2d_5, y_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # y_7 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le_56 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lb/clbqi5mq27tuve5n763lekwwp4anpvpn7bufygonrh3mlmdqvret.py # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # y_5 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_75 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/je/cjeibvmodv3gy37gwm6xog2t6fcu2dmkzsb7264d5cxtjueiqtnb.py # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # y_4 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_8, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_94 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bz/cbzqe3ddg7xwoba3fokghtfemc46f4xhaz2lbjn2k5gardklrpi7.py # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # y => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_151 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args args.clear() assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_2, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (16, ), (1, )) assert_size_stride(primals_16, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_17, (16, ), (1, )) assert_size_stride(primals_18, (3, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_19, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128, 6, 6), (4608, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 18432, grid=grid(18432), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0) buf3 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 25600, grid=grid(25600), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 8, 8), (4096, 64, 8, 1)) buf5 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 25600, grid=grid(25600), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 8, 8), (4096, 64, 8, 1)) buf7 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, y_3, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf6, primals_7, buf7, 25600, grid=grid(25600), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 8, 8), (4096, 64, 8, 1)) buf9 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, y_4, pad_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf8, primals_9, buf9, 25600, grid=grid(25600), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 8, 8), (2048, 64, 8, 1)) buf11 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange] triton_poi_fused_arange_4.run(buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_5.run(buf12, 16, grid=grid(16), stream=stream0) buf13 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, y_5, y_6, pad_5], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6.run(buf12, buf10, primals_11, buf13, 41472, grid=grid(41472), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 32, 16, 16), (8192, 256, 16, 1)) buf15 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_7.run(buf14, primals_13, buf15, 41472, grid=grid(41472), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 16, 16, 16), (4096, 256, 16, 1)) buf17 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.arange] triton_poi_fused_arange_8.run(buf17, 32, grid=grid(32), stream=stream0) buf18 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_9.run(buf18, 32, grid=grid(32), stream=stream0) buf19 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, y_8, y_9, pad_7], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10.run(buf18, buf16, primals_15, buf19, 73984, grid=grid(73984), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf21 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, y_10, pad_8], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_11.run(buf20, primals_17, buf21, 73984, grid=grid(73984), stream=stream0) # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 3, 32, 32), (3072, 1024, 32, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.convolution] triton_poi_fused_convolution_12.run(buf23, primals_19, 12288, grid=grid(12288), stream=stream0) del primals_19 buf24 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, y_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_13.run(buf20, primals_17, buf24, 65536, grid=grid(65536), stream=stream0) del buf20 del primals_17 buf25 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_14.run(buf16, primals_15, buf25, 16384, grid=grid(16384), stream=stream0) del buf16 del primals_15 buf26 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, y_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf14, primals_13, buf26, 32768, grid=grid(32768), stream=stream0) del buf14 del primals_13 buf27 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf10, primals_11, buf27, 8192, grid=grid(8192), stream=stream0) del buf10 del primals_11 buf28 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf8, primals_9, buf28, 16384, grid=grid(16384), stream=stream0) del buf8 del primals_9 buf29 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf6, primals_7, buf29, 16384, grid=grid(16384), stream=stream0) del buf6 del primals_7 buf30 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf4, primals_5, buf30, 16384, grid=grid(16384), stream=stream0) del buf4 del primals_5 buf31 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_18.run(buf1, primals_3, buf31, 4096, grid=grid(4096), stream=stream0) del buf1 del primals_3 return (buf23, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf24, buf25, buf26, buf27, buf28, buf29, buf30, buf31, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((3, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SmallDecoder4_16x(nn.Module): def __init__(self): super(SmallDecoder4_16x, self).__init__() self.conv41 = nn.Conv2d(128, 64, 3, 1, 0) self.conv34 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv33 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv32 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv31 = nn.Conv2d(64, 32, 3, 1, 0, dilation=1) self.conv22 = nn.Conv2d(32, 32, 3, 1, 0, dilation=1) self.conv21 = nn.Conv2d(32, 16, 3, 1, 0, dilation=1) self.conv12 = nn.Conv2d(16, 16, 3, 1, 0, dilation=1) self.conv11 = nn.Conv2d(16, 3, 3, 1, 0, dilation=1) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) def forward(self, y): y = self.relu(self.conv41(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv34(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.conv11(self.pad(y)) return y def get_inputs(): return [torch.rand([4, 128, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 10 % 10 x0 = xindex % 10 x4 = xindex // 100 x2 = xindex // 100 % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1 ))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0 ))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_arange_4(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 18 % 18 x0 = xindex % 18 x4 = xindex // 324 x2 = xindex // 324 % 32 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_arange_8(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_9(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10(in_ptr0 , in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 34 % 34 x0 = xindex % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 16 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 16 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 16 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19) = args args.clear() assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_2, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (16,), (1,)) assert_size_stride(primals_16, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_17, (16,), (1,)) assert_size_stride(primals_18, (3, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_19, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128, 6, 6), (4608, 36, 6, 1), torch. float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(18432)](primals_1, buf0, 18432, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK =8, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid (25600)](buf2, buf1, primals_3, buf3, 25600, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 8, 8), (4096, 64, 8, 1)) buf5 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(25600)](buf4, primals_5, buf5, 25600, XBLOCK=128, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 8, 8), (4096, 64, 8, 1)) buf7 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(25600)](buf6, primals_7, buf7, 25600, XBLOCK=128, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 8, 8), (4096, 64, 8, 1)) buf9 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(25600)](buf8, primals_9, buf9, 25600, XBLOCK=128, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 8, 8), (2048, 64, 8, 1)) buf11 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused_arange_4[grid(16)](buf11, 16, XBLOCK=16, num_warps =1, num_stages=1) buf12 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_5[grid(16)](buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6[grid (41472)](buf12, buf10, primals_11, buf13, 41472, XBLOCK=256, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 32, 16, 16), (8192, 256, 16, 1)) buf15 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_7[grid(41472)](buf14 , primals_13, buf15, 41472, XBLOCK=512, num_warps=4, num_stages=1) buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 16, 16, 16), (4096, 256, 16, 1)) buf17 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_arange_8[grid(32)](buf17, 32, XBLOCK=32, num_warps =1, num_stages=1) buf18 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_9[grid(32)](buf18, 32, XBLOCK=32, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_10[ grid(73984)](buf18, buf16, primals_15, buf19, 73984, XBLOCK= 1024, num_warps=4, num_stages=1) buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf21 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_11[grid(73984)]( buf20, primals_17, buf21, 73984, XBLOCK=512, num_warps=8, num_stages=1) buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 3, 32, 32), (3072, 1024, 32, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_12[grid(12288)](buf23, primals_19, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf24 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_13[grid(65536)]( buf20, primals_17, buf24, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf20 del primals_17 buf25 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_14[grid(16384)]( buf16, primals_15, buf25, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf16 del primals_15 buf26 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(32768)]( buf14, primals_13, buf26, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf14 del primals_13 buf27 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(8192)]( buf10, primals_11, buf27, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf10 del primals_11 buf28 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(16384)]( buf8, primals_9, buf28, 16384, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_9 buf29 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(16384)]( buf6, primals_7, buf29, 16384, XBLOCK=128, num_warps=4, num_stages=1) del buf6 del primals_7 buf30 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(16384)]( buf4, primals_5, buf30, 16384, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_5 buf31 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_18[grid(4096)]( buf1, primals_3, buf31, 4096, XBLOCK=256, num_warps=4, num_stages=1 ) del buf1 del primals_3 return (buf23, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf24, buf25, buf26, buf27, buf28, buf29, buf30, buf31) class SmallDecoder4_16xNew(nn.Module): def __init__(self): super(SmallDecoder4_16xNew, self).__init__() self.conv41 = nn.Conv2d(128, 64, 3, 1, 0) self.conv34 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv33 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv32 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv31 = nn.Conv2d(64, 32, 3, 1, 0, dilation=1) self.conv22 = nn.Conv2d(32, 32, 3, 1, 0, dilation=1) self.conv21 = nn.Conv2d(32, 16, 3, 1, 0, dilation=1) self.conv12 = nn.Conv2d(16, 16, 3, 1, 0, dilation=1) self.conv11 = nn.Conv2d(16, 3, 3, 1, 0, dilation=1) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) def forward(self, input_0): primals_2 = self.conv41.weight primals_3 = self.conv41.bias primals_4 = self.conv34.weight primals_5 = self.conv34.bias primals_6 = self.conv33.weight primals_7 = self.conv33.bias primals_8 = self.conv32.weight primals_9 = self.conv32.bias primals_10 = self.conv31.weight primals_11 = self.conv31.bias primals_12 = self.conv22.weight primals_13 = self.conv22.bias primals_14 = self.conv21.weight primals_15 = self.conv21.bias primals_16 = self.conv12.weight primals_17 = self.conv12.bias primals_18 = self.conv11.weight primals_19 = self.conv11.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return output[0]
MingSun-Tse/pytorch-AdaIN
SmallDecoder4_16x
false
2,670
[ "MIT" ]
0
02ae320345232983c754ea233613aedc21e4d348
https://github.com/MingSun-Tse/pytorch-AdaIN/tree/02ae320345232983c754ea233613aedc21e4d348
Conv_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sm/csmn2c5h6ncxnqle756u5rlgewfhiybu5xd5jyz7yap5pkjabpas.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, None) tl.store(out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 1048576, grid=grid(1048576), stream=stream0) return (buf1, primals_1, primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import * import torch.nn as nn class Conv_Block(nn.Module): def __init__(self): super(Conv_Block, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size= 3, stride=1, padding=1, bias=False) nn.init.xavier_uniform_(self.conv.weight, gain=nn.init. calculate_gain('relu')) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.relu(self.conv(x)) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torchvision.transforms import * import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, None) tl.store(out_ptr0 + x0, tmp4, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1048576)](buf1, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) return buf1, primals_1, primals_2, buf2 class Conv_BlockNew(nn.Module): def __init__(self): super(Conv_BlockNew, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size= 3, stride=1, padding=1, bias=False) nn.init.xavier_uniform_(self.conv.weight, gain=nn.init. calculate_gain('relu')) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
FYLSunghwan/VDSR-pytorch
Conv_Block
false
2,671
[ "MIT" ]
0
fb862e97756078db2d5def095d46cc22a07cd014
https://github.com/FYLSunghwan/VDSR-pytorch/tree/fb862e97756078db2d5def095d46cc22a07cd014
CausalConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2a/c2aucoxj5ek5nl3pl5n67fq4vdl55x2rw66tvv2aq23fsb3jvf5q.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # out => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [3, 0, 3, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 7) % 7 x0 = xindex % 7 x2 = (xindex // 49) x4 = xindex tmp0 = (-3) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = (-3) + x0 tmp4 = tmp3 >= tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-15) + x0 + (4*x1) + (16*x2)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6r/c6rjd3rxthhw2ub6d2gtgjazrjeoyhalmj36ujwzgwexsis27e73.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div, mul, pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2, 3], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div), kwargs = {}) triton_per_fused__weight_norm_interface_1 = async_compile.triton('triton_per_fused__weight_norm_interface_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__weight_norm_interface_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp8 = tmp7 / tmp6 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/w5/cw5gytijzzkwnfpq2a2axdsj4pfxgxmwiuzizuyd4bw5uwnanzw7.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %mul, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 784, grid=grid(784), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] triton_per_fused__weight_norm_interface_1.run(buf2, primals_3, primals_2, buf3, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf0, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 return (buf5, buf3, primals_2, primals_3, buf0, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class WNConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, activation=None): super().__init__() self.conv = nn.utils.weight_norm(nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding, bias=bias)) self.out_channel = out_channel if isinstance(kernel_size, int): kernel_size = [kernel_size, kernel_size] self.kernel_size = kernel_size self.activation = activation def forward(self, input): out = self.conv(input) if self.activation is not None: out = self.activation(out) return out class CausalConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding='downright', activation=None): super().__init__() if isinstance(kernel_size, int): kernel_size = [kernel_size] * 2 self.kernel_size = kernel_size if padding == 'downright': pad = [kernel_size[1] - 1, 0, kernel_size[0] - 1, 0] elif padding == 'down' or padding == 'causal': pad = kernel_size[1] // 2 pad = [pad, pad, kernel_size[0] - 1, 0] self.causal = 0 if padding == 'causal': self.causal = kernel_size[1] // 2 self.pad = nn.ZeroPad2d(pad) self.conv = WNConv2d(in_channel, out_channel, kernel_size, stride= stride, padding=0, activation=activation) def forward(self, input): out = self.pad(input) if self.causal > 0: self.conv.conv.weight_v.data[:, :, -1, self.causal:].zero_() out = self.conv(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 7 % 7 x0 = xindex % 7 x2 = xindex // 49 x4 = xindex tmp0 = -3 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = -3 + x0 tmp4 = tmp3 >= tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-15 + x0 + 4 * x1 + 16 * x2), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_per_fused__weight_norm_interface_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp8 = tmp7 / tmp6 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp9, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(784)](primals_1, buf0, 784, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__weight_norm_interface_1[grid(4)](buf2, primals_3, primals_2, buf3, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf4 = extern_kernels.convolution(buf0, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(256)](buf5, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 return buf5, buf3, primals_2, primals_3, buf0, buf2, buf3 class WNConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, activation=None): super().__init__() self.conv = nn.utils.weight_norm(nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding, bias=bias)) self.out_channel = out_channel if isinstance(kernel_size, int): kernel_size = [kernel_size, kernel_size] self.kernel_size = kernel_size self.activation = activation def forward(self, input): out = self.conv(input) if self.activation is not None: out = self.activation(out) return out class CausalConv2dNew(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding='downright', activation=None): super().__init__() if isinstance(kernel_size, int): kernel_size = [kernel_size] * 2 self.kernel_size = kernel_size if padding == 'downright': pad = [kernel_size[1] - 1, 0, kernel_size[0] - 1, 0] elif padding == 'down' or padding == 'causal': pad = kernel_size[1] // 2 pad = [pad, pad, kernel_size[0] - 1, 0] self.causal = 0 if padding == 'causal': self.causal = kernel_size[1] // 2 self.pad = nn.ZeroPad2d(pad) self.conv = WNConv2d(in_channel, out_channel, kernel_size, stride= stride, padding=0, activation=activation) def forward(self, input_0): primals_4 = self.conv.conv.bias primals_2 = self.conv.conv.weight_g primals_1 = self.conv.conv.weight_v primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
MioChiu/vqvae2
CausalConv2d
false
2,672
[ "MIT" ]
0
e57cc7546d3bd02c61387367936f7cd76b75eaae
https://github.com/MioChiu/vqvae2/tree/e57cc7546d3bd02c61387367936f7cd76b75eaae
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r5/cr5s32mdttq7ehywrlu2yeusjbk4hjorkigzofwyklp3iqohmrqm.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] # Source node to ATen node mapping: # output => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7b/c7bf34fgn2dhohe7ejneqlees25vyq6sbe4c5lfvoehzliak2nz6.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.add] # Source node to ATen node mapping: # output => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_5), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bc/cbczd226k4yaplno5um4kv2kzja2bqxxfk5vxncww2eyclqeswab.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_2, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf4, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim): super(MLP, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.fc1 = nn.Linear(input_dim, hidden_dim) self.act = nn.ReLU() self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): hidden = self.fc1(x) relu = self.act(hidden) output = self.fc2(relu[:, -1, :]) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim': 4, 'num_layers': 1, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](buf0, primals_2, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0) del buf2 triton_poi_fused_add_1[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf0, primals_2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), primals_4, buf4 class MLPNew(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim): super(MLPNew, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.fc1 = nn.Linear(input_dim, hidden_dim) self.act = nn.ReLU() self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
NefeliTav/Stock-Prediction
MLP
false
2,673
[ "Apache-2.0" ]
0
b422a246c762685ceb94c9714a2322fce71186e1
https://github.com/NefeliTav/Stock-Prediction/tree/b422a246c762685ceb94c9714a2322fce71186e1
Rot180
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yk/cykfxtpmz573b3mpfj7bxbmd2qw4pqlxedh5nnwa22xvl6sb22dj.py # Topologically Sorted Source Nodes: [flip], Original ATen: [aten.flip] # Source node to ATen node mapping: # flip => rev # Graph fragment: # %rev : [num_users=1] = call_function[target=torch.ops.prims.rev.default](args = (%arg0_1, [2, 3]), kwargs = {}) triton_poi_fused_flip_0 = async_compile.triton('triton_poi_fused_flip_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_flip_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*x0) + (16*x1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [flip], Original ATen: [aten.flip] stream0 = get_raw_stream(0) triton_poi_fused_flip_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def rot180(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-2, -1]) class Rot180(nn.Module): """Rotate a tensor image or a batch of tensor images 180 degrees. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Examples: >>> rot180 = Rot180() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> rot180(input) tensor([[[[1., 1., 0.], [0., 0., 0.], [0., 0., 0.]]]]) """ def __init__(self) ->None: super(Rot180, self).__init__() def forward(self, input: 'torch.Tensor') ->torch.Tensor: return rot180(input) def __repr__(self): return self.__class__.__name__ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * x0 + 16 * x1), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_flip_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def rot180(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-2, -1]) class Rot180New(nn.Module): """Rotate a tensor image or a batch of tensor images 180 degrees. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Examples: >>> rot180 = Rot180() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> rot180(input) tensor([[[[1., 1., 0.], [0., 0., 0.], [0., 0., 0.]]]]) """ def __init__(self) ->None: super(Rot180New, self).__init__() def __repr__(self): return self.__class__.__name__ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
Rot180
false
2,674
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
BinaryFocalLossWithLogits
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k6/ck65c2dgolwnidsoaorjr6l3cmw4zwwifsnyth2aiafv7g2y42xb.py # Topologically Sorted Source Nodes: [probs, sub, add, pow_1, mul, mul_1, add_1, log, mul_2, add_2, pow_2, mul_3, sub_1, mul_4, sub_2, add_3, log_1, mul_5, loss_tmp, loss_tmp_1], Original ATen: [aten.sigmoid, aten.rsub, aten.add, aten.pow, aten.mul, aten.log, aten.sub, aten.squeeze] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # log => log # log_1 => log_1 # loss_tmp => sub_3 # loss_tmp_1 => squeeze # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # pow_1 => pow_1 # pow_2 => pow_2 # probs => sigmoid # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-08), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %unsqueeze), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, 1e-08), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_2, 2.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, -3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %unsqueeze), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, 1e-08), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %log_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_5), kwargs = {}) # %squeeze : [num_users=1] = call_function[target=torch.ops.aten.squeeze.dim](args = (%sub_3, 1), kwargs = {}) triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0 = async_compile.triton('triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 256 x0 = xindex % 64 x2 = (xindex // 256) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 1e-08 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp5 tmp7 = -4.0 tmp8 = tmp6 * tmp7 tmp10 = tmp8 * tmp9 tmp11 = tmp1 + tmp4 tmp12 = tl_math.log(tmp11) tmp13 = tmp10 * tmp12 tmp14 = tmp11 * tmp11 tmp15 = -3.0 tmp16 = tmp14 * tmp15 tmp17 = tmp2 - tmp9 tmp18 = tmp16 * tmp17 tmp19 = tl_math.log(tmp5) tmp20 = tmp18 * tmp19 tmp21 = tmp13 - tmp20 tl.store(out_ptr0 + (x4), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs, sub, add, pow_1, mul, mul_1, add_1, log, mul_2, add_2, pow_2, mul_3, sub_1, mul_4, sub_2, add_3, log_1, mul_5, loss_tmp, loss_tmp_1], Original ATen: [aten.sigmoid, aten.rsub, aten.add, aten.pow, aten.mul, aten.log, aten.sub, aten.squeeze] stream0 = get_raw_stream(0) triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0.run(arg0_1, arg1_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def binary_focal_loss_with_logits(input: 'torch.Tensor', target: 'torch.Tensor', alpha: 'float'=0.25, gamma: 'float'=2.0, reduction: 'str'='none', eps: 'float'=1e-08) ->torch.Tensor: """Function that computes Binary Focal loss. .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: input (torch.Tensor): input data tensor with shape :math:`(N, 1, *)`. target (torch.Tensor): the target tensor with shape :math:`(N, 1, *)`. alpha (float): Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. Default: 0.25. gamma (float): Focusing parameter :math:`\\gamma >= 0`. Default: 2.0. reduction (str, optional): Specifies the reduction to apply to the. Default: 'none'. eps (float): for numerically stability when dividing. Default: 1e-8. Returns: torch.tensor: the computed loss. Examples: >>> num_classes = 1 >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> logits = torch.tensor([[[[6.325]]],[[[5.26]]],[[[87.49]]]]) >>> labels = torch.tensor([[[1.]],[[1.]],[[0.]]]) >>> binary_focal_loss_with_logits(logits, labels, **kwargs) tensor(4.6052) """ if not isinstance(input, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(input))) if not len(input.shape) >= 2: raise ValueError('Invalid input shape, we expect BxCx*. Got: {}'. format(input.shape)) if input.size(0) != target.size(0): raise ValueError( 'Expected input batch_size ({}) to match target batch_size ({}).' .format(input.size(0), target.size(0))) probs = torch.sigmoid(input) target = target.unsqueeze(dim=1) loss_tmp = -alpha * torch.pow(1.0 - probs + eps, gamma ) * target * torch.log(probs + eps) - (1 - alpha) * torch.pow(probs + eps, gamma) * (1.0 - target) * torch.log(1.0 - probs + eps) loss_tmp = loss_tmp.squeeze(dim=1) if reduction == 'none': loss = loss_tmp elif reduction == 'mean': loss = torch.mean(loss_tmp) elif reduction == 'sum': loss = torch.sum(loss_tmp) else: raise NotImplementedError('Invalid reduction mode: {}'.format( reduction)) return loss class BinaryFocalLossWithLogits(nn.Module): """Criterion that computes Focal loss. According to :cite:`lin2017focal`, the Focal loss is computed as follows: .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: alpha (float): Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. gamma (float): Focusing parameter :math:`\\gamma >= 0`. reduction (str, optional): Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Default: ‘none’. Shape: - Input: :math:`(N, 1, *)`. - Target: :math:`(N, 1, *)`. Examples: >>> N = 1 # num_classes >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> loss = BinaryFocalLossWithLogits(**kwargs) >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = loss(input, target) >>> output.backward() """ def __init__(self, alpha: 'float', gamma: 'float'=2.0, reduction: 'str' ='none') ->None: super(BinaryFocalLossWithLogits, self).__init__() self.alpha: 'float' = alpha self.gamma: 'float' = gamma self.reduction: 'str' = reduction self.eps: 'float' = 1e-08 def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: return binary_focal_loss_with_logits(input, target, self.alpha, self.gamma, self.reduction, self.eps) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'alpha': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 256 x0 = xindex % 64 x2 = xindex // 256 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 1e-08 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp5 tmp7 = -4.0 tmp8 = tmp6 * tmp7 tmp10 = tmp8 * tmp9 tmp11 = tmp1 + tmp4 tmp12 = tl_math.log(tmp11) tmp13 = tmp10 * tmp12 tmp14 = tmp11 * tmp11 tmp15 = -3.0 tmp16 = tmp14 * tmp15 tmp17 = tmp2 - tmp9 tmp18 = tmp16 * tmp17 tmp19 = tl_math.log(tmp5) tmp20 = tmp18 * tmp19 tmp21 = tmp13 - tmp20 tl.store(out_ptr0 + x4, tmp21, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_log_mul_pow_rsub_sigmoid_squeeze_sub_0[grid(1024) ](arg0_1, arg1_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1 ) del arg0_1 del arg1_1 return buf0, def binary_focal_loss_with_logits(input: 'torch.Tensor', target: 'torch.Tensor', alpha: 'float'=0.25, gamma: 'float'=2.0, reduction: 'str'='none', eps: 'float'=1e-08) ->torch.Tensor: """Function that computes Binary Focal loss. .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: input (torch.Tensor): input data tensor with shape :math:`(N, 1, *)`. target (torch.Tensor): the target tensor with shape :math:`(N, 1, *)`. alpha (float): Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. Default: 0.25. gamma (float): Focusing parameter :math:`\\gamma >= 0`. Default: 2.0. reduction (str, optional): Specifies the reduction to apply to the. Default: 'none'. eps (float): for numerically stability when dividing. Default: 1e-8. Returns: torch.tensor: the computed loss. Examples: >>> num_classes = 1 >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> logits = torch.tensor([[[[6.325]]],[[[5.26]]],[[[87.49]]]]) >>> labels = torch.tensor([[[1.]],[[1.]],[[0.]]]) >>> binary_focal_loss_with_logits(logits, labels, **kwargs) tensor(4.6052) """ if not isinstance(input, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(input))) if not len(input.shape) >= 2: raise ValueError('Invalid input shape, we expect BxCx*. Got: {}'. format(input.shape)) if input.size(0) != target.size(0): raise ValueError( 'Expected input batch_size ({}) to match target batch_size ({}).' .format(input.size(0), target.size(0))) probs = torch.sigmoid(input) target = target.unsqueeze(dim=1) loss_tmp = -alpha * torch.pow(1.0 - probs + eps, gamma ) * target * torch.log(probs + eps) - (1 - alpha) * torch.pow(probs + eps, gamma) * (1.0 - target) * torch.log(1.0 - probs + eps) loss_tmp = loss_tmp.squeeze(dim=1) if reduction == 'none': loss = loss_tmp elif reduction == 'mean': loss = torch.mean(loss_tmp) elif reduction == 'sum': loss = torch.sum(loss_tmp) else: raise NotImplementedError('Invalid reduction mode: {}'.format( reduction)) return loss class BinaryFocalLossWithLogitsNew(nn.Module): """Criterion that computes Focal loss. According to :cite:`lin2017focal`, the Focal loss is computed as follows: .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: alpha (float): Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. gamma (float): Focusing parameter :math:`\\gamma >= 0`. reduction (str, optional): Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Default: ‘none’. Shape: - Input: :math:`(N, 1, *)`. - Target: :math:`(N, 1, *)`. Examples: >>> N = 1 # num_classes >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> loss = BinaryFocalLossWithLogits(**kwargs) >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = loss(input, target) >>> output.backward() """ def __init__(self, alpha: 'float', gamma: 'float'=2.0, reduction: 'str' ='none') ->None: super(BinaryFocalLossWithLogitsNew, self).__init__() self.alpha: 'float' = alpha self.gamma: 'float' = gamma self.reduction: 'str' = reduction self.eps: 'float' = 1e-08 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NickleDave/kornia
BinaryFocalLossWithLogits
false
2,675
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
Invertible1x1Conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2d/c2dur4cqvjdmojoen7nz625qbl3hymirj3ihsdj2scx7nk2xzzx5.py # Topologically Sorted Source Nodes: [logdet, log_det_W], Original ATen: [aten.eq, aten.mul] # Source node to ATen node mapping: # log_det_W => mul # logdet => eq # Graph fragment: # %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem, -1.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 16), kwargs = {}) triton_poi_fused_eq_mul_0 = async_compile.triton('triton_poi_fused_eq_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp4 = tl.load(in_out_ptr0 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp2 = -1.0 tmp3 = tmp1 == tmp2 tmp6 = float("nan") tmp7 = tl.where(tmp3, tmp6, tmp5) tmp8 = 16.0 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp3, None) tl.store(in_out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [logdet], Original ATen: [aten._linalg_slogdet] buf0 = torch.ops.aten._linalg_slogdet.default(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0)) buf1 = buf0[0] buf2 = buf0[1] buf3 = buf0[2] buf4 = buf0[3] del buf0 buf5 = empty_strided_cuda((1, ), (1, ), torch.bool) buf7 = reinterpret_tensor(buf2, (), (), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [logdet, log_det_W], Original ATen: [aten.eq, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_eq_mul_0.run(buf7, buf1, buf5, 1, grid=grid(1), stream=stream0) del buf1 # Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4), (16, 4, 1)) return (buf6, buf7, primals_1, primals_2, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch.autograd import Variable import torch.utils.data class Invertible1x1Conv(torch.nn.Module): """ The layer outputs both the convolution, and the log determinant of its weight matrix. If reverse=True it does convolution with inverse """ def __init__(self, c): super(Invertible1x1Conv, self).__init__() self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding= 0, bias=False) W = torch.qr(torch.FloatTensor(c, c).normal_())[0] if torch.det(W) < 0: W[:, 0] = -1 * W[:, 0] W = W.view(c, c, 1) W = W.contiguous() self.conv.weight.data = W def forward(self, z): batch_size, _group_size, n_of_groups = z.size() W = self.conv.weight.squeeze() log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0). float()).squeeze() z = self.conv(z) return z, log_det_W def infer(self, z): _batch_size, _group_size, _n_of_groups = z.size() W = self.conv.weight.squeeze() if not hasattr(self, 'W_inverse'): W_inverse = W.float().inverse() W_inverse = Variable(W_inverse[..., None]) if z.type() == 'torch.cuda.HalfTensor' or z.type( ) == 'torch.HalfTensor': W_inverse = W_inverse.half() self.W_inverse = W_inverse z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) return z def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'c': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F from torch.autograd import Variable import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_eq_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp4 = tl.load(in_out_ptr0 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp2 = -1.0 tmp3 = tmp1 == tmp2 tmp6 = float('nan') tmp7 = tl.where(tmp3, tmp6, tmp5) tmp8 = 16.0 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp3, None) tl.store(in_out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp9, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten._linalg_slogdet.default(reinterpret_tensor( primals_2, (1, 4, 4), (16, 4, 1), 0)) buf1 = buf0[0] buf2 = buf0[1] buf3 = buf0[2] buf4 = buf0[3] del buf0 buf5 = empty_strided_cuda((1,), (1,), torch.bool) buf7 = reinterpret_tensor(buf2, (), (), 0) del buf2 get_raw_stream(0) triton_poi_fused_eq_mul_0[grid(1)](buf7, buf1, buf5, 1, XBLOCK=1, num_warps=1, num_stages=1) del buf1 buf6 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4), (16, 4, 1)) return buf6, buf7, primals_1, primals_2, buf3, buf4, buf5 class Invertible1x1ConvNew(torch.nn.Module): """ The layer outputs both the convolution, and the log determinant of its weight matrix. If reverse=True it does convolution with inverse """ def __init__(self, c): super(Invertible1x1ConvNew, self).__init__() self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding= 0, bias=False) W = torch.qr(torch.FloatTensor(c, c).normal_())[0] if torch.det(W) < 0: W[:, 0] = -1 * W[:, 0] W = W.view(c, c, 1) W = W.contiguous() self.conv.weight.data = W def infer(self, z): _batch_size, _group_size, _n_of_groups = z.size() W = self.conv.weight.squeeze() if not hasattr(self, 'W_inverse'): W_inverse = W.float().inverse() W_inverse = Variable(W_inverse[..., None]) if z.type() == 'torch.cuda.HalfTensor' or z.type( ) == 'torch.HalfTensor': W_inverse = W_inverse.half() self.W_inverse = W_inverse z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) return z def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
Moon-sung-woo/VAE_Tacotron_korean
Invertible1x1Conv
false
2,676
[ "BSD-3-Clause" ]
0
dafa4ea557235350211b7a2187da1d6855eb5e9f
https://github.com/Moon-sung-woo/VAE_Tacotron_korean/tree/dafa4ea557235350211b7a2187da1d6855eb5e9f
RKDAngleLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/br/cbrq3mokok2a7y3prosu4acvjezfxctq5jmsx6qei4xhyhorsobg.py # Topologically Sorted Source Nodes: [s, s_1], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.clamp_min] # Source node to ATen node mapping: # s => sub_1 # s_1 => clamp_min_1, pow_3, pow_4, sum_2 # Graph fragment: # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_2, %unsqueeze_3), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-12), kwargs = {}) triton_poi_fused_clamp_min_linalg_vector_norm_sub_0 = async_compile.triton('triton_poi_fused_clamp_min_linalg_vector_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_linalg_vector_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_linalg_vector_norm_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = libdevice.sqrt(tmp18) tmp20 = 1e-12 tmp21 = triton_helpers.maximum(tmp19, tmp20) tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fq/cfq2cxt2zxwkadjog2cyjjj6y6tsw7uxcy3rlvnuuc2o4o63bnrq.py # Topologically Sorted Source Nodes: [s, s_1], Original ATen: [aten.sub, aten.div] # Source node to ATen node mapping: # s => sub_1 # s_1 => div_1 # Graph fragment: # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_2, %unsqueeze_3), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %expand_1), kwargs = {}) triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 16 x0 = xindex % 4 x2 = (xindex // 16) x4 = (xindex // 4) x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pu/cpuw5nxqsbhmwffwyyjmechnczskntdeind6rtdls4kec7dg4jgu.py # Topologically Sorted Source Nodes: [smooth_l1_loss], Original ATen: [aten.smooth_l1_loss] # Source node to ATen node mapping: # smooth_l1_loss => abs_1, div_2, lt, mean, mul, pow_5, sub_2, sub_3, where # Graph fragment: # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %view), kwargs = {}) # %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_5, 0.5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 1.0), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div_2, %sub_3), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) triton_per_fused_smooth_l1_loss_2 = async_compile.triton('triton_per_fused_smooth_l1_loss_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_smooth_l1_loss_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_smooth_l1_loss_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = tmp3 * tmp3 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = tmp8 * tmp4 tmp10 = tmp3 - tmp7 tmp11 = tl.where(tmp5, tmp9, tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 64.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [s, s_1], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.clamp_min] stream0 = get_raw_stream(0) triton_poi_fused_clamp_min_linalg_vector_norm_sub_0.run(arg1_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [s, s_1], Original ATen: [aten.sub, aten.div] triton_poi_fused_div_sub_1.run(arg1_1, buf0, buf1, 64, grid=grid(64), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf1, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf2) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [t, t_1], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.clamp_min] triton_poi_fused_clamp_min_linalg_vector_norm_sub_0.run(arg0_1, buf3, 16, grid=grid(16), stream=stream0) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [t, t_1], Original ATen: [aten.sub, aten.div] triton_poi_fused_div_sub_1.run(arg0_1, buf3, buf4, 64, grid=grid(64), stream=stream0) del arg0_1 del buf3 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf5) del buf4 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [smooth_l1_loss], Original ATen: [aten.smooth_l1_loss] triton_per_fused_smooth_l1_loss_2.run(buf7, buf2, buf5, 1, 64, grid=grid(1), stream=stream0) del buf2 del buf5 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class RKDAngleLoss(nn.Module): """ Module for calculating RKD Angle Loss """ def forward(self, teacher, student, normalize=True): """ Forward function :param teacher (torch.FloatTensor): Prediction made by the teacher model :param student (torch.FloatTensor): Prediction made by the student model :param normalize (bool): True if inputs need to be normalized """ with torch.no_grad(): t = teacher.unsqueeze(0) - teacher.unsqueeze(1) if normalize: t = F.normalize(t, p=2, dim=2) t = torch.bmm(t, t.transpose(1, 2)).view(-1) s = student.unsqueeze(0) - student.unsqueeze(1) if normalize: s = F.normalize(s, p=2, dim=2) s = torch.bmm(s, s.transpose(1, 2)).view(-1) return F.smooth_l1_loss(s, t) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_min_linalg_vector_norm_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = libdevice.sqrt(tmp18) tmp20 = 1e-12 tmp21 = triton_helpers.maximum(tmp19, tmp20) tl.store(out_ptr0 + x2, tmp21, xmask) @triton.jit def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 16 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex // 4 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_per_fused_smooth_l1_loss_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = tmp3 * tmp3 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = tmp8 * tmp4 tmp10 = tmp3 - tmp7 tmp11 = tl.where(tmp5, tmp9, tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 64.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_min_linalg_vector_norm_sub_0[grid(16)](arg1_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_div_sub_1[grid(64)](arg1_1, buf0, buf1, 64, XBLOCK =64, num_warps=1, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf1, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf2) buf3 = buf0 del buf0 triton_poi_fused_clamp_min_linalg_vector_norm_sub_0[grid(16)](arg0_1, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = buf1 del buf1 triton_poi_fused_div_sub_1[grid(64)](arg0_1, buf3, buf4, 64, XBLOCK =64, num_warps=1, num_stages=1) del arg0_1 del buf3 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf5) del buf4 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6 del buf6 triton_per_fused_smooth_l1_loss_2[grid(1)](buf7, buf2, buf5, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del buf2 del buf5 return buf7, class RKDAngleLossNew(nn.Module): """ Module for calculating RKD Angle Loss """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NeelayS/KD_Lib
RKDAngleLoss
false
2,677
[ "MIT" ]
0
c3f8c7cef76772d14862260e61c1d1c52c58f58e
https://github.com/NeelayS/KD_Lib/tree/c3f8c7cef76772d14862260e61c1d1c52c58f58e
CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yu/cyugsqt5wmhavnwlywvwlunxnsszvyjnt2cs2m24tm6emfgsepcu.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.relu, aten.max_pool2d_with_indices, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # x_2 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze_1, [1, 1], [1, 1], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.full([1], 0, tl.int8) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp4, xmask) tl.store(out_ptr2 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_8 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.int8) buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.relu, aten.max_pool2d_with_indices, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0.run(buf1, primals_2, buf2, buf3, buf12, 16, grid=grid(16), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 4, 4), (0, 4, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf4, (1, 4, 4), (16, 4, 1)) buf5 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0); del buf4 # reuse buf6 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.int8) buf7 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.relu, aten.max_pool2d_with_indices, aten.threshold_backward] triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0.run(buf5, primals_5, buf6, buf7, buf11, 16, grid=grid(16), stream=stream0) del primals_5 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf9, primals_7, 16, grid=grid(16), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_9 return (buf10, primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), buf2, reinterpret_tensor(buf3, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0), buf6, reinterpret_tensor(buf7, (4, 4), (4, 1), 0), buf9, primals_8, primals_6, buf11, buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(CNN, self).__init__() self.hidden_dim = hidden_dim self.conv1 = nn.Conv1d(input_dim, input_dim, kernel_size=1) self.conv2 = nn.Conv1d(input_dim, input_dim, kernel_size=1) self.fc1 = nn.Linear(input_dim, input_dim) self.fc2 = nn.Linear(input_dim, output_dim) self.dropout = nn.Dropout(1e-05) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool1d(x, kernel_size=1) x = self.conv2(x) x = F.relu(x) x = F.max_pool1d(x, kernel_size=1) x = x.view(x.shape[0], -1) x = self.fc1(x) x = F.relu(x) x = self.dropout(x) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0( in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.full([1], 0, tl.int8) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp4, xmask) tl.store(out_ptr2 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.int8) buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0[grid (16)](buf1, primals_2, buf2, buf3, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 4, 4 ), (0, 4, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf4, (1, 4, 4), (16, 4, 1)) buf5 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0) del buf4 buf6 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.int8) buf7 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_0[grid (16)](buf5, primals_5, buf6, buf7, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_1[grid(16)](buf9, primals_7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_9 return buf10, primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0 ), buf2, reinterpret_tensor(buf3, (1, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0 ), buf6, reinterpret_tensor(buf7, (4, 4), (4, 1), 0 ), buf9, primals_8, primals_6, buf11, buf12 class CNNNew(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(CNNNew, self).__init__() self.hidden_dim = hidden_dim self.conv1 = nn.Conv1d(input_dim, input_dim, kernel_size=1) self.conv2 = nn.Conv1d(input_dim, input_dim, kernel_size=1) self.fc1 = nn.Linear(input_dim, input_dim) self.fc2 = nn.Linear(input_dim, output_dim) self.dropout = nn.Dropout(1e-05) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = self.fc1.weight primals_7 = self.fc1.bias primals_6 = self.fc2.weight primals_9 = self.fc2.bias primals_8 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
NefeliTav/Stock-Prediction
CNN
false
2,678
[ "Apache-2.0" ]
0
b422a246c762685ceb94c9714a2322fce71186e1
https://github.com/NefeliTav/Stock-Prediction/tree/b422a246c762685ceb94c9714a2322fce71186e1
ATLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r4/cr4ijbql3n46yiy5we5s6weyb7allspkr7oarogqxgaxw5tz6nva.py # Topologically Sorted Source Nodes: [pow_2, mean_1, view_1, xS], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] # Source node to ATen node mapping: # mean_1 => mean_1 # pow_2 => pow_4 # view_1 => view_1 # xS => pow_5, sum_2 # Graph fragment: # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_3, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_4, [1]), kwargs = {}) # %view_1 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_1, [4, -1]), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {}) triton_poi_fused_linalg_vector_norm_mean_pow_view_0 = async_compile.triton('triton_poi_fused_linalg_vector_norm_mean_pow_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_mean_pow_view_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_pow_view_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (64 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (68 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (72 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (76 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (65 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (69 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (73 + (16*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (77 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (66 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (70 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (74 + (16*x0)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (78 + (16*x0)), xmask, eviction_policy='evict_last') tmp42 = tl.load(in_ptr0 + (67 + (16*x0)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr0 + (71 + (16*x0)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (75 + (16*x0)), xmask, eviction_policy='evict_last') tmp50 = tl.load(in_ptr0 + (79 + (16*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp11 tmp26 = tmp25 * tmp25 tmp27 = tmp13 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tmp38 / tmp11 tmp40 = tmp39 * tmp39 tmp41 = tmp27 + tmp40 tmp43 = tmp42 * tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp51 = tmp50 * tmp50 tmp52 = tmp49 + tmp51 tmp53 = tmp52 / tmp11 tmp54 = tmp53 * tmp53 tmp55 = tmp41 + tmp54 tl.store(out_ptr0 + (x0), tmp55, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/va/cvacg3rkk3nsf7xm7fpn4m5gee6woqje7dwczibojkydtc4qbeh6.py # Topologically Sorted Source Nodes: [pow_5, mean_4, view_3, xS_1], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] # Source node to ATen node mapping: # mean_4 => mean_4 # pow_5 => pow_11 # view_3 => view_3 # xS_1 => pow_12, sum_4 # Graph fragment: # %pow_11 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_4, 2), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_11, [1]), kwargs = {}) # %view_3 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_4, [4, -1]), kwargs = {}) # %pow_12 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_3, 2.0), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_12, [1], True), kwargs = {}) triton_poi_fused_linalg_vector_norm_mean_pow_view_1 = async_compile.triton('triton_poi_fused_linalg_vector_norm_mean_pow_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_mean_pow_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_pow_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (128 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (132 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (136 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (140 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (129 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (133 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (137 + (16*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (141 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (130 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (134 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (138 + (16*x0)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (142 + (16*x0)), xmask, eviction_policy='evict_last') tmp42 = tl.load(in_ptr0 + (131 + (16*x0)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr0 + (135 + (16*x0)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (139 + (16*x0)), xmask, eviction_policy='evict_last') tmp50 = tl.load(in_ptr0 + (143 + (16*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp11 tmp26 = tmp25 * tmp25 tmp27 = tmp13 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tmp38 / tmp11 tmp40 = tmp39 * tmp39 tmp41 = tmp27 + tmp40 tmp43 = tmp42 * tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp51 = tmp50 * tmp50 tmp52 = tmp49 + tmp51 tmp53 = tmp52 / tmp11 tmp54 = tmp53 * tmp53 tmp55 = tmp41 + tmp54 tl.store(out_ptr0 + (x0), tmp55, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yv/cyvgwhhtm6ud63hewz3gf7fjbda6dnxb5eanbapyo64o2foifa4x.py # Topologically Sorted Source Nodes: [pow_8, mean_7, view_5, xS_2], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] # Source node to ATen node mapping: # mean_7 => mean_7 # pow_8 => pow_18 # view_5 => view_5 # xS_2 => pow_19, sum_6 # Graph fragment: # %pow_18 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_5, 2), kwargs = {}) # %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_18, [1]), kwargs = {}) # %view_5 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_7, [4, -1]), kwargs = {}) # %pow_19 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_5, 2.0), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_19, [1], True), kwargs = {}) triton_poi_fused_linalg_vector_norm_mean_pow_view_2 = async_compile.triton('triton_poi_fused_linalg_vector_norm_mean_pow_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_mean_pow_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_pow_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (192 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (196 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (200 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (204 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (193 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (197 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (201 + (16*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (205 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (194 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (198 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (202 + (16*x0)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (206 + (16*x0)), xmask, eviction_policy='evict_last') tmp42 = tl.load(in_ptr0 + (195 + (16*x0)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr0 + (199 + (16*x0)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (203 + (16*x0)), xmask, eviction_policy='evict_last') tmp50 = tl.load(in_ptr0 + (207 + (16*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp11 tmp26 = tmp25 * tmp25 tmp27 = tmp13 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tmp38 / tmp11 tmp40 = tmp39 * tmp39 tmp41 = tmp27 + tmp40 tmp43 = tmp42 * tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp51 = tmp50 * tmp50 tmp52 = tmp49 + tmp51 tmp53 = tmp52 / tmp11 tmp54 = tmp53 * tmp53 tmp55 = tmp41 + tmp54 tl.store(out_ptr0 + (x0), tmp55, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mz/cmzocfsmq7r332qu4m52gvaaglopfmxjfxpzgw344zi7wa6qlyr7.py # Topologically Sorted Source Nodes: [pow_2, mean_1, view_1, xS, pow_1, mean, view, xT, sub, pow_3, mean_2, loss, pow_5, mean_4, view_3, xS_1, pow_4, mean_3, view_2, xT_1, sub_1, pow_6, mean_5, loss_1, pow_8, mean_7, view_5, xS_2, pow_7, mean_6, view_4, xT_2, sub_2, pow_9, mean_8, loss_2], Original ATen: [aten.pow, aten.mean, aten.view, aten.div, aten.sub, aten.add] # Source node to ATen node mapping: # loss => add # loss_1 => add_1 # loss_2 => add_2 # mean => mean # mean_1 => mean_1 # mean_2 => mean_2 # mean_3 => mean_3 # mean_4 => mean_4 # mean_5 => mean_5 # mean_6 => mean_6 # mean_7 => mean_7 # mean_8 => mean_8 # pow_1 => pow_1 # pow_2 => pow_4 # pow_3 => pow_7 # pow_4 => pow_8 # pow_5 => pow_11 # pow_6 => pow_14 # pow_7 => pow_15 # pow_8 => pow_18 # pow_9 => pow_21 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # view => view # view_1 => view_1 # view_2 => view_2 # view_3 => view_3 # view_4 => view_4 # view_5 => view_5 # xS => div_1 # xS_1 => div_3 # xS_2 => div_5 # xT => div # xT_1 => div_2 # xT_2 => div_4 # Graph fragment: # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_3, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_4, [1]), kwargs = {}) # %view_1 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_1, [4, -1]), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %expand_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1]), kwargs = {}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean, [4, -1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %expand), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_1, %div), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_7,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, 0.0), kwargs = {}) # %pow_11 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_4, 2), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_11, [1]), kwargs = {}) # %view_3 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_4, [4, -1]), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_3, %expand_3), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_1, 2), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_8, [1]), kwargs = {}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_3, [4, -1]), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_3, %div_2), kwargs = {}) # %pow_14 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_14,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_5), kwargs = {}) # %pow_18 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_5, 2), kwargs = {}) # %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_18, [1]), kwargs = {}) # %view_5 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_7, [4, -1]), kwargs = {}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_5, %expand_5), kwargs = {}) # %pow_15 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_2, 2), kwargs = {}) # %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_15, [1]), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean_6, [4, -1]), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_4, %expand_4), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_5, %div_4), kwargs = {}) # %pow_21 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_8 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_21,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mean_8), kwargs = {}) triton_per_fused_add_div_mean_pow_sub_view_3 = async_compile.triton('triton_per_fused_add_div_mean_pow_sub_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {9: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 10), equal_to_1=(9,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_pow_sub_view_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 30, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_pow_sub_view_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = (rindex // 4) r2 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0 + (16*r1)), None) tmp2 = tl.load(in_ptr0 + (68 + r0 + (16*r1)), None) tmp5 = tl.load(in_ptr0 + (72 + r0 + (16*r1)), None) tmp8 = tl.load(in_ptr0 + (76 + r0 + (16*r1)), None) tmp13 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr2 + (64 + r0 + (16*r1)), None) tmp20 = tl.load(in_ptr2 + (68 + r0 + (16*r1)), None) tmp23 = tl.load(in_ptr2 + (72 + r0 + (16*r1)), None) tmp26 = tl.load(in_ptr2 + (76 + r0 + (16*r1)), None) tmp30 = tl.load(in_ptr3 + (r1), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (128 + r0 + (16*r1)), None) tmp41 = tl.load(in_ptr0 + (132 + r0 + (16*r1)), None) tmp44 = tl.load(in_ptr0 + (136 + r0 + (16*r1)), None) tmp47 = tl.load(in_ptr0 + (140 + r0 + (16*r1)), None) tmp51 = tl.load(in_ptr4 + (r1), None, eviction_policy='evict_last') tmp55 = tl.load(in_ptr2 + (128 + r0 + (16*r1)), None) tmp57 = tl.load(in_ptr2 + (132 + r0 + (16*r1)), None) tmp60 = tl.load(in_ptr2 + (136 + r0 + (16*r1)), None) tmp63 = tl.load(in_ptr2 + (140 + r0 + (16*r1)), None) tmp67 = tl.load(in_ptr5 + (r1), None, eviction_policy='evict_last') tmp76 = tl.load(in_ptr0 + (192 + r0 + (16*r1)), None) tmp78 = tl.load(in_ptr0 + (196 + r0 + (16*r1)), None) tmp81 = tl.load(in_ptr0 + (200 + r0 + (16*r1)), None) tmp84 = tl.load(in_ptr0 + (204 + r0 + (16*r1)), None) tmp88 = tl.load(in_ptr6 + (r1), None, eviction_policy='evict_last') tmp92 = tl.load(in_ptr2 + (192 + r0 + (16*r1)), None) tmp94 = tl.load(in_ptr2 + (196 + r0 + (16*r1)), None) tmp97 = tl.load(in_ptr2 + (200 + r0 + (16*r1)), None) tmp100 = tl.load(in_ptr2 + (204 + r0 + (16*r1)), None) tmp104 = tl.load(in_ptr7 + (r1), None, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-12 tmp16 = triton_helpers.maximum(tmp14, tmp15) tmp17 = tmp12 / tmp16 tmp19 = tmp18 * tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp27 = tmp26 * tmp26 tmp28 = tmp25 + tmp27 tmp29 = tmp28 / tmp11 tmp31 = libdevice.sqrt(tmp30) tmp32 = triton_helpers.maximum(tmp31, tmp15) tmp33 = tmp29 / tmp32 tmp34 = tmp17 - tmp33 tmp35 = tmp34 * tmp34 tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.sum(tmp36, 1)[:, None] tmp40 = tmp39 * tmp39 tmp42 = tmp41 * tmp41 tmp43 = tmp40 + tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp50 = tmp49 / tmp11 tmp52 = libdevice.sqrt(tmp51) tmp53 = triton_helpers.maximum(tmp52, tmp15) tmp54 = tmp50 / tmp53 tmp56 = tmp55 * tmp55 tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp64 = tmp63 * tmp63 tmp65 = tmp62 + tmp64 tmp66 = tmp65 / tmp11 tmp68 = libdevice.sqrt(tmp67) tmp69 = triton_helpers.maximum(tmp68, tmp15) tmp70 = tmp66 / tmp69 tmp71 = tmp54 - tmp70 tmp72 = tmp71 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = tl.sum(tmp73, 1)[:, None] tmp77 = tmp76 * tmp76 tmp79 = tmp78 * tmp78 tmp80 = tmp77 + tmp79 tmp82 = tmp81 * tmp81 tmp83 = tmp80 + tmp82 tmp85 = tmp84 * tmp84 tmp86 = tmp83 + tmp85 tmp87 = tmp86 / tmp11 tmp89 = libdevice.sqrt(tmp88) tmp90 = triton_helpers.maximum(tmp89, tmp15) tmp91 = tmp87 / tmp90 tmp93 = tmp92 * tmp92 tmp95 = tmp94 * tmp94 tmp96 = tmp93 + tmp95 tmp98 = tmp97 * tmp97 tmp99 = tmp96 + tmp98 tmp101 = tmp100 * tmp100 tmp102 = tmp99 + tmp101 tmp103 = tmp102 / tmp11 tmp105 = libdevice.sqrt(tmp104) tmp106 = triton_helpers.maximum(tmp105, tmp15) tmp107 = tmp103 / tmp106 tmp108 = tmp91 - tmp107 tmp109 = tmp108 * tmp108 tmp110 = tl.broadcast_to(tmp109, [XBLOCK, RBLOCK]) tmp112 = tl.sum(tmp110, 1)[:, None] tmp113 = 16.0 tmp114 = tmp38 / tmp113 tmp115 = 0.0 tmp116 = tmp114 + tmp115 tmp117 = tmp75 / tmp113 tmp118 = tmp116 + tmp117 tmp119 = tmp112 / tmp113 tmp120 = tmp118 + tmp119 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp120, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [pow_2, mean_1, view_1, xS], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] stream0 = get_raw_stream(0) triton_poi_fused_linalg_vector_norm_mean_pow_view_0.run(arg1_1, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mean, view, xT], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] triton_poi_fused_linalg_vector_norm_mean_pow_view_0.run(arg0_1, buf1, 4, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [pow_5, mean_4, view_3, xS_1], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] triton_poi_fused_linalg_vector_norm_mean_pow_view_1.run(arg1_1, buf4, 4, grid=grid(4), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [pow_4, mean_3, view_2, xT_1], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] triton_poi_fused_linalg_vector_norm_mean_pow_view_1.run(arg0_1, buf5, 4, grid=grid(4), stream=stream0) buf8 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [pow_8, mean_7, view_5, xS_2], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] triton_poi_fused_linalg_vector_norm_mean_pow_view_2.run(arg1_1, buf8, 4, grid=grid(4), stream=stream0) buf9 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [pow_7, mean_6, view_4, xT_2], Original ATen: [aten.pow, aten.mean, aten.view, aten.linalg_vector_norm] triton_poi_fused_linalg_vector_norm_mean_pow_view_2.run(arg0_1, buf9, 4, grid=grid(4), stream=stream0) buf11 = empty_strided_cuda((), (), torch.float32) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [pow_2, mean_1, view_1, xS, pow_1, mean, view, xT, sub, pow_3, mean_2, loss, pow_5, mean_4, view_3, xS_1, pow_4, mean_3, view_2, xT_1, sub_1, pow_6, mean_5, loss_1, pow_8, mean_7, view_5, xS_2, pow_7, mean_6, view_4, xT_2, sub_2, pow_9, mean_8, loss_2], Original ATen: [aten.pow, aten.mean, aten.view, aten.div, aten.sub, aten.add] triton_per_fused_add_div_mean_pow_sub_view_3.run(buf12, arg1_1, buf0, arg0_1, buf1, buf4, buf5, buf8, buf9, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del buf0 del buf1 del buf4 del buf5 del buf8 del buf9 return (buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ATLoss(nn.Module): """ Module for calculating AT Loss :param norm_type (int): Norm to be used in calculating loss """ def __init__(self, norm_type=2): super(ATLoss, self).__init__() self.p = norm_type def forward(self, teacher_output, student_output): """ Forward function :param teacher_output (torch.FloatTensor): Prediction made by the teacher model :param student_output (torch.FloatTensor): Prediction made by the student model """ A_t = teacher_output[1:] A_s = student_output[1:] loss = 0.0 for layerT, layerS in zip(A_t, A_s): xT = self.single_at_loss(layerT) xS = self.single_at_loss(layerS) loss += (xS - xT).pow(self.p).mean() return loss def single_at_loss(self, activation): """ Function for calculating single attention loss """ return F.normalize(activation.pow(self.p).mean(1).view(activation. size(0), -1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_linalg_vector_norm_mean_pow_view_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (64 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (68 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (72 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (76 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (65 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (69 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (73 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr0 + (77 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (66 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (70 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr0 + (74 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp36 = tl.load(in_ptr0 + (78 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp42 = tl.load(in_ptr0 + (67 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr0 + (71 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr0 + (75 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp50 = tl.load(in_ptr0 + (79 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp11 tmp26 = tmp25 * tmp25 tmp27 = tmp13 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tmp38 / tmp11 tmp40 = tmp39 * tmp39 tmp41 = tmp27 + tmp40 tmp43 = tmp42 * tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp51 = tmp50 * tmp50 tmp52 = tmp49 + tmp51 tmp53 = tmp52 / tmp11 tmp54 = tmp53 * tmp53 tmp55 = tmp41 + tmp54 tl.store(out_ptr0 + x0, tmp55, xmask) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_pow_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (128 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (132 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (136 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (140 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (129 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (133 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (137 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr0 + (141 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (130 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (134 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr0 + (138 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp36 = tl.load(in_ptr0 + (142 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp42 = tl.load(in_ptr0 + (131 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr0 + (135 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr0 + (139 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp50 = tl.load(in_ptr0 + (143 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp11 tmp26 = tmp25 * tmp25 tmp27 = tmp13 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tmp38 / tmp11 tmp40 = tmp39 * tmp39 tmp41 = tmp27 + tmp40 tmp43 = tmp42 * tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp51 = tmp50 * tmp50 tmp52 = tmp49 + tmp51 tmp53 = tmp52 / tmp11 tmp54 = tmp53 * tmp53 tmp55 = tmp41 + tmp54 tl.store(out_ptr0 + x0, tmp55, xmask) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_pow_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (192 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (196 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (200 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (204 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (193 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (197 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (201 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr0 + (205 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (194 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (198 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr0 + (202 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp36 = tl.load(in_ptr0 + (206 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp42 = tl.load(in_ptr0 + (195 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr0 + (199 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr0 + (203 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp50 = tl.load(in_ptr0 + (207 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp11 tmp26 = tmp25 * tmp25 tmp27 = tmp13 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tmp38 / tmp11 tmp40 = tmp39 * tmp39 tmp41 = tmp27 + tmp40 tmp43 = tmp42 * tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp51 = tmp50 * tmp50 tmp52 = tmp49 + tmp51 tmp53 = tmp52 / tmp11 tmp54 = tmp53 * tmp53 tmp55 = tmp41 + tmp54 tl.store(out_ptr0 + x0, tmp55, xmask) @triton.jit def triton_per_fused_add_div_mean_pow_sub_view_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + (64 + r0 + 16 * r1), None) tmp2 = tl.load(in_ptr0 + (68 + r0 + 16 * r1), None) tmp5 = tl.load(in_ptr0 + (72 + r0 + 16 * r1), None) tmp8 = tl.load(in_ptr0 + (76 + r0 + 16 * r1), None) tmp13 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr2 + (64 + r0 + 16 * r1), None) tmp20 = tl.load(in_ptr2 + (68 + r0 + 16 * r1), None) tmp23 = tl.load(in_ptr2 + (72 + r0 + 16 * r1), None) tmp26 = tl.load(in_ptr2 + (76 + r0 + 16 * r1), None) tmp30 = tl.load(in_ptr3 + r1, None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (128 + r0 + 16 * r1), None) tmp41 = tl.load(in_ptr0 + (132 + r0 + 16 * r1), None) tmp44 = tl.load(in_ptr0 + (136 + r0 + 16 * r1), None) tmp47 = tl.load(in_ptr0 + (140 + r0 + 16 * r1), None) tmp51 = tl.load(in_ptr4 + r1, None, eviction_policy='evict_last') tmp55 = tl.load(in_ptr2 + (128 + r0 + 16 * r1), None) tmp57 = tl.load(in_ptr2 + (132 + r0 + 16 * r1), None) tmp60 = tl.load(in_ptr2 + (136 + r0 + 16 * r1), None) tmp63 = tl.load(in_ptr2 + (140 + r0 + 16 * r1), None) tmp67 = tl.load(in_ptr5 + r1, None, eviction_policy='evict_last') tmp76 = tl.load(in_ptr0 + (192 + r0 + 16 * r1), None) tmp78 = tl.load(in_ptr0 + (196 + r0 + 16 * r1), None) tmp81 = tl.load(in_ptr0 + (200 + r0 + 16 * r1), None) tmp84 = tl.load(in_ptr0 + (204 + r0 + 16 * r1), None) tmp88 = tl.load(in_ptr6 + r1, None, eviction_policy='evict_last') tmp92 = tl.load(in_ptr2 + (192 + r0 + 16 * r1), None) tmp94 = tl.load(in_ptr2 + (196 + r0 + 16 * r1), None) tmp97 = tl.load(in_ptr2 + (200 + r0 + 16 * r1), None) tmp100 = tl.load(in_ptr2 + (204 + r0 + 16 * r1), None) tmp104 = tl.load(in_ptr7 + r1, None, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-12 tmp16 = triton_helpers.maximum(tmp14, tmp15) tmp17 = tmp12 / tmp16 tmp19 = tmp18 * tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp27 = tmp26 * tmp26 tmp28 = tmp25 + tmp27 tmp29 = tmp28 / tmp11 tmp31 = libdevice.sqrt(tmp30) tmp32 = triton_helpers.maximum(tmp31, tmp15) tmp33 = tmp29 / tmp32 tmp34 = tmp17 - tmp33 tmp35 = tmp34 * tmp34 tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.sum(tmp36, 1)[:, None] tmp40 = tmp39 * tmp39 tmp42 = tmp41 * tmp41 tmp43 = tmp40 + tmp42 tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp47 tmp49 = tmp46 + tmp48 tmp50 = tmp49 / tmp11 tmp52 = libdevice.sqrt(tmp51) tmp53 = triton_helpers.maximum(tmp52, tmp15) tmp54 = tmp50 / tmp53 tmp56 = tmp55 * tmp55 tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp64 = tmp63 * tmp63 tmp65 = tmp62 + tmp64 tmp66 = tmp65 / tmp11 tmp68 = libdevice.sqrt(tmp67) tmp69 = triton_helpers.maximum(tmp68, tmp15) tmp70 = tmp66 / tmp69 tmp71 = tmp54 - tmp70 tmp72 = tmp71 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = tl.sum(tmp73, 1)[:, None] tmp77 = tmp76 * tmp76 tmp79 = tmp78 * tmp78 tmp80 = tmp77 + tmp79 tmp82 = tmp81 * tmp81 tmp83 = tmp80 + tmp82 tmp85 = tmp84 * tmp84 tmp86 = tmp83 + tmp85 tmp87 = tmp86 / tmp11 tmp89 = libdevice.sqrt(tmp88) tmp90 = triton_helpers.maximum(tmp89, tmp15) tmp91 = tmp87 / tmp90 tmp93 = tmp92 * tmp92 tmp95 = tmp94 * tmp94 tmp96 = tmp93 + tmp95 tmp98 = tmp97 * tmp97 tmp99 = tmp96 + tmp98 tmp101 = tmp100 * tmp100 tmp102 = tmp99 + tmp101 tmp103 = tmp102 / tmp11 tmp105 = libdevice.sqrt(tmp104) tmp106 = triton_helpers.maximum(tmp105, tmp15) tmp107 = tmp103 / tmp106 tmp108 = tmp91 - tmp107 tmp109 = tmp108 * tmp108 tmp110 = tl.broadcast_to(tmp109, [XBLOCK, RBLOCK]) tmp112 = tl.sum(tmp110, 1)[:, None] tmp113 = 16.0 tmp114 = tmp38 / tmp113 tmp115 = 0.0 tmp116 = tmp114 + tmp115 tmp117 = tmp75 / tmp113 tmp118 = tmp116 + tmp117 tmp119 = tmp112 / tmp113 tmp120 = tmp118 + tmp119 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp120, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_linalg_vector_norm_mean_pow_view_0[grid(4)](arg1_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_linalg_vector_norm_mean_pow_view_0[grid(4)](arg0_1, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_linalg_vector_norm_mean_pow_view_1[grid(4)](arg1_1, buf4, 4, XBLOCK=4, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_linalg_vector_norm_mean_pow_view_1[grid(4)](arg0_1, buf5, 4, XBLOCK=4, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_linalg_vector_norm_mean_pow_view_2[grid(4)](arg1_1, buf8, 4, XBLOCK=4, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_linalg_vector_norm_mean_pow_view_2[grid(4)](arg0_1, buf9, 4, XBLOCK=4, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((), (), torch.float32) buf12 = buf11 del buf11 triton_per_fused_add_div_mean_pow_sub_view_3[grid(1)](buf12, arg1_1, buf0, arg0_1, buf1, buf4, buf5, buf8, buf9, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf0 del buf1 del buf4 del buf5 del buf8 del buf9 return buf12, class ATLossNew(nn.Module): """ Module for calculating AT Loss :param norm_type (int): Norm to be used in calculating loss """ def __init__(self, norm_type=2): super(ATLossNew, self).__init__() self.p = norm_type def single_at_loss(self, activation): """ Function for calculating single attention loss """ return F.normalize(activation.pow(self.p).mean(1).view(activation. size(0), -1)) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NeelayS/KD_Lib
ATLoss
false
2,679
[ "MIT" ]
0
c3f8c7cef76772d14862260e61c1d1c52c58f58e
https://github.com/NeelayS/KD_Lib/tree/c3f8c7cef76772d14862260e61c1d1c52c58f58e
HFM
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/o4/co4unbqztafxk5wsbnua63h3xnwixyge6ajhdkpgoy4z5j5xz3d7.py # Topologically Sorted Source Nodes: [input_1, input_2, sub], Original ATen: [aten.avg_pool2d, aten._unsafe_index, aten.sub] # Source node to ATen node mapping: # input_1 => avg_pool2d # input_2 => _unsafe_index # sub => sub # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %_unsafe_index), kwargs = {}) triton_poi_fused__unsafe_index_avg_pool2d_sub_0 = async_compile.triton('triton_poi_fused__unsafe_index_avg_pool2d_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_avg_pool2d_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_avg_pool2d_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = x1 tmp2 = tmp1.to(tl.float32) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tmp4.to(tl.int32) tmp6 = x0 tmp7 = tmp6.to(tl.float32) tmp8 = tmp7 * tmp3 tmp9 = tmp8.to(tl.int32) tmp10 = tl.load(in_ptr0 + ((2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (1 + (2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last') tmp12 = tmp11 + tmp10 tmp13 = tl.load(in_ptr0 + (4 + (2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last') tmp14 = tmp13 + tmp12 tmp15 = tl.load(in_ptr0 + (5 + (2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last') tmp16 = tmp15 + tmp14 tmp17 = 0.25 tmp18 = tmp16 * tmp17 tmp19 = tmp0 - tmp18 tl.store(out_ptr0 + (x3), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, input_2, sub], Original ATen: [aten.avg_pool2d, aten._unsafe_index, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_avg_pool2d_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class HFM(nn.Module): def __init__(self, k=2): super().__init__() self.k = k self.net = nn.Sequential(nn.AvgPool2d(kernel_size=self.k, stride= self.k), nn.Upsample(scale_factor=self.k, mode='nearest')) def forward(self, tL): assert tL.shape[2] % self.k == 0, 'h, w must divisible by k' return tL - self.net(tL) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_avg_pool2d_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = x1 tmp2 = tmp1.to(tl.float32) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tmp4.to(tl.int32) tmp6 = x0 tmp7 = tmp6.to(tl.float32) tmp8 = tmp7 * tmp3 tmp9 = tmp8.to(tl.int32) tmp10 = tl.load(in_ptr0 + (2 * tmp9 + 8 * tmp5 + 16 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (1 + 2 * tmp9 + 8 * tmp5 + 16 * x2), xmask, eviction_policy='evict_last') tmp12 = tmp11 + tmp10 tmp13 = tl.load(in_ptr0 + (4 + 2 * tmp9 + 8 * tmp5 + 16 * x2), xmask, eviction_policy='evict_last') tmp14 = tmp13 + tmp12 tmp15 = tl.load(in_ptr0 + (5 + 2 * tmp9 + 8 * tmp5 + 16 * x2), xmask, eviction_policy='evict_last') tmp16 = tmp15 + tmp14 tmp17 = 0.25 tmp18 = tmp16 * tmp17 tmp19 = tmp0 - tmp18 tl.store(out_ptr0 + x3, tmp19, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_avg_pool2d_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HFMNew(nn.Module): def __init__(self, k=2): super().__init__() self.k = k self.net = nn.Sequential(nn.AvgPool2d(kernel_size=self.k, stride= self.k), nn.Upsample(scale_factor=self.k, mode='nearest')) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NawaNae/ESRT-Huawei
HFM
false
2,680
[ "MIT" ]
0
edea1c0bafec940dc7ea8e5110c355a83188665c
https://github.com/NawaNae/ESRT-Huawei/tree/edea1c0bafec940dc7ea8e5110c355a83188665c
ExtractTensorPatches
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/rt/crt24dzchwgllhruf5jsdkgnfxquif3uquthvco4ygm56zu4c7hv.py # Topologically Sorted Source Nodes: [input_1, view], Original ATen: [aten.constant_pad_nd, aten.view] # Source node to ATen node mapping: # input_1 => constant_pad_nd # view => view # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [0, 0, 0, 0], 0.0), kwargs = {}) # %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%permute, [4, -1, 4, 4, 4]), kwargs = {}) triton_poi_fused_constant_pad_nd_view_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(in_out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4, 4), (64, 16, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [input_1, view], Original ATen: [aten.constant_pad_nd, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_view_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from typing import Tuple from typing import Union from typing import Optional from torch.nn.modules.utils import _pair def _extract_tensor_patchesnd(input: 'torch.Tensor', window_sizes: 'Tuple[int, ...]', strides: 'Tuple[int, ...]') ->torch.Tensor: batch_size, num_channels = input.size()[:2] dims = range(2, input.dim()) for dim, patch_size, stride in zip(dims, window_sizes, strides): input = input.unfold(dim, patch_size, stride) input = input.permute(0, *dims, 1, *[(dim + len(dims)) for dim in dims] ).contiguous() return input.view(batch_size, -1, num_channels, *window_sizes) def extract_tensor_patches(input: 'torch.Tensor', window_size: 'Union[int, Tuple[int, int]]', stride: 'Union[int, Tuple[int, int]]'=1, padding: 'Union[int, Tuple[int, int]]'=0) ->torch.Tensor: """Function that extract patches from tensors and stack them. See :class:`~kornia.contrib.ExtractTensorPatches` for details. """ if not torch.is_tensor(input): raise TypeError('Input input type is not a torch.Tensor. Got {}'. format(type(input))) if not len(input.shape) == 4: raise ValueError('Invalid input shape, we expect BxCxHxW. Got: {}'. format(input.shape)) if padding: pad_vert, pad_horz = _pair(padding) input = F.pad(input, [pad_horz, pad_horz, pad_vert, pad_vert]) return _extract_tensor_patchesnd(input, _pair(window_size), _pair(stride)) class ExtractTensorPatches(nn.Module): """Module that extract patches from tensors and stack them. In the simplest case, the output value of the operator with input size :math:`(B, C, H, W)` is :math:`(B, N, C, H_{out}, W_{out})`. where - :math:`B` is the batch size. - :math:`N` denotes the total number of extracted patches stacked in - :math:`C` denotes the number of input channels. - :math:`H`, :math:`W` the input height and width of the input in pixels. - :math:`H_{out}`, :math:`W_{out}` denote to denote to the patch size defined in the function signature. left-right and top-bottom order. * :attr:`window_size` is the size of the sliding window and controls the shape of the output tensor and defines the shape of the output patch. * :attr:`stride` controls the stride to apply to the sliding window and regulates the overlapping between the extracted patches. * :attr:`padding` controls the amount of implicit zeros-paddings on both sizes at each dimension. The parameters :attr:`window_size`, :attr:`stride` and :attr:`padding` can be either: - a single ``int`` -- in which case the same value is used for the height and width dimension. - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, and the second `int` for the width dimension. Arguments: window_size (Union[int, Tuple[int, int]]): the size of the sliding window and the output patch size. stride (Optional[Union[int, Tuple[int, int]]]): stride of the sliding window. Default is 1. padding (Optional[Union[int, Tuple[int, int]]]): Zero-padding added to both side of the input. Default is 0. Shape: - Input: :math:`(B, C, H, W)` - Output: :math:`(B, N, C, H_{out}, W_{out})` Returns: torch.Tensor: the tensor with the extracted patches. Examples: >>> input = torch.arange(9.).view(1, 1, 3, 3) >>> patches = extract_tensor_patches(input, (2, 3)) >>> input tensor([[[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]]) >>> patches[:, -1] tensor([[[[3., 4., 5.], [6., 7., 8.]]]]) """ def __init__(self, window_size: 'Union[int, Tuple[int, int]]', stride: 'Optional[Union[int, Tuple[int, int]]]'=1, padding: 'Optional[Union[int, Tuple[int, int]]]'=0) ->None: super(ExtractTensorPatches, self).__init__() self.window_size: 'Tuple[int, int]' = _pair(window_size) self.stride: 'Tuple[int, int]' = _pair(stride) self.padding: 'Tuple[int, int]' = _pair(padding) def forward(self, input: 'torch.Tensor') ->torch.Tensor: return extract_tensor_patches(input, self.window_size, stride=self. stride, padding=self.padding) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'window_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F from typing import Tuple from typing import Union from typing import Optional from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(in_out_ptr0 + x0, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4, 4), (64, 16, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_constant_pad_nd_view_0[grid(256)](buf1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf1, def _extract_tensor_patchesnd(input: 'torch.Tensor', window_sizes: 'Tuple[int, ...]', strides: 'Tuple[int, ...]') ->torch.Tensor: batch_size, num_channels = input.size()[:2] dims = range(2, input.dim()) for dim, patch_size, stride in zip(dims, window_sizes, strides): input = input.unfold(dim, patch_size, stride) input = input.permute(0, *dims, 1, *[(dim + len(dims)) for dim in dims] ).contiguous() return input.view(batch_size, -1, num_channels, *window_sizes) def extract_tensor_patches(input: 'torch.Tensor', window_size: 'Union[int, Tuple[int, int]]', stride: 'Union[int, Tuple[int, int]]'=1, padding: 'Union[int, Tuple[int, int]]'=0) ->torch.Tensor: """Function that extract patches from tensors and stack them. See :class:`~kornia.contrib.ExtractTensorPatches` for details. """ if not torch.is_tensor(input): raise TypeError('Input input type is not a torch.Tensor. Got {}'. format(type(input))) if not len(input.shape) == 4: raise ValueError('Invalid input shape, we expect BxCxHxW. Got: {}'. format(input.shape)) if padding: pad_vert, pad_horz = _pair(padding) input = F.pad(input, [pad_horz, pad_horz, pad_vert, pad_vert]) return _extract_tensor_patchesnd(input, _pair(window_size), _pair(stride)) class ExtractTensorPatchesNew(nn.Module): """Module that extract patches from tensors and stack them. In the simplest case, the output value of the operator with input size :math:`(B, C, H, W)` is :math:`(B, N, C, H_{out}, W_{out})`. where - :math:`B` is the batch size. - :math:`N` denotes the total number of extracted patches stacked in - :math:`C` denotes the number of input channels. - :math:`H`, :math:`W` the input height and width of the input in pixels. - :math:`H_{out}`, :math:`W_{out}` denote to denote to the patch size defined in the function signature. left-right and top-bottom order. * :attr:`window_size` is the size of the sliding window and controls the shape of the output tensor and defines the shape of the output patch. * :attr:`stride` controls the stride to apply to the sliding window and regulates the overlapping between the extracted patches. * :attr:`padding` controls the amount of implicit zeros-paddings on both sizes at each dimension. The parameters :attr:`window_size`, :attr:`stride` and :attr:`padding` can be either: - a single ``int`` -- in which case the same value is used for the height and width dimension. - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, and the second `int` for the width dimension. Arguments: window_size (Union[int, Tuple[int, int]]): the size of the sliding window and the output patch size. stride (Optional[Union[int, Tuple[int, int]]]): stride of the sliding window. Default is 1. padding (Optional[Union[int, Tuple[int, int]]]): Zero-padding added to both side of the input. Default is 0. Shape: - Input: :math:`(B, C, H, W)` - Output: :math:`(B, N, C, H_{out}, W_{out})` Returns: torch.Tensor: the tensor with the extracted patches. Examples: >>> input = torch.arange(9.).view(1, 1, 3, 3) >>> patches = extract_tensor_patches(input, (2, 3)) >>> input tensor([[[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]]) >>> patches[:, -1] tensor([[[[3., 4., 5.], [6., 7., 8.]]]]) """ def __init__(self, window_size: 'Union[int, Tuple[int, int]]', stride: 'Optional[Union[int, Tuple[int, int]]]'=1, padding: 'Optional[Union[int, Tuple[int, int]]]'=0) ->None: super(ExtractTensorPatchesNew, self).__init__() self.window_size: 'Tuple[int, int]' = _pair(window_size) self.stride: 'Tuple[int, int]' = _pair(stride) self.padding: 'Tuple[int, int]' = _pair(padding) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
ExtractTensorPatches
false
2,681
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
SoftArgmax2D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7d/c7dubrsigenrd2jmd6iwmxj4ghxpnyetwaywlk3uefyl3icppnek.py # Topologically Sorted Source Nodes: [max_1, sub, exp_x, mul_2, sum_1, add, exp_x_sum, mul_3, expected_x, mul, mul_1, expected_y], Original ATen: [aten.max, aten.sub, aten.exp, aten.mul, aten.sum, aten.add, aten.reciprocal] # Source node to ATen node mapping: # add => add # exp_x => exp # exp_x_sum => mul, reciprocal # expected_x => sum_3 # expected_y => sum_2 # max_1 => max_1 # mul => mul_5 # mul_1 => mul_6 # mul_2 => mul_7 # mul_3 => mul_8 # sub => sub # sum_1 => sum_1 # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view, -1, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %getitem), kwargs = {}) # %exp : [num_users=3] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %exp), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-06), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_7, %mul), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1], True), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %exp), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %mul), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [-1], True), kwargs = {}) triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0 = async_compile.triton('triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = r1 % 4 tmp12 = tmp11.to(tl.float32) tmp13 = 2.0 tmp14 = tmp12 < tmp13 tmp15 = 0.6666666666666666 tmp16 = tmp12 * tmp15 tmp17 = -1.0 tmp18 = tmp16 + tmp17 tmp19 = 3 + ((-1)*(r1 % 4)) tmp20 = tmp19.to(tl.float32) tmp21 = tmp20 * tmp15 tmp22 = 1.0 tmp23 = tmp22 - tmp21 tmp24 = tl.where(tmp14, tmp18, tmp23) tmp25 = tmp24 * tmp6 tmp26 = 1e-06 tmp27 = tmp10 + tmp26 tmp28 = tl.full([1, 1], 1, tl.int32) tmp29 = tmp28 / tmp27 tmp30 = tmp29 * tmp22 tmp31 = tmp25 * tmp30 tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp34 = tl.where(xmask, tmp32, 0) tmp35 = tl.sum(tmp34, 1)[:, None] tmp36 = (r1 // 4) tmp37 = tmp36.to(tl.float32) tmp38 = tmp37 < tmp13 tmp39 = tmp37 * tmp15 tmp40 = tmp39 + tmp17 tmp41 = 3 + ((-1)*(r1 // 4)) tmp42 = tmp41.to(tl.float32) tmp43 = tmp42 * tmp15 tmp44 = tmp22 - tmp43 tmp45 = tl.where(tmp38, tmp40, tmp44) tmp46 = tmp45 * tmp6 tmp47 = tmp46 * tmp30 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.where(xmask, tmp48, 0) tmp51 = tl.sum(tmp50, 1)[:, None] tl.store(out_ptr2 + (2*x0), tmp35, xmask) tl.store(out_ptr3 + (2*x0), tmp51, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) buf3 = reinterpret_tensor(buf5, (4, 4, 1), (8, 2, 1), 0) # alias buf4 = reinterpret_tensor(buf5, (4, 4, 1), (8, 2, 1), 1) # alias # Topologically Sorted Source Nodes: [max_1, sub, exp_x, mul_2, sum_1, add, exp_x_sum, mul_3, expected_x, mul, mul_1, expected_y], Original ATen: [aten.max, aten.sub, aten.exp, aten.mul, aten.sum, aten.add, aten.reciprocal] stream0 = get_raw_stream(0) triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0.run(arg0_1, buf3, buf4, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from typing import Optional def create_meshgrid(x: 'torch.Tensor', normalized_coordinates: 'Optional[bool]' ) ->torch.Tensor: assert len(x.shape) == 4, x.shape _, _, height, width = x.shape _device, _dtype = x.device, x.dtype if normalized_coordinates: xs = torch.linspace(-1.0, 1.0, width, device=_device, dtype=_dtype) ys = torch.linspace(-1.0, 1.0, height, device=_device, dtype=_dtype) else: xs = torch.linspace(0, width - 1, width, device=_device, dtype=_dtype) ys = torch.linspace(0, height - 1, height, device=_device, dtype=_dtype ) return torch.meshgrid(ys, xs) class SoftArgmax2D(nn.Module): """Creates a module that computes the Spatial Soft-Argmax 2D of a given input heatmap. Returns the index of the maximum 2d coordinates of the give map. The output order is x-coord and y-coord. Arguments: normalized_coordinates (Optional[bool]): wether to return the coordinates normalized in the range of [-1, 1]. Otherwise, it will return the coordinates in the range of the input shape. Default is True. Shape: - Input: :math:`(B, N, H, W)` - Output: :math:`(B, N, 2)` Examples:: >>> input = torch.rand(1, 4, 2, 3) >>> m = tgm.losses.SpatialSoftArgmax2d() >>> coords = m(input) # 1x4x2 >>> x_coord, y_coord = torch.chunk(coords, dim=-1, chunks=2) """ def __init__(self, normalized_coordinates: 'Optional[bool]'=True) ->None: super(SoftArgmax2D, self).__init__() self.normalized_coordinates: 'Optional[bool]' = normalized_coordinates self.eps: 'float' = 1e-06 def forward(self, input: 'torch.Tensor') ->torch.Tensor: if not torch.is_tensor(input): raise TypeError('Input input type is not a torch.Tensor. Got {}' .format(type(input))) if not len(input.shape) == 4: raise ValueError('Invalid input shape, we expect BxCxHxW. Got: {}' .format(input.shape)) batch_size, channels, _height, _width = input.shape x: 'torch.Tensor' = input.view(batch_size, channels, -1) exp_x = torch.exp(x - torch.max(x, dim=-1, keepdim=True)[0]) exp_x_sum = 1.0 / (exp_x.sum(dim=-1, keepdim=True) + self.eps) pos_y, pos_x = create_meshgrid(input, self.normalized_coordinates) pos_x = pos_x.reshape(-1) pos_y = pos_y.reshape(-1) expected_y: 'torch.Tensor' = torch.sum(pos_y * exp_x * exp_x_sum, dim=-1, keepdim=True) expected_x: 'torch.Tensor' = torch.sum(pos_x * exp_x * exp_x_sum, dim=-1, keepdim=True) output: 'torch.Tensor' = torch.cat([expected_x, expected_y], dim=-1) return output.view(batch_size, channels, 2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = r1 % 4 tmp12 = tmp11.to(tl.float32) tmp13 = 2.0 tmp14 = tmp12 < tmp13 tmp15 = 0.6666666666666666 tmp16 = tmp12 * tmp15 tmp17 = -1.0 tmp18 = tmp16 + tmp17 tmp19 = 3 + -1 * (r1 % 4) tmp20 = tmp19.to(tl.float32) tmp21 = tmp20 * tmp15 tmp22 = 1.0 tmp23 = tmp22 - tmp21 tmp24 = tl.where(tmp14, tmp18, tmp23) tmp25 = tmp24 * tmp6 tmp26 = 1e-06 tmp27 = tmp10 + tmp26 tmp28 = tl.full([1, 1], 1, tl.int32) tmp29 = tmp28 / tmp27 tmp30 = tmp29 * tmp22 tmp31 = tmp25 * tmp30 tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp34 = tl.where(xmask, tmp32, 0) tmp35 = tl.sum(tmp34, 1)[:, None] tmp36 = r1 // 4 tmp37 = tmp36.to(tl.float32) tmp38 = tmp37 < tmp13 tmp39 = tmp37 * tmp15 tmp40 = tmp39 + tmp17 tmp41 = 3 + -1 * (r1 // 4) tmp42 = tmp41.to(tl.float32) tmp43 = tmp42 * tmp15 tmp44 = tmp22 - tmp43 tmp45 = tl.where(tmp38, tmp40, tmp44) tmp46 = tmp45 * tmp6 tmp47 = tmp46 * tmp30 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.where(xmask, tmp48, 0) tmp51 = tl.sum(tmp50, 1)[:, None] tl.store(out_ptr2 + 2 * x0, tmp35, xmask) tl.store(out_ptr3 + 2 * x0, tmp51, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) buf3 = reinterpret_tensor(buf5, (4, 4, 1), (8, 2, 1), 0) buf4 = reinterpret_tensor(buf5, (4, 4, 1), (8, 2, 1), 1) get_raw_stream(0) triton_per_fused_add_exp_max_mul_reciprocal_sub_sum_0[grid(16)](arg0_1, buf3, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 return buf5, def create_meshgrid(x: 'torch.Tensor', normalized_coordinates: 'Optional[bool]' ) ->torch.Tensor: assert len(x.shape) == 4, x.shape _, _, height, width = x.shape _device, _dtype = x.device, x.dtype if normalized_coordinates: xs = torch.linspace(-1.0, 1.0, width, device=_device, dtype=_dtype) ys = torch.linspace(-1.0, 1.0, height, device=_device, dtype=_dtype) else: xs = torch.linspace(0, width - 1, width, device=_device, dtype=_dtype) ys = torch.linspace(0, height - 1, height, device=_device, dtype=_dtype ) return torch.meshgrid(ys, xs) class SoftArgmax2DNew(nn.Module): """Creates a module that computes the Spatial Soft-Argmax 2D of a given input heatmap. Returns the index of the maximum 2d coordinates of the give map. The output order is x-coord and y-coord. Arguments: normalized_coordinates (Optional[bool]): wether to return the coordinates normalized in the range of [-1, 1]. Otherwise, it will return the coordinates in the range of the input shape. Default is True. Shape: - Input: :math:`(B, N, H, W)` - Output: :math:`(B, N, 2)` Examples:: >>> input = torch.rand(1, 4, 2, 3) >>> m = tgm.losses.SpatialSoftArgmax2d() >>> coords = m(input) # 1x4x2 >>> x_coord, y_coord = torch.chunk(coords, dim=-1, chunks=2) """ def __init__(self, normalized_coordinates: 'Optional[bool]'=True) ->None: super(SoftArgmax2DNew, self).__init__() self.normalized_coordinates: 'Optional[bool]' = normalized_coordinates self.eps: 'float' = 1e-06 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Mykko/Human-Path-Prediction
SoftArgmax2D
false
2,682
[ "MIT" ]
0
956fcf16b98c81cf8e23133f9a766192e17e63e0
https://github.com/Mykko/Human-Path-Prediction/tree/956fcf16b98c81cf8e23133f9a766192e17e63e0
RgbaToBgr
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/af/caf7neijm3kbkzae765spedgco2ojidwgdae5r4fritcjagme5n2.py # Topologically Sorted Source Nodes: [x_rgb, out], Original ATen: [aten.cat, aten.flip] # Source node to ATen node mapping: # out => rev # x_rgb => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2], -3), kwargs = {}) # %rev : [num_users=1] = call_function[target=torch.ops.prims.rev.default](args = (%cat, [1]), kwargs = {}) triton_poi_fused_cat_flip_0 = async_compile.triton('triton_poi_fused_cat_flip_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_flip_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 3 x0 = xindex % 16 x2 = (xindex // 48) x3 = xindex tmp0 = 2 + ((-1)*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_rgb, out], Original ATen: [aten.cat, aten.flip] stream0 = get_raw_stream(0) triton_poi_fused_cat_flip_0.run(arg0_1, buf0, 192, grid=grid(192), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def bgr_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert a BGR image to RGB. Args: image (torch.Tensor): BGR Image to be converted to BGR of shape :math:`(*,3,H,W)`. Returns: torch.Tensor: RGB version of the image with shape of shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = bgr_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W).Got {}' .format(image.shape)) out: 'torch.Tensor' = image.flip(-3) return out def rgb_to_bgr(image: 'torch.Tensor') ->torch.Tensor: """Convert a RGB image to BGR. Args: image (torch.Tensor): RGB Image to be converted to BGRof of shape :math:`(*,3,H,W)`. Returns: torch.Tensor: BGR version of the image with shape of shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = rgb_to_bgr(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W).Got {}' .format(image.shape)) return bgr_to_rgb(image) def rgba_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from RGBA to RGB. Args: image (torch.Tensor): RGBA Image to be converted to RGB of shape :math:`(*,4,H,W)`. Returns: torch.Tensor: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 4, 4, 5) >>> output = rgba_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(image)}') if len(image.shape) < 3 or image.shape[-3] != 4: raise ValueError( f'Input size must have a shape of (*, 4, H, W).Got {image.shape}') r, g, b, a = torch.chunk(image, image.shape[-3], dim=-3) a_one = torch.tensor(1.0) - a a_one * r + a * r a_one * g + a * g a_one * b + a * b return torch.cat([r, g, b], dim=-3) def rgba_to_bgr(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from RGBA to BGR. Args: image (torch.Tensor): RGBA Image to be converted to BGR of shape :math:`(*,4,H,W)`. Returns: torch.Tensor: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 4, 4, 5) >>> output = rgba_to_bgr(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(image)}') if len(image.shape) < 3 or image.shape[-3] != 4: raise ValueError( f'Input size must have a shape of (*, 4, H, W).Got {image.shape}') x_rgb: 'torch.Tensor' = rgba_to_rgb(image) return rgb_to_bgr(x_rgb) class RgbaToBgr(nn.Module): """Convert an image from RGBA to BGR. Remove an alpha channel from BGR image. Returns: torch.Tensor: BGR version of the image. Shape: - image: :math:`(*, 4, H, W)` - output: :math:`(*, 3, H, W)` Example: >>> input = torch.rand(2, 4, 4, 5) >>> rgba = RgbaToBgr() >>> output = rgba(input) # 2x3x4x5 """ def __init__(self) ->None: super(RgbaToBgr, self).__init__() def forward(self, image: 'torch.Tensor') ->torch.Tensor: return rgba_to_bgr(image) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 3 x0 = xindex % 16 x2 = xindex // 48 x3 = xindex tmp0 = 2 + -1 * x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 3, tl.int64) tmp14 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_flip_0[grid(192)](arg0_1, buf0, 192, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, def bgr_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert a BGR image to RGB. Args: image (torch.Tensor): BGR Image to be converted to BGR of shape :math:`(*,3,H,W)`. Returns: torch.Tensor: RGB version of the image with shape of shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = bgr_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W).Got {}' .format(image.shape)) out: 'torch.Tensor' = image.flip(-3) return out def rgb_to_bgr(image: 'torch.Tensor') ->torch.Tensor: """Convert a RGB image to BGR. Args: image (torch.Tensor): RGB Image to be converted to BGRof of shape :math:`(*,3,H,W)`. Returns: torch.Tensor: BGR version of the image with shape of shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = rgb_to_bgr(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W).Got {}' .format(image.shape)) return bgr_to_rgb(image) def rgba_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from RGBA to RGB. Args: image (torch.Tensor): RGBA Image to be converted to RGB of shape :math:`(*,4,H,W)`. Returns: torch.Tensor: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 4, 4, 5) >>> output = rgba_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(image)}') if len(image.shape) < 3 or image.shape[-3] != 4: raise ValueError( f'Input size must have a shape of (*, 4, H, W).Got {image.shape}') r, g, b, a = torch.chunk(image, image.shape[-3], dim=-3) a_one = torch.tensor(1.0) - a a_one * r + a * r a_one * g + a * g a_one * b + a * b return torch.cat([r, g, b], dim=-3) def rgba_to_bgr(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from RGBA to BGR. Args: image (torch.Tensor): RGBA Image to be converted to BGR of shape :math:`(*,4,H,W)`. Returns: torch.Tensor: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 4, 4, 5) >>> output = rgba_to_bgr(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(image)}') if len(image.shape) < 3 or image.shape[-3] != 4: raise ValueError( f'Input size must have a shape of (*, 4, H, W).Got {image.shape}') x_rgb: 'torch.Tensor' = rgba_to_rgb(image) return rgb_to_bgr(x_rgb) class RgbaToBgrNew(nn.Module): """Convert an image from RGBA to BGR. Remove an alpha channel from BGR image. Returns: torch.Tensor: BGR version of the image. Shape: - image: :math:`(*, 4, H, W)` - output: :math:`(*, 3, H, W)` Example: >>> input = torch.rand(2, 4, 4, 5) >>> rgba = RgbaToBgr() >>> output = rgba(input) # 2x3x4x5 """ def __init__(self) ->None: super(RgbaToBgrNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
RgbaToBgr
false
2,683
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
TotalVariation
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3o/c3oy2cuxgl6yk5hywykwsghjl7htx5ny24ujxp7mydfu6cw4hmel.py # Topologically Sorted Source Nodes: [pixel_dif1, abs_1, res1, pixel_dif2, abs_2, res2, add], Original ATen: [aten.sub, aten.abs, aten.sum, aten.add] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # add => add # pixel_dif1 => sub # pixel_dif2 => sub_1 # res1 => sum_1 # res2 => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_1, %slice_3), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [-3, -2, -1]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_6, %slice_8), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_2, [-3, -2, -1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_abs_add_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 48 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex % 12 r2 = (rindex // 12) x0 = xindex r3 = rindex % 3 r4 = (rindex // 3) tmp0 = tl.load(in_ptr0 + (4 + r1 + (16*r2) + (64*x0)), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (r1 + (16*r2) + (64*x0)), rmask & xmask, other=0.0) tmp8 = tl.load(in_ptr0 + (1 + r3 + (4*r4) + (64*x0)), rmask & xmask, other=0.0) tmp9 = tl.load(in_ptr0 + (r3 + (4*r4) + (64*x0)), rmask & xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask & xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tl_math.abs(tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask & xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = tmp7 + tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pixel_dif1, abs_1, res1, pixel_dif2, abs_2, res2, add], Original ATen: [aten.sub, aten.abs, aten.sum, aten.add] stream0 = get_raw_stream(0) triton_per_fused_abs_add_sub_sum_0.run(buf2, arg0_1, 4, 48, grid=grid(4), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def total_variation(img: 'torch.Tensor') ->torch.Tensor: """Function that computes Total Variation according to [1]. Args: img (torch.Tensor): the input image with shape :math:`(N, C, H, W)` or :math:`(C, H, W)`. Return: torch.Tensor: a scalar with the computer loss. Examples: >>> total_variation(torch.ones(3, 4, 4)) tensor(0.) Reference: [1] https://en.wikipedia.org/wiki/Total_variation """ if not isinstance(img, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(img)}') if len(img.shape) < 3 or len(img.shape) > 4: raise ValueError( f'Expected input tensor to be of ndim 3 or 4, but got {len(img.shape)}.' ) pixel_dif1 = img[..., 1:, :] - img[..., :-1, :] pixel_dif2 = img[..., :, 1:] - img[..., :, :-1] reduce_axes = -3, -2, -1 res1 = pixel_dif1.abs().sum(dim=reduce_axes) res2 = pixel_dif2.abs().sum(dim=reduce_axes) return res1 + res2 class TotalVariation(nn.Module): """Computes the Total Variation according to [1]. Shape: - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`. - Output: :math:`(N,)` or scalar. Examples: >>> tv = TotalVariation() >>> output = tv(torch.ones((2, 3, 4, 4), requires_grad=True)) >>> output.data tensor([0., 0.]) >>> output.sum().backward() # grad can be implicitly created only for scalar outputs Reference: [1] https://en.wikipedia.org/wiki/Total_variation """ def __init__(self) ->None: super(TotalVariation, self).__init__() def forward(self, img) ->torch.Tensor: return total_variation(img) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 48 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex % 12 r2 = rindex // 12 x0 = xindex r3 = rindex % 3 r4 = rindex // 3 tmp0 = tl.load(in_ptr0 + (4 + r1 + 16 * r2 + 64 * x0), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (r1 + 16 * r2 + 64 * x0), rmask & xmask, other=0.0 ) tmp8 = tl.load(in_ptr0 + (1 + r3 + 4 * r4 + 64 * x0), rmask & xmask, other=0.0) tmp9 = tl.load(in_ptr0 + (r3 + 4 * r4 + 64 * x0), rmask & xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask & xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tl_math.abs(tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask & xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = tmp7 + tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp16, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_sub_sum_0[grid(4)](buf2, arg0_1, 4, 48, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, def total_variation(img: 'torch.Tensor') ->torch.Tensor: """Function that computes Total Variation according to [1]. Args: img (torch.Tensor): the input image with shape :math:`(N, C, H, W)` or :math:`(C, H, W)`. Return: torch.Tensor: a scalar with the computer loss. Examples: >>> total_variation(torch.ones(3, 4, 4)) tensor(0.) Reference: [1] https://en.wikipedia.org/wiki/Total_variation """ if not isinstance(img, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(img)}') if len(img.shape) < 3 or len(img.shape) > 4: raise ValueError( f'Expected input tensor to be of ndim 3 or 4, but got {len(img.shape)}.' ) pixel_dif1 = img[..., 1:, :] - img[..., :-1, :] pixel_dif2 = img[..., :, 1:] - img[..., :, :-1] reduce_axes = -3, -2, -1 res1 = pixel_dif1.abs().sum(dim=reduce_axes) res2 = pixel_dif2.abs().sum(dim=reduce_axes) return res1 + res2 class TotalVariationNew(nn.Module): """Computes the Total Variation according to [1]. Shape: - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`. - Output: :math:`(N,)` or scalar. Examples: >>> tv = TotalVariation() >>> output = tv(torch.ones((2, 3, 4, 4), requires_grad=True)) >>> output.data tensor([0., 0.]) >>> output.sum().backward() # grad can be implicitly created only for scalar outputs Reference: [1] https://en.wikipedia.org/wiki/Total_variation """ def __init__(self) ->None: super(TotalVariationNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
TotalVariation
false
2,684
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
RgbaToRgb
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/rp/crpkxw776b6qno57vzautehipdh4wlchhe27iw36f33ugyrc6wy3.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2], -3), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 3 x0 = xindex % 16 x2 = (xindex // 48) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 192, grid=grid(192), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def rgba_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from RGBA to RGB. Args: image (torch.Tensor): RGBA Image to be converted to RGB of shape :math:`(*,4,H,W)`. Returns: torch.Tensor: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 4, 4, 5) >>> output = rgba_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(image)}') if len(image.shape) < 3 or image.shape[-3] != 4: raise ValueError( f'Input size must have a shape of (*, 4, H, W).Got {image.shape}') r, g, b, a = torch.chunk(image, image.shape[-3], dim=-3) a_one = torch.tensor(1.0) - a a_one * r + a * r a_one * g + a * g a_one * b + a * b return torch.cat([r, g, b], dim=-3) class RgbaToRgb(nn.Module): """Convert an image from RGBA to RGB. Remove an alpha channel from RGB image. Returns: torch.Tensor: RGB version of the image. Shape: - image: :math:`(*, 4, H, W)` - output: :math:`(*, 3, H, W)` Example: >>> input = torch.rand(2, 4, 4, 5) >>> rgba = RgbaToRgb() >>> output = rgba(input) # 2x3x4x5 """ def __init__(self) ->None: super(RgbaToRgb, self).__init__() def forward(self, image: 'torch.Tensor') ->torch.Tensor: return rgba_to_rgb(image) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 3 x0 = xindex % 16 x2 = xindex // 48 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 3, tl.int64) tmp14 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(192)](arg0_1, buf0, 192, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def rgba_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from RGBA to RGB. Args: image (torch.Tensor): RGBA Image to be converted to RGB of shape :math:`(*,4,H,W)`. Returns: torch.Tensor: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> input = torch.rand(2, 4, 4, 5) >>> output = rgba_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(image)}') if len(image.shape) < 3 or image.shape[-3] != 4: raise ValueError( f'Input size must have a shape of (*, 4, H, W).Got {image.shape}') r, g, b, a = torch.chunk(image, image.shape[-3], dim=-3) a_one = torch.tensor(1.0) - a a_one * r + a * r a_one * g + a * g a_one * b + a * b return torch.cat([r, g, b], dim=-3) class RgbaToRgbNew(nn.Module): """Convert an image from RGBA to RGB. Remove an alpha channel from RGB image. Returns: torch.Tensor: RGB version of the image. Shape: - image: :math:`(*, 4, H, W)` - output: :math:`(*, 3, H, W)` Example: >>> input = torch.rand(2, 4, 4, 5) >>> rgba = RgbaToRgb() >>> output = rgba(input) # 2x3x4x5 """ def __init__(self) ->None: super(RgbaToRgbNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
RgbaToRgb
false
2,685
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hy/chyf33s66ikk3pad6dh3i4tqnggy2gywbyice7ielbtwoxupfqff.py # Topologically Sorted Source Nodes: [ce, neg, exp, sub, pow_1, mul, fc], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul] # Source node to ATen node mapping: # ce => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2 # exp => exp_1 # fc => mul_2 # mul => mul_1 # neg => neg_1 # pow_1 => pow_1 # sub => sub_3 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %mean), kwargs = {}) triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = -tmp17 tmp19 = tl_math.exp(tmp18) tmp20 = tmp1 - tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp21 * tmp1 tmp23 = tmp22 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [ce, neg, exp, sub, pow_1, mul, fc], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, alpha=1, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, x, y): ce = F.binary_cross_entropy_with_logits(x, y) fc = self.alpha * (1 - torch.exp(-ce)) ** self.gamma * ce return fc def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = -tmp17 tmp19 = tl_math.exp(tmp18) tmp20 = tmp1 - tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp21 * tmp1 tmp23 = tmp22 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_exp_mul_neg_pow_rsub_0[ grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class FocalLossNew(nn.Module): def __init__(self, alpha=1, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Nightmare4214/FracNet
FocalLoss
false
2,686
[ "Apache-2.0" ]
0
db397adb50f71387155d9d110302a5968f86f756
https://github.com/Nightmare4214/FracNet/tree/db397adb50f71387155d9d110302a5968f86f756
InvDepth
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/w7/cw7ogushagw5rd6eixmm5u3erviyy7hf33356b3glzcg42jbcwxp.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 0.04), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, 0.04), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 2.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_0 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.04 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 2.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (1, 1, 4, 4), (16, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0) del primals_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class InvDepth(nn.Module): def __init__(self, height, width, min_depth=0.5, max_depth=25.0): super(InvDepth, self).__init__() self._min_range = 1.0 / max_depth self._max_range = 1.0 / min_depth self.w = nn.Parameter(self._init_weights(height, width)) def _init_weights(self, height, width): r1 = self._min_range r2 = self._min_range + (self._max_range - self._min_range) * 0.1 w_init = (r1 - r2) * torch.rand(1, 1, height, width) + r2 return w_init def forward(self): return self.w.clamp(min=self._min_range, max=self._max_range) def get_inputs(): return [] def get_init_inputs(): return [[], {'height': 4, 'width': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.04 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 2.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (1, 1, 4, 4), (16, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0[grid(16)](primals_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf0, buf1 class InvDepthNew(nn.Module): def __init__(self, height, width, min_depth=0.5, max_depth=25.0): super(InvDepthNew, self).__init__() self._min_range = 1.0 / max_depth self._max_range = 1.0 / min_depth self.w = nn.Parameter(self._init_weights(height, width)) def _init_weights(self, height, width): r1 = self._min_range r2 = self._min_range + (self._max_range - self._min_range) * 0.1 w_init = (r1 - r2) * torch.rand(1, 1, height, width) + r2 return w_init def forward(self): primals_1 = self.w output = call([primals_1]) return output[0]
MareenaKunjachan/kornia
InvDepth
false
2,687
[ "Apache-2.0" ]
0
0a3cbb02850ac78059e0615da93144b5a64d3330
https://github.com/MareenaKunjachan/kornia/tree/0a3cbb02850ac78059e0615da93144b5a64d3330
AdaptiveCatAvgMaxPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6q/c6qt4wjmogf2n52n2jyddot4ioylndksfsbcpb7y2egygukbw6dp.py # Topologically Sorted Source Nodes: [x_max], Original ATen: [aten.adaptive_max_pool2d] # Source node to ATen node mapping: # x_max => adaptive_max_pool2d # Graph fragment: # %adaptive_max_pool2d : [num_users=1] = call_function[target=torch.ops.aten.adaptive_max_pool2d.default](args = (%arg0_1, [1, 1]), kwargs = {}) triton_poi_fused_adaptive_max_pool2d_0 = async_compile.triton('triton_poi_fused_adaptive_max_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_adaptive_max_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_adaptive_max_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (16*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x2)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x2)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x2)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x2)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x2)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp20 = triton_helpers.maximum(tmp19, tmp18) tmp22 = triton_helpers.maximum(tmp21, tmp20) tmp24 = triton_helpers.maximum(tmp23, tmp22) tmp26 = triton_helpers.maximum(tmp25, tmp24) tmp28 = triton_helpers.maximum(tmp27, tmp26) tmp30 = triton_helpers.maximum(tmp29, tmp28) tl.store(out_ptr0 + (x0 + (8*x1)), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oj/cojiyedeo533e4yf6o5fwghvoe4aso2xfcxia2se475r5eqowow4.py # Topologically Sorted Source Nodes: [x_avg], Original ATen: [aten.mean] # Source node to ATen node mapping: # x_avg => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.store(out_ptr1 + (x2 + (8*x3)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 1, 1), torch.float32) buf0 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 4) # alias # Topologically Sorted Source Nodes: [x_max], Original ATen: [aten.adaptive_max_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_adaptive_max_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) buf2 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 0) # alias # Topologically Sorted Source Nodes: [x_avg], Original ATen: [aten.mean] triton_per_fused_mean_1.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F from torch import optim as optim import torch.nn.parallel def adaptive_catavgmax_pool2d(x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return torch.cat((x_avg, x_max), 1) class AdaptiveCatAvgMaxPool2d(nn.Module): def __init__(self, output_size=1): super(AdaptiveCatAvgMaxPool2d, self).__init__() self.output_size = output_size def forward(self, x): return adaptive_catavgmax_pool2d(x, self.output_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F from torch import optim as optim import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_adaptive_max_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + 16 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x2), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x2), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x2), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x2), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x2), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp20 = triton_helpers.maximum(tmp19, tmp18) tmp22 = triton_helpers.maximum(tmp21, tmp20) tmp24 = triton_helpers.maximum(tmp23, tmp22) tmp26 = triton_helpers.maximum(tmp25, tmp24) tmp28 = triton_helpers.maximum(tmp27, tmp26) tmp30 = triton_helpers.maximum(tmp29, tmp28) tl.store(out_ptr0 + (x0 + 8 * x1), tmp30, xmask) @triton.jit def triton_per_fused_mean_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.store(out_ptr1 + (x2 + 8 * x3), tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 1, 1), torch.float32) buf0 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 4) get_raw_stream(0) triton_poi_fused_adaptive_max_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 0) triton_per_fused_mean_1[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf3, def adaptive_catavgmax_pool2d(x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return torch.cat((x_avg, x_max), 1) class AdaptiveCatAvgMaxPool2dNew(nn.Module): def __init__(self, output_size=1): super(AdaptiveCatAvgMaxPool2dNew, self).__init__() self.output_size = output_size def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Exir-lxr/crldr-prune-pytorch
AdaptiveCatAvgMaxPool2d
false
2,688
[ "Apache-2.0" ]
0
adeb5e0b24ce66ff9531d4d947f72412c1b5c033
https://github.com/Exir-lxr/crldr-prune-pytorch/tree/adeb5e0b24ce66ff9531d4d947f72412c1b5c033
GapAggregator
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool2d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf1, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GapAggregator(nn.Module): def __init__(self): super().__init__() self.pool = nn.AdaptiveAvgPool2d(1) def forward(self, x): x = self.pool(x).squeeze(3).squeeze(2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return reinterpret_tensor(buf1, (4, 4), (4, 1), 0), class GapAggregatorNew(nn.Module): def __init__(self): super().__init__() self.pool = nn.AdaptiveAvgPool2d(1) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NeverendingNotification/pytorch-xai-analyze
GapAggregator
false
2,689
[ "MIT" ]
0
fba91bf98c3281ffee5acaa87f2e44191897e0d7
https://github.com/NeverendingNotification/pytorch-xai-analyze/tree/fba91bf98c3281ffee5acaa87f2e44191897e0d7
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pk/cpkvymr7hwn3s3mgweosxbayku2z6ah5aqss3iqwxhdocv5gzqwm.py # Topologically Sorted Source Nodes: [x, t, i, mul_1, add_1, t_1, u, add_2, dc, mean, dc_1], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.div, aten.mean, aten.rsub] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # dc => div # dc_1 => sub # i => sum_1 # mean => mean # mul_1 => mul_1 # t => mul # t_1 => add # u => sum_2 # x => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mean), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp1 + tmp2 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 2.0 tmp12 = tmp6 * tmp11 tmp13 = 1.0 tmp14 = tmp12 + tmp13 tmp15 = tmp10 + tmp13 tmp16 = tmp14 / tmp15 tmp17 = tmp16 / tmp13 tmp18 = tmp13 - tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, t, i, mul_1, add_1, t_1, u, add_2, dc, mean, dc_1], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.div, aten.mean, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DiceLoss(nn.Module): def __init__(self, image=False): super().__init__() self.image = image def forward(self, x, y): x = x.sigmoid() i, u = [(t.flatten(1).sum(1) if self.image else t.sum()) for t in [ x * y, x + y]] dc = (2 * i + 1) / (u + 1) dc = 1 - dc.mean() return dc def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp1 + tmp2 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 2.0 tmp12 = tmp6 * tmp11 tmp13 = 1.0 tmp14 = tmp12 + tmp13 tmp15 = tmp10 + tmp13 tmp16 = tmp14 / tmp15 tmp17 = tmp16 / tmp13 tmp18 = tmp13 - tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mean_mul_rsub_sigmoid_sum_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class DiceLossNew(nn.Module): def __init__(self, image=False): super().__init__() self.image = image def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Nightmare4214/FracNet
DiceLoss
false
2,690
[ "Apache-2.0" ]
0
db397adb50f71387155d9d110302a5968f86f756
https://github.com/Nightmare4214/FracNet/tree/db397adb50f71387155d9d110302a5968f86f756
Vflip
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/oo/coo4q5pnqu4m2me4f4rovtyxouj7hiofnegnlp34e5heds4hgj3f.py # Topologically Sorted Source Nodes: [flip], Original ATen: [aten.flip] # Source node to ATen node mapping: # flip => rev # Graph fragment: # %rev : [num_users=1] = call_function[target=torch.ops.prims.rev.default](args = (%arg0_1, [2]), kwargs = {}) triton_poi_fused_flip_0 = async_compile.triton('triton_poi_fused_flip_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_flip_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (12 + x0 + ((-4)*x1) + (16*x2)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [flip], Original ATen: [aten.flip] stream0 = get_raw_stream(0) triton_poi_fused_flip_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def vflip(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-2]) class Vflip(nn.Module): """Vertically flip a tensor image or a batch of tensor images. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Returns: torch.Tensor: The vertically flipped image tensor Examples: >>> vflip = Vflip() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> vflip(input) tensor([[[[0., 1., 1.], [0., 0., 0.], [0., 0., 0.]]]]) """ def __init__(self) ->None: super(Vflip, self).__init__() def forward(self, input: 'torch.Tensor') ->torch.Tensor: return vflip(input) def __repr__(self): return self.__class__.__name__ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (12 + x0 + -4 * x1 + 16 * x2), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_flip_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, def vflip(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-2]) class VflipNew(nn.Module): """Vertically flip a tensor image or a batch of tensor images. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Returns: torch.Tensor: The vertically flipped image tensor Examples: >>> vflip = Vflip() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> vflip(input) tensor([[[[0., 1., 1.], [0., 0., 0.], [0., 0., 0.]]]]) """ def __init__(self) ->None: super(VflipNew, self).__init__() def __repr__(self): return self.__class__.__name__ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
Vflip
false
2,691
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
PSNRLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nw/cnwkksrucu24puloutkjeemt7j7enb3oks5dfqkxjwubojvusjdy.py # Topologically Sorted Source Nodes: [mse_loss, truediv, log10, mul, mul_1], Original ATen: [aten.mse_loss, aten.reciprocal, aten.mul, aten.log10] # Source node to ATen node mapping: # log10 => log10 # mse_loss => mean, pow_1, sub # mul => mul_1 # mul_1 => mul_2 # truediv => mul, reciprocal # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%mean,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 16), kwargs = {}) # %log10 : [num_users=1] = call_function[target=torch.ops.aten.log10.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log10, 10.0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, -1.0), kwargs = {}) triton_per_fused_log10_mse_loss_mul_reciprocal_0 = async_compile.triton('triton_per_fused_log10_mse_loss_mul_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log10_mse_loss_mul_reciprocal_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log10_mse_loss_mul_reciprocal_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 16.0 tmp12 = tmp10 * tmp11 tmp13 = libdevice.log10(tmp12) tmp14 = 10.0 tmp15 = tmp13 * tmp14 tmp16 = -1.0 tmp17 = tmp15 * tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mse_loss, truediv, log10, mul, mul_1], Original ATen: [aten.mse_loss, aten.reciprocal, aten.mul, aten.log10] stream0 = get_raw_stream(0) triton_per_fused_log10_mse_loss_mul_reciprocal_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.functional import mse_loss as mse def psnr(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Creates a function that calculates the PSNR between 2 images. PSNR is Peek Signal to Noise Ratio, which is similar to mean squared error. Given an m x n image, the PSNR is: .. math:: \\text{PSNR} = 10 \\log_{10} \\bigg(\\frac{\\text{MAX}_I^2}{MSE(I,T)}\\bigg) where .. math:: \\text{MSE}(I,T) = \\frac{1}{mn}\\sum_{i=0}^{m-1}\\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\\text{MAX}_I=1`). Args: input (torch.Tensor): the input image with arbitrary shape :math:`(*)`. labels (torch.Tensor): the labels image with arbitrary shape :math:`(*)`. max_val (float): The maximum value in the input tensor. Return: torch.Tensor: the computed loss as a scalar. Examples: >>> ones = torch.ones(1) >>> psnr(ones, 1.2 * ones, 2.) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(20.0000) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ if not isinstance(input, torch.Tensor): raise TypeError(f'Expected torch.Tensor but got {type(target)}.') if not isinstance(target, torch.Tensor): raise TypeError(f'Expected torch.Tensor but got {type(input)}.') if input.shape != target.shape: raise TypeError( f'Expected tensors of equal shapes, but got {input.shape} and {target.shape}' ) return 10.0 * torch.log10(max_val ** 2 / mse(input, target, reduction= 'mean')) def psnr_loss(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Function that computes the PSNR loss. The loss is computed as follows: .. math:: \\text{loss} = -\\text{psnr(x, y)} See :meth:`~kornia.losses.psnr` for details abut PSNR. Args: input (torch.Tensor): the input image with shape :math:`(*)`. labels (torch.Tensor): the labels image with shape :math:`(*)`. max_val (float): The maximum value in the input tensor. Return: torch.Tensor: the computed loss as a scalar. Examples: >>> ones = torch.ones(1) >>> psnr_loss(ones, 1.2 * ones, 2.) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(-20.0000) """ return -1.0 * psnr(input, target, max_val) class PSNRLoss(nn.Module): """Creates a criterion that calculates the PSNR loss. The loss is computed as follows: .. math:: \\text{loss} = -\\text{psnr(x, y)} See :meth:`~kornia.losses.psnr` for details abut PSNR. Shape: - Input: arbitrary dimensional tensor :math:`(*)`. - Target: arbitrary dimensional tensor :math:`(*)` same shape as input. - Output: a scalar. Examples: >>> ones = torch.ones(1) >>> criterion = PSNRLoss(2.) >>> criterion(ones, 1.2 * ones) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(-20.0000) """ def __init__(self, max_val: 'float') ->None: super(PSNRLoss, self).__init__() self.max_val: 'float' = max_val def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: return psnr_loss(input, target, self.max_val) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'max_val': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.functional import mse_loss as mse assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log10_mse_loss_mul_reciprocal_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 16.0 tmp12 = tmp10 * tmp11 tmp13 = libdevice.log10(tmp12) tmp14 = 10.0 tmp15 = tmp13 * tmp14 tmp16 = -1.0 tmp17 = tmp15 * tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_log10_mse_loss_mul_reciprocal_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def psnr(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Creates a function that calculates the PSNR between 2 images. PSNR is Peek Signal to Noise Ratio, which is similar to mean squared error. Given an m x n image, the PSNR is: .. math:: \\text{PSNR} = 10 \\log_{10} \\bigg(\\frac{\\text{MAX}_I^2}{MSE(I,T)}\\bigg) where .. math:: \\text{MSE}(I,T) = \\frac{1}{mn}\\sum_{i=0}^{m-1}\\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\\text{MAX}_I=1`). Args: input (torch.Tensor): the input image with arbitrary shape :math:`(*)`. labels (torch.Tensor): the labels image with arbitrary shape :math:`(*)`. max_val (float): The maximum value in the input tensor. Return: torch.Tensor: the computed loss as a scalar. Examples: >>> ones = torch.ones(1) >>> psnr(ones, 1.2 * ones, 2.) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(20.0000) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ if not isinstance(input, torch.Tensor): raise TypeError(f'Expected torch.Tensor but got {type(target)}.') if not isinstance(target, torch.Tensor): raise TypeError(f'Expected torch.Tensor but got {type(input)}.') if input.shape != target.shape: raise TypeError( f'Expected tensors of equal shapes, but got {input.shape} and {target.shape}' ) return 10.0 * torch.log10(max_val ** 2 / mse(input, target, reduction= 'mean')) def psnr_loss(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Function that computes the PSNR loss. The loss is computed as follows: .. math:: \\text{loss} = -\\text{psnr(x, y)} See :meth:`~kornia.losses.psnr` for details abut PSNR. Args: input (torch.Tensor): the input image with shape :math:`(*)`. labels (torch.Tensor): the labels image with shape :math:`(*)`. max_val (float): The maximum value in the input tensor. Return: torch.Tensor: the computed loss as a scalar. Examples: >>> ones = torch.ones(1) >>> psnr_loss(ones, 1.2 * ones, 2.) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(-20.0000) """ return -1.0 * psnr(input, target, max_val) class PSNRLossNew(nn.Module): """Creates a criterion that calculates the PSNR loss. The loss is computed as follows: .. math:: \\text{loss} = -\\text{psnr(x, y)} See :meth:`~kornia.losses.psnr` for details abut PSNR. Shape: - Input: arbitrary dimensional tensor :math:`(*)`. - Target: arbitrary dimensional tensor :math:`(*)` same shape as input. - Output: a scalar. Examples: >>> ones = torch.ones(1) >>> criterion = PSNRLoss(2.) >>> criterion(ones, 1.2 * ones) # 10 * log(4/((1.2-1)**2)) / log(10) tensor(-20.0000) """ def __init__(self, max_val: 'float') ->None: super(PSNRLossNew, self).__init__() self.max_val: 'float' = max_val def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NickleDave/kornia
PSNRLoss
false
2,692
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
dehaze_net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/w2/cw26etiuqgfsnlcvfovjrjfkwerbr3hb33ggi6l6pg47hpyjzaos.py # Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3d/c3dyw6akmjhpp35jaqq3z7ozrdt7ywexn7u7aab2ekphhcccz3vm.py # Topologically Sorted Source Nodes: [concat1], Original ATen: [aten.cat] # Source node to ATen node mapping: # concat1 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 98304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 6 x0 = xindex % 4096 x2 = (xindex // 24576) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (12288*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 6, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-3) + x1)) + (12288*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-3) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l7/cl7utfe7bhcs2m55c3vdbkrwcvmnsjji6vqhnykjtsppv3gprqlv.py # Topologically Sorted Source Nodes: [concat2], Original ATen: [aten.cat] # Source node to ATen node mapping: # concat2 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_1, %relu_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 98304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 6 x0 = xindex % 4096 x2 = (xindex // 24576) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (12288*x2)), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 6, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4096*((-3) + x1)) + (12288*x2)), tmp12, other=0.0) tmp16 = tl.load(in_ptr3 + ((-3) + x1), tmp12, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x3), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uw/cuwzisxb4drputjagww2hliycpjgkk573x3xmc4tbpcgmr5atzho.py # Topologically Sorted Source Nodes: [concat3], Original ATen: [aten.cat] # Source node to ATen node mapping: # concat3 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1, %relu_2, %relu_3], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 12 x0 = xindex % 4096 x2 = (xindex // 49152) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (12288*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 6, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-3) + x1)) + (12288*x2)), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + ((-3) + x1), tmp9, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp9, tmp14, tmp15) tmp17 = tmp0 >= tmp7 tmp18 = tl.full([1], 9, tl.int64) tmp19 = tmp0 < tmp18 tmp20 = tmp17 & tmp19 tmp21 = tl.load(in_ptr3 + (x0 + (4096*((-6) + x1)) + (12288*x2)), tmp20, other=0.0) tmp22 = tl.load(in_ptr4 + ((-6) + x1), tmp20, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = triton_helpers.maximum(tmp13, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp20, tmp24, tmp25) tmp27 = tmp0 >= tmp18 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tl.load(in_ptr5 + (x0 + (4096*((-9) + x1)) + (12288*x2)), tmp27, other=0.0) tmp31 = tl.load(in_ptr6 + ((-9) + x1), tmp27, eviction_policy='evict_last', other=0.0) tmp32 = tmp30 + tmp31 tmp33 = triton_helpers.maximum(tmp13, tmp32) tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp27, tmp33, tmp34) tmp36 = tl.where(tmp20, tmp26, tmp35) tmp37 = tl.where(tmp9, tmp16, tmp36) tmp38 = tl.where(tmp4, tmp5, tmp37) tl.store(out_ptr0 + (x3), tmp38, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7r/c7rhz6yw3jy35zprbjbr4xmjejtxhqk4shi6j6zgeuvzsdoolgg3.py # Topologically Sorted Source Nodes: [conv2d_4, x5, mul, sub, add, clean_image], Original ATen: [aten.convolution, aten.relu, aten.mul, aten.sub, aten.add, aten.threshold_backward] # Source node to ATen node mapping: # add => add # clean_image => relu_5 # conv2d_4 => convolution_4 # mul => mul # sub => sub # x5 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu_4, %primals_3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %relu_4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4 = async_compile.triton('triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x3), None) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp4 * tmp5 tmp7 = tmp6 - tmp4 tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp11 = 0.0 tmp12 = tmp4 <= tmp11 tmp13 = tmp10 <= tmp11 tl.store(out_ptr0 + (x3), tmp10, None) tl.store(out_ptr1 + (x3), tmp12, None) tl.store(out_ptr2 + (x3), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bo/cbonipi72qwxuhhf7mgzomqybvhp6dpyxvt6oh2zv22jokbykmre.py # Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x4 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_8, %primals_9, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_5, (3, ), (1, )) assert_size_stride(primals_6, (3, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_7, (3, ), (1, )) assert_size_stride(primals_8, (3, 6, 7, 7), (294, 49, 7, 1)) assert_size_stride(primals_9, (3, ), (1, )) assert_size_stride(primals_10, (3, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_11, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 49152, grid=grid(49152), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [concat1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf2, primals_5, buf3, 98304, grid=grid(98304), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [concat2], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf2, primals_5, buf4, primals_7, buf5, 98304, grid=grid(98304), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 12, 64, 64), (49152, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [concat3], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf1, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 196608, grid=grid(196608), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf9 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) buf11 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) buf10 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, x5, mul, sub, add, clean_image], Original ATen: [aten.convolution, aten.relu, aten.mul, aten.sub, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4.run(buf8, primals_11, primals_3, buf9, buf11, buf10, 49152, grid=grid(49152), stream=stream0) del buf8 del primals_11 buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_5.run(buf6, primals_9, buf12, 49152, grid=grid(49152), stream=stream0) del buf6 del primals_9 buf13 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_5.run(buf4, primals_7, buf13, 49152, grid=grid(49152), stream=stream0) del buf4 del primals_7 buf14 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_5.run(buf2, primals_5, buf14, 49152, grid=grid(49152), stream=stream0) del buf2 del primals_5 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((3, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((3, 6, 7, 7), (294, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((3, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.optim class dehaze_net(nn.Module): def __init__(self): super(dehaze_net, self).__init__() self.relu = nn.ReLU(inplace=True) self.e_conv1 = nn.Conv2d(3, 3, 1, 1, 0, bias=True) self.e_conv2 = nn.Conv2d(3, 3, 3, 1, 1, bias=True) self.e_conv3 = nn.Conv2d(6, 3, 5, 1, 2, bias=True) self.e_conv4 = nn.Conv2d(6, 3, 7, 1, 3, bias=True) self.e_conv5 = nn.Conv2d(12, 3, 3, 1, 1, bias=True) def forward(self, x): source = [] source.append(x) x1 = self.relu(self.e_conv1(x)) x2 = self.relu(self.e_conv2(x1)) concat1 = torch.cat((x1, x2), 1) x3 = self.relu(self.e_conv3(concat1)) concat2 = torch.cat((x2, x3), 1) x4 = self.relu(self.e_conv4(concat2)) concat3 = torch.cat((x1, x2, x3, x4), 1) x5 = self.relu(self.e_conv5(concat3)) clean_image = self.relu(x5 * x - x5 + 1) return clean_image def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 6 x0 = xindex % 4096 x2 = xindex // 24576 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 12288 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 6, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-3 + x1) + 12288 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-3 + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, None) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 6 x0 = xindex % 4096 x2 = xindex // 24576 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 12288 * x2), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 6, tl.int64) tmp15 = tl.load(in_ptr2 + (x0 + 4096 * (-3 + x1) + 12288 * x2), tmp12, other=0.0) tmp16 = tl.load(in_ptr3 + (-3 + x1), tmp12, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x3, tmp21, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 12 x0 = xindex % 4096 x2 = xindex // 49152 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 12288 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 6, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-3 + x1) + 12288 * x2), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + (-3 + x1), tmp9, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp9, tmp14, tmp15) tmp17 = tmp0 >= tmp7 tmp18 = tl.full([1], 9, tl.int64) tmp19 = tmp0 < tmp18 tmp20 = tmp17 & tmp19 tmp21 = tl.load(in_ptr3 + (x0 + 4096 * (-6 + x1) + 12288 * x2), tmp20, other=0.0) tmp22 = tl.load(in_ptr4 + (-6 + x1), tmp20, eviction_policy= 'evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = triton_helpers.maximum(tmp13, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp20, tmp24, tmp25) tmp27 = tmp0 >= tmp18 tl.full([1], 12, tl.int64) tmp30 = tl.load(in_ptr5 + (x0 + 4096 * (-9 + x1) + 12288 * x2), tmp27, other=0.0) tmp31 = tl.load(in_ptr6 + (-9 + x1), tmp27, eviction_policy= 'evict_last', other=0.0) tmp32 = tmp30 + tmp31 tmp33 = triton_helpers.maximum(tmp13, tmp32) tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp27, tmp33, tmp34) tmp36 = tl.where(tmp20, tmp26, tmp35) tmp37 = tl.where(tmp9, tmp16, tmp36) tmp38 = tl.where(tmp4, tmp5, tmp37) tl.store(out_ptr0 + x3, tmp38, None) @triton.jit def triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x3, None) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp4 * tmp5 tmp7 = tmp6 - tmp4 tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp11 = 0.0 tmp12 = tmp4 <= tmp11 tmp13 = tmp10 <= tmp11 tl.store(out_ptr0 + x3, tmp10, None) tl.store(out_ptr1 + x3, tmp12, None) tl.store(out_ptr2 + x3, tmp13, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_5, (3,), (1,)) assert_size_stride(primals_6, (3, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_7, (3,), (1,)) assert_size_stride(primals_8, (3, 6, 7, 7), (294, 49, 7, 1)) assert_size_stride(primals_9, (3,), (1,)) assert_size_stride(primals_10, (3, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_11, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(49152)](buf1, primals_2, 49152, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32) triton_poi_fused_cat_1[grid(98304)](buf1, buf2, primals_5, buf3, 98304, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32) triton_poi_fused_cat_2[grid(98304)](buf2, primals_5, buf4, primals_7, buf5, 98304, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 12, 64, 64), (49152, 4096, 64, 1), torch.float32) triton_poi_fused_cat_3[grid(196608)](buf1, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 196608, XBLOCK=512, num_warps =8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf9 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) buf11 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) buf10 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_4[grid (49152)](buf8, primals_11, primals_3, buf9, buf11, buf10, 49152, XBLOCK=512, num_warps=4, num_stages=1) del buf8 del primals_11 buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_5[grid(49152)]( buf6, primals_9, buf12, 49152, XBLOCK=512, num_warps=4, num_stages=1) del buf6 del primals_9 buf13 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_5[grid(49152)]( buf4, primals_7, buf13, 49152, XBLOCK=512, num_warps=4, num_stages=1) del buf4 del primals_7 buf14 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_5[grid(49152)]( buf2, primals_5, buf14, 49152, XBLOCK=512, num_warps=4, num_stages=1) del buf2 del primals_5 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13, buf14) class dehaze_netNew(nn.Module): def __init__(self): super(dehaze_netNew, self).__init__() self.relu = nn.ReLU(inplace=True) self.e_conv1 = nn.Conv2d(3, 3, 1, 1, 0, bias=True) self.e_conv2 = nn.Conv2d(3, 3, 3, 1, 1, bias=True) self.e_conv3 = nn.Conv2d(6, 3, 5, 1, 2, bias=True) self.e_conv4 = nn.Conv2d(6, 3, 7, 1, 3, bias=True) self.e_conv5 = nn.Conv2d(12, 3, 3, 1, 1, bias=True) def forward(self, input_0): primals_1 = self.e_conv1.weight primals_2 = self.e_conv1.bias primals_4 = self.e_conv2.weight primals_5 = self.e_conv2.bias primals_6 = self.e_conv3.weight primals_7 = self.e_conv3.bias primals_8 = self.e_conv4.weight primals_9 = self.e_conv4.bias primals_10 = self.e_conv5.weight primals_11 = self.e_conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
NeilDG/PyTorch-Image-Dehazing
dehaze_net
false
2,693
[ "MIT" ]
0
25aeebd4d5759efc1c7d5c2015cd381f805f99b2
https://github.com/NeilDG/PyTorch-Image-Dehazing/tree/25aeebd4d5759efc1c7d5c2015cd381f805f99b2
TransformDecoder4
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vc/cvc6xixhnqwk2cbbyrhev4gra4r5lu3btvixetqfj3mxeiehger3.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 147456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_1 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/md/cmdntih7abyn6mwxuftxv3u7gvdavkba4iadd7mlu5mbghjqqv56.py # Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d => convolution # pad_1 => _unsafe_index_3, _unsafe_index_4 # y => relu # y_1 => _unsafe_index_2 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 102400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 10) % 10 x0 = xindex % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7v/c7v45oloqfn4euhmt66oczbasvb63gxwy7fm3svojah6q6q2th7g.py # Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_2 => _unsafe_index_5, _unsafe_index_6 # y_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 102400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7n/c7nyyvchtptp5rbqvks7cavg63gajcswx5tpkvypdmc7ocd2zaaz.py # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_6 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_12, mul_4, mul_5 # Graph fragment: # %iota_12 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_12, 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_4 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qf/cqflzwnnhiyl7hoawchcxkqxkkwckfdq3rpeoa3o4sk6wo5a6n6n.py # Topologically Sorted Source Nodes: [conv2d_4, y_5, y_6, pad_5], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # pad_5 => _unsafe_index_12, _unsafe_index_13 # y_5 => relu_4 # y_6 => _unsafe_index_11 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_11, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_13 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_12, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 18) % 18 x0 = xindex % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i4/ci4u2uzwdl4x6xsvbrs62puexrtawx4kfqztnsboljgpqpev5zur.py # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # pad_6 => _unsafe_index_14, _unsafe_index_15 # y_7 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uw/cuwhadke7ul24n6hzb5sal45fu4ro7spo5s7tl5x4bo5jl7gz66f.py # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_9 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_18, mul_8, mul_9 # Graph fragment: # %iota_18 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_18, 1), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k7/ck7bf3l3rzn2b5z27scfb6po6ttassqspu4urfkn5e7xbhsq2s2d.py # Topologically Sorted Source Nodes: [conv2d_6, y_8, y_9, pad_7], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # pad_7 => _unsafe_index_17, _unsafe_index_18 # y_8 => relu_6 # y_9 => _unsafe_index_16 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %_unsafe_index_16 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_6, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) # %_unsafe_index_17 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_16, [None, None, %sub_29, None]), kwargs = {}) # %_unsafe_index_18 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_17, [None, None, None, %sub_29]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 34) % 34 x0 = xindex % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yx/cyxiisvd6357e3nrt4znkmjivtcc45mzwcgpnvrj5jiwbalchths.py # Topologically Sorted Source Nodes: [conv2d_7, y_10, pad_8], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # pad_8 => _unsafe_index_19, _unsafe_index_20 # y_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_18, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %_unsafe_index_19 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %sub_29, None]), kwargs = {}) # %_unsafe_index_20 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_19, [None, None, None, %sub_29]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_9 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uj/cujb6y5y4osx2vvsp7mk2u3fjeqpsrecy4fu2epgp3awq5idnjyq.py # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y_11 => convolution_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_20, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_10 = async_compile.triton('triton_poi_fused_convolution_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eo/ceoyvrt7lilhj2azq2emt7bipqc444mts3q5pn2y2v3acs3msegf.py # Topologically Sorted Source Nodes: [conv2d_7, y_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # y_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_18, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dt/cdtdjcn5ao6jckbptzeeuah2yudb27um4uwlvwffbnwtbnhpytvf.py # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # y_8 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_12 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ux/cuxkikwlw6hj4upwuoko3b6add2lr74ihu73rd7qw6rcofoytsns.py # Topologically Sorted Source Nodes: [conv2d_5, y_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # y_7 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le_56 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_13 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qk/cqkmpfvaqberctsqs5e4tsqughooqyxlitaje3pdowd5wtcne5tc.py # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # y_5 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_75 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ov/covedzte6ka54ajsekyitrd6p6mpp523wulxwtrl63ektefmpuve.py # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # y_4 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_8, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_94 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gy/cgybnsrpcjgnh4rqattwudtwjjam2me24yiscurttis3qbe4diay.py # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # y => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_151 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args args.clear() assert_size_stride(primals_1, (4, 1024, 4, 4), (16384, 16, 4, 1)) assert_size_stride(primals_2, (256, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024, 6, 6), (36864, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 147456, grid=grid(147456), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 256, 4, 4), (4096, 16, 4, 1)) buf2 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0) buf3 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1)) buf5 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 8, 8), (16384, 64, 8, 1)) buf7 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, y_3, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf6, primals_7, buf7, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 8, 8), (16384, 64, 8, 1)) buf9 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, y_4, pad_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf8, primals_9, buf9, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 8, 8), (8192, 64, 8, 1)) buf11 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_4.run(buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, y_5, y_6, pad_5], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5.run(buf11, buf10, primals_11, buf12, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 128, 16, 16), (32768, 256, 16, 1)) buf14 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf13, primals_13, buf14, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 16, 16), (16384, 256, 16, 1)) buf16 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_7.run(buf16, 32, grid=grid(32), stream=stream0) buf17 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, y_8, y_9, pad_7], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8.run(buf16, buf15, primals_15, buf17, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf19 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, y_10, pad_8], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_9.run(buf18, primals_17, buf19, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 3, 32, 32), (3072, 1024, 32, 1)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.convolution] triton_poi_fused_convolution_10.run(buf21, primals_19, 12288, grid=grid(12288), stream=stream0) del primals_19 buf22 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, y_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_11.run(buf18, primals_17, buf22, 262144, grid=grid(262144), stream=stream0) del buf18 del primals_17 buf23 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_12.run(buf15, primals_15, buf23, 65536, grid=grid(65536), stream=stream0) del buf15 del primals_15 buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, y_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_13.run(buf13, primals_13, buf24, 131072, grid=grid(131072), stream=stream0) del buf13 del primals_13 buf25 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_14.run(buf10, primals_11, buf25, 32768, grid=grid(32768), stream=stream0) del buf10 del primals_11 buf26 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf8, primals_9, buf26, 65536, grid=grid(65536), stream=stream0) del buf8 del primals_9 buf27 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf6, primals_7, buf27, 65536, grid=grid(65536), stream=stream0) del buf6 del primals_7 buf28 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf4, primals_5, buf28, 65536, grid=grid(65536), stream=stream0) del buf4 del primals_5 buf29 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf1, primals_3, buf29, 16384, grid=grid(16384), stream=stream0) del buf1 del primals_3 return (buf21, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf17, buf19, buf22, buf23, buf24, buf25, buf26, buf27, buf28, buf29, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1024, 4, 4), (16384, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TransformDecoder4(nn.Module): def __init__(self): super(TransformDecoder4, self).__init__() self.conv41 = nn.Conv2d(1024, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv31 = nn.Conv2d(256, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv21 = nn.Conv2d(128, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv11 = nn.Conv2d(64, 3, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) def forward(self, y): y = self.relu(self.conv41(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv34(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.conv11(self.pad(y)) return y def get_inputs(): return [torch.rand([4, 1024, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 10 % 10 x0 = xindex % 10 x4 = xindex // 100 x2 = xindex // 100 % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1 ))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0 ))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 18 % 18 x0 = xindex % 18 x4 = xindex // 324 x2 = xindex // 324 % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 34 % 34 x0 = xindex % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19) = args args.clear() assert_size_stride(primals_1, (4, 1024, 4, 4), (16384, 16, 4, 1)) assert_size_stride(primals_2, (256, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024, 6, 6), (36864, 36, 6, 1), torch .float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(147456)](primals_1, buf0, 147456, XBLOCK=512, num_warps=8, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 256, 4, 4), (4096, 16, 4, 1)) buf2 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK =8, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid (102400)](buf2, buf1, primals_3, buf3, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1)) buf5 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(102400)](buf4 , primals_5, buf5, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 8, 8), (16384, 64, 8, 1)) buf7 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(102400)](buf6 , primals_7, buf7, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 8, 8), (16384, 64, 8, 1)) buf9 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(102400)](buf8 , primals_9, buf9, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 8, 8), (8192, 64, 8, 1)) buf11 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_4[grid(16)](buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5[grid (165888)](buf11, buf10, primals_11, buf12, 165888, XBLOCK=1024, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 128, 16, 16), (32768, 256, 16, 1)) buf14 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(165888)]( buf13, primals_13, buf14, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 16, 16), (16384, 256, 16, 1)) buf16 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_7[grid(32)](buf16, 32, XBLOCK=32, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8[grid (295936)](buf16, buf15, primals_15, buf17, 295936, XBLOCK=1024, num_warps=4, num_stages=1) buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf19 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_9[grid(295936)]( buf18, primals_17, buf19, 295936, XBLOCK=512, num_warps=8, num_stages=1) buf20 = extern_kernels.convolution(buf19, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 3, 32, 32), (3072, 1024, 32, 1)) buf21 = buf20 del buf20 triton_poi_fused_convolution_10[grid(12288)](buf21, primals_19, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf22 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_11[grid(262144)]( buf18, primals_17, buf22, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf18 del primals_17 buf23 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_12[grid(65536)]( buf15, primals_15, buf23, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf15 del primals_15 buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_13[grid(131072)]( buf13, primals_13, buf24, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf13 del primals_13 buf25 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_14[grid(32768)]( buf10, primals_11, buf25, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf10 del primals_11 buf26 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(65536)]( buf8, primals_9, buf26, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf8 del primals_9 buf27 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(65536)]( buf6, primals_7, buf27, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_7 buf28 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(65536)]( buf4, primals_5, buf28, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_5 buf29 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_16[grid(16384)]( buf1, primals_3, buf29, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_3 return (buf21, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf17, buf19, buf22, buf23, buf24, buf25, buf26, buf27, buf28, buf29) class TransformDecoder4New(nn.Module): def __init__(self): super(TransformDecoder4New, self).__init__() self.conv41 = nn.Conv2d(1024, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv31 = nn.Conv2d(256, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv21 = nn.Conv2d(128, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv11 = nn.Conv2d(64, 3, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) def forward(self, input_0): primals_2 = self.conv41.weight primals_3 = self.conv41.bias primals_4 = self.conv34.weight primals_5 = self.conv34.bias primals_6 = self.conv33.weight primals_7 = self.conv33.bias primals_8 = self.conv32.weight primals_9 = self.conv32.bias primals_10 = self.conv31.weight primals_11 = self.conv31.bias primals_12 = self.conv22.weight primals_13 = self.conv22.bias primals_14 = self.conv21.weight primals_15 = self.conv21.bias primals_16 = self.conv12.weight primals_17 = self.conv12.bias primals_18 = self.conv11.weight primals_19 = self.conv11.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return output[0]
MingSun-Tse/pytorch-AdaIN
TransformDecoder4
false
2,694
[ "MIT" ]
0
02ae320345232983c754ea233613aedc21e4d348
https://github.com/MingSun-Tse/pytorch-AdaIN/tree/02ae320345232983c754ea233613aedc21e4d348
DomainAdaptationLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/rv/crvhev7rqnfcesjb6zncqnq24ifu4n5r6ytifuvjogzza2smabkv.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 8) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2, 4), (128, 32, 8, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DomainAdaptationLayer(nn.Module): """ This class is for the Domain Adaptation Layer. For now, the layer works only in source domain arguments (function forward): image: the input image (type: tensor) (size: batch x 384 x W x H) return (function forward): image: the output image after concatenation (type: tensor) """ def __init__(self): super(DomainAdaptationLayer, self).__init__() def forward(self, image): return torch.cat((image, image), 3) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 8 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2, 4), (128, 32, 8, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](arg0_1, buf0, 512, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0), class DomainAdaptationLayerNew(nn.Module): """ This class is for the Domain Adaptation Layer. For now, the layer works only in source domain arguments (function forward): image: the input image (type: tensor) (size: batch x 384 x W x H) return (function forward): image: the output image after concatenation (type: tensor) """ def __init__(self): super(DomainAdaptationLayerNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Muntasir13/Face-Spoofing-Detection-using-Depth-Wise-Convolution
DomainAdaptationLayer
false
2,695
[ "MIT" ]
0
f5b1b5d2ad2f29286afbc14e98075534b572c555
https://github.com/Muntasir13/Face-Spoofing-Detection-using-Depth-Wise-Convolution/tree/f5b1b5d2ad2f29286afbc14e98075534b572c555
Hflip
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mw/cmwuhpoo35erq3s5jprdn2bal2k4sfcwtsv6hgm3szdtd6g2t2ew.py # Topologically Sorted Source Nodes: [flip], Original ATen: [aten.flip] # Source node to ATen node mapping: # flip => rev # Graph fragment: # %rev : [num_users=1] = call_function[target=torch.ops.prims.rev.default](args = (%arg0_1, [3]), kwargs = {}) triton_poi_fused_flip_0 = async_compile.triton('triton_poi_fused_flip_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_flip_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (3 + ((-1)*x0) + (4*x1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [flip], Original ATen: [aten.flip] stream0 = get_raw_stream(0) triton_poi_fused_flip_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def hflip(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-1]) class Hflip(nn.Module): """Horizontally flip a tensor image or a batch of tensor images. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Returns: torch.Tensor: The horizontally flipped image tensor Examples: >>> hflip = Hflip() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> hflip(input) tensor([[[[0., 0., 0.], [0., 0., 0.], [1., 1., 0.]]]]) """ def __init__(self) ->None: super(Hflip, self).__init__() def forward(self, input: 'torch.Tensor') ->torch.Tensor: return hflip(input) def __repr__(self): return self.__class__.__name__ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (3 + -1 * x0 + 4 * x1), xmask, eviction_policy ='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_flip_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def hflip(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-1]) class HflipNew(nn.Module): """Horizontally flip a tensor image or a batch of tensor images. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Returns: torch.Tensor: The horizontally flipped image tensor Examples: >>> hflip = Hflip() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> hflip(input) tensor([[[[0., 0., 0.], [0., 0., 0.], [1., 1., 0.]]]]) """ def __init__(self) ->None: super(HflipNew, self).__init__() def __repr__(self): return self.__class__.__name__ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
Hflip
false
2,696
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
SuperPointNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pn/cpng7gl7lqxvqafyqlu5mbr4lc7m2sgi4l5ulbiv46djlkgyencv.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ne/cnepmjd66uu3laeexeusfxab3aayptiri2wp2knrgtgmx52tvzxj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ba/cbayuw2by4w6xwduhs5qdriinmydiep6bpw7fyi37s377up7lrcm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yd/cydvmxsmzwizyj5fbgjnjeeo27as6zdlft5s5uj57ovvcxtlbfhh.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vn/cvnnodtrripz7gtommdv4wbjjfexefcdjq3t2xglmrxcj2g7mll4.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp4, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7c/c7caq6stn5xhqphn2xnmwbpvxspyfj5wahntqw4tlpltw5xu6ktg.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/p7/cp7hkfs7dzspvks5o4gggcw3s4o5jb3vqo372n6r4xcl5tx3xupa.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ya/cya72dxxug7bvahrgkiz2tev6wxbq4aissg3wd3pl37yen37nb4b.py # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xj/cxjptd7j2qxrb3kjd7zlgxmewdvhhkbw3tukgvay2kmhnxcajkzw.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 16 x2 = (xindex // 1024) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (4096*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (4096*x2)), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + (128*x1) + (4096*x2)), None) tmp5 = tl.load(in_ptr0 + (2112 + x0 + (128*x1) + (4096*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v5/cv5bres457ho44iaqr63mi3bbgzezc3pxml5sotwsljao2g5whrl.py # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_6 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sr/csr7z2afgh7gbn3y7lq2wp2sva4b7imt3iniu36uxe33zsilt4x7.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_8 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 8 x2 = (xindex // 1024) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (4096*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (4096*x2)), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + (256*x1) + (4096*x2)), None) tmp5 = tl.load(in_ptr0 + (2176 + x0 + (256*x1) + (4096*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g6/cg6bxfpbjt7yt2cidmobe46sxen6spgw4gul66mxxotjhzxvzddf.py # Topologically Sorted Source Nodes: [conv2d_6, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x_9 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l5/cl5g2w4v5osla5sy5d2al2y6dspf2ipfcnmfehdgyecqjlqqwxp5.py # Topologically Sorted Source Nodes: [conv2d_8, cPa], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # cPa => relu_8 # conv2d_8 => convolution_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_7, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/q3/cq35pbgnsnzjuhpsen4p6ua7wlqsoqqkc5hvjqqupede7xjns4pl.py # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] # Source node to ATen node mapping: # semi => convolution_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_8, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_13 = async_compile.triton('triton_poi_fused_convolution_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_13(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 260 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 65 y1 = (yindex // 65) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (65*x2) + (4160*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (64*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/le/clesx3fq4nvfilcvyfxgg66sqkyn3nl3mexlek76x5apn2ediyvi.py # Topologically Sorted Source Nodes: [desc, dn], Original ATen: [aten.convolution, aten.linalg_vector_norm] # Source node to ATen node mapping: # desc => convolution_11 # dn => pow_1, pow_2, sum_1 # Graph fragment: # %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%convolution_11, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_per_fused_convolution_linalg_vector_norm_14 = async_compile.triton('triton_per_fused_convolution_linalg_vector_norm_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_linalg_vector_norm_14', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_linalg_vector_norm_14(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel): xnumel = 256 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_out_ptr0 + (r1 + (256*x0)), None) tmp1 = tl.load(in_ptr0 + (r1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = libdevice.sqrt(tmp6) tl.store(in_out_ptr0 + (r1 + (256*x0)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/f4/cf4ceh57l4kazdvaqbryn4i5xohp6gmuuxrk5bvsv4ct3wlef3om.py # Topologically Sorted Source Nodes: [desc_1], Original ATen: [aten.div] # Source node to ATen node mapping: # desc_1 => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_11, %unsqueeze), kwargs = {}) triton_poi_fused_div_15 = async_compile.triton('triton_poi_fused_div_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_15(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = (yindex // 256) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (16384*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (64*y1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x2 + (64*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25 = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (128, ), (1, )) assert_size_stride(primals_18, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_19, (256, ), (1, )) assert_size_stride(primals_20, (65, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_21, (65, ), (1, )) assert_size_stride(primals_22, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (256, ), (1, )) assert_size_stride(primals_24, (256, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_25, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_4 buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_6, buf1, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_6 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_8, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_8 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_10, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_12, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_12 buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_14, buf5, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_14 buf6 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_16, buf6, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_16 buf7 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_18, buf7, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_18 buf8 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_22, buf8, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_22 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_2, buf10, 256, 4096, grid=grid(256, 4096), stream=stream0) del buf9 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf12, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf13 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf14 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_6.run(buf12, buf13, buf14, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf13, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf16, primals_7, 262144, grid=grid(262144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf18, primals_9, 262144, grid=grid(262144), stream=stream0) del primals_9 buf19 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) buf20 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_8.run(buf18, buf19, buf20, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf22, primals_11, 131072, grid=grid(131072), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf24, primals_13, 131072, grid=grid(131072), stream=stream0) del primals_13 buf25 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.float32) buf26 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.int8) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_10.run(buf24, buf25, buf26, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf25, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf28 = buf27; del buf27 # reuse # Topologically Sorted Source Nodes: [conv2d_6, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf28, primals_15, 32768, grid=grid(32768), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf29 = extern_kernels.convolution(buf28, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf30 = buf29; del buf29 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf30, primals_17, 32768, grid=grid(32768), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf30, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf32 = buf31; del buf31 # reuse # Topologically Sorted Source Nodes: [conv2d_8, cPa], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf32, primals_19, 65536, grid=grid(65536), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 65, 8, 8), (4160, 1, 520, 65)) buf34 = empty_strided_cuda((4, 65, 8, 8), (4160, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] triton_poi_fused_convolution_13.run(buf33, primals_21, buf34, 260, 64, grid=grid(260, 64), stream=stream0) del buf33 del primals_21 # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf30, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf36 = buf35; del buf35 # reuse # Topologically Sorted Source Nodes: [conv2d_10, cDa], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf36, primals_23, 65536, grid=grid(65536), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [desc], Original ATen: [aten.convolution] buf37 = extern_kernels.convolution(buf36, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf38 = buf37; del buf37 # reuse buf39 = empty_strided_cuda((4, 8, 8), (64, 8, 1), torch.float32) buf40 = buf39; del buf39 # reuse # Topologically Sorted Source Nodes: [desc, dn], Original ATen: [aten.convolution, aten.linalg_vector_norm] triton_per_fused_convolution_linalg_vector_norm_14.run(buf38, buf40, primals_25, 256, 256, grid=grid(256), stream=stream0) del primals_25 buf41 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [desc_1], Original ATen: [aten.div] triton_poi_fused_div_15.run(buf38, buf40, buf41, 1024, 64, grid=grid(1024, 64), stream=stream0) return (buf34, buf41, primals_1, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, primals_20, buf8, primals_24, buf10, buf12, buf13, buf14, buf16, buf18, buf19, buf20, buf22, buf24, buf25, buf26, buf28, buf30, buf32, buf36, buf38, reinterpret_tensor(buf40, (4, 1, 8, 8), (64, 64, 8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((65, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((65, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((256, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.utils.data class SuperPointNet(torch.nn.Module): """ Pytorch definition of SuperPoint Network. """ def __init__(self): super(SuperPointNet, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) c1, c2, c3, c4, c5, d1 = 64, 64, 128, 128, 256, 256 self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1 ) self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) self.convPa = torch.nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) self.convPb = torch.nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) self.convDa = torch.nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) self.convDb = torch.nn.Conv2d(c5, d1, kernel_size=1, stride=1, padding=0) def forward(self, x): """ Forward pass that jointly computes unprocessed point and descriptor tensors. Input x: Image pytorch tensor shaped N x 1 x H x W. Output semi: Output point pytorch tensor shaped N x 65 x H/8 x W/8. desc: Output descriptor pytorch tensor shaped N x 256 x H/8 x W/8. """ x = self.relu(self.conv1a(x)) x = self.relu(self.conv1b(x)) x = self.pool(x) x = self.relu(self.conv2a(x)) x = self.relu(self.conv2b(x)) x = self.pool(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) cPa = self.relu(self.convPa(x)) semi = self.convPb(cPa) cDa = self.relu(self.convDa(x)) desc = self.convDb(cDa) dn = torch.norm(desc, p=2, dim=1) desc = desc.div(torch.unsqueeze(dn, 1)) return semi, desc def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp4, ymask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 16 x2 = xindex // 1024 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 4096 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 4096 * x2), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + 128 * x1 + 4096 * x2), None) tmp5 = tl.load(in_ptr0 + (2112 + x0 + 128 * x1 + 4096 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 8 x2 = xindex // 1024 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 4096 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 4096 * x2), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + 256 * x1 + 4096 * x2), None) tmp5 = tl.load(in_ptr0 + (2176 + x0 + 256 * x1 + 4096 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_13(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 260 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 65 y1 = yindex // 65 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 65 * x2 + 4160 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 64 * y3), tmp2, xmask & ymask) @triton.jit def triton_per_fused_convolution_linalg_vector_norm_14(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_out_ptr0 + (r1 + 256 * x0), None) tmp1 = tl.load(in_ptr0 + r1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = libdevice.sqrt(tmp6) tl.store(in_out_ptr0 + (r1 + 256 * x0), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp7, None) @triton.jit def triton_poi_fused_div_15(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = yindex // 256 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 16384 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 64 * y1), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x2 + 64 * y3), tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25) = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (128,), (1,)) assert_size_stride(primals_18, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_19, (256,), (1,)) assert_size_stride(primals_20, (65, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_21, (65,), (1,)) assert_size_stride(primals_22, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (256,), (1,)) assert_size_stride(primals_24, (256, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_25, (256,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(4096, 9)](primals_4, buf0, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_0[grid(4096, 9)](primals_6, buf1, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_0[grid(4096, 9)](primals_8, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_1[grid(8192, 9)](primals_10, buf3, 8192, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(16384, 9)](primals_12, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(16384, 9)](primals_14, buf5, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf6 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(16384, 9)](primals_16, buf6, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf7 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(32768, 9)](primals_18, buf7, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_18 buf8 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(32768, 9)](primals_22, buf8, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_22 buf9 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused_convolution_relu_4[grid(256, 4096)](buf9, primals_2, buf10, 256, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf9 del primals_2 buf11 = extern_kernels.convolution(buf10, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf12 = buf11 del buf11 triton_poi_fused_convolution_relu_5[grid(1048576)](buf12, primals_5, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf13 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf14 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_6[grid(262144)](buf12, buf13, buf14, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf15 = extern_kernels.convolution(buf13, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf16 = buf15 del buf15 triton_poi_fused_convolution_relu_7[grid(262144)](buf16, primals_7, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf17 = extern_kernels.convolution(buf16, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf18 = buf17 del buf17 triton_poi_fused_convolution_relu_7[grid(262144)](buf18, primals_9, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf19 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) buf20 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_8[grid(65536)](buf18, buf19, buf20, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_9[grid(131072)](buf22, primals_11, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf24 = buf23 del buf23 triton_poi_fused_convolution_relu_9[grid(131072)](buf24, primals_13, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf25 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.float32) buf26 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_10[grid(32768)](buf24, buf25, buf26, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf27 = extern_kernels.convolution(buf25, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf28 = buf27 del buf27 triton_poi_fused_convolution_relu_11[grid(32768)](buf28, primals_15, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf29 = extern_kernels.convolution(buf28, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf30 = buf29 del buf29 triton_poi_fused_convolution_relu_11[grid(32768)](buf30, primals_17, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf31 = extern_kernels.convolution(buf30, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf32 = buf31 del buf31 triton_poi_fused_convolution_relu_12[grid(65536)](buf32, primals_19, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf33 = extern_kernels.convolution(buf32, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 65, 8, 8), (4160, 1, 520, 65)) buf34 = empty_strided_cuda((4, 65, 8, 8), (4160, 64, 8, 1), torch. float32) triton_poi_fused_convolution_13[grid(260, 64)](buf33, primals_21, buf34, 260, 64, XBLOCK=64, YBLOCK=4, num_warps=4, num_stages=1) del buf33 del primals_21 buf35 = extern_kernels.convolution(buf30, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf36 = buf35 del buf35 triton_poi_fused_convolution_relu_12[grid(65536)](buf36, primals_23, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf37 = extern_kernels.convolution(buf36, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf38 = buf37 del buf37 buf39 = empty_strided_cuda((4, 8, 8), (64, 8, 1), torch.float32) buf40 = buf39 del buf39 triton_per_fused_convolution_linalg_vector_norm_14[grid(256)](buf38, buf40, primals_25, 256, 256, num_warps=2, num_stages=1) del primals_25 buf41 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .float32) triton_poi_fused_div_15[grid(1024, 64)](buf38, buf40, buf41, 1024, 64, XBLOCK=64, YBLOCK=8, num_warps=4, num_stages=1) return (buf34, buf41, primals_1, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, primals_20, buf8, primals_24, buf10, buf12, buf13, buf14, buf16, buf18, buf19, buf20, buf22, buf24, buf25, buf26, buf28, buf30, buf32, buf36, buf38, reinterpret_tensor(buf40, (4, 1, 8, 8), (64, 64, 8, 1), 0)) class SuperPointNetNew(torch.nn.Module): """ Pytorch definition of SuperPoint Network. """ def __init__(self): super(SuperPointNetNew, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) c1, c2, c3, c4, c5, d1 = 64, 64, 128, 128, 256, 256 self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1 ) self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) self.convPa = torch.nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) self.convPb = torch.nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) self.convDa = torch.nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) self.convDb = torch.nn.Conv2d(c5, d1, kernel_size=1, stride=1, padding=0) def forward(self, input_0): primals_1 = self.conv1a.weight primals_2 = self.conv1a.bias primals_4 = self.conv1b.weight primals_5 = self.conv1b.bias primals_6 = self.conv2a.weight primals_7 = self.conv2a.bias primals_8 = self.conv2b.weight primals_9 = self.conv2b.bias primals_10 = self.conv3a.weight primals_11 = self.conv3a.bias primals_12 = self.conv3b.weight primals_13 = self.conv3b.bias primals_14 = self.conv4a.weight primals_15 = self.conv4a.bias primals_16 = self.conv4b.weight primals_17 = self.conv4b.bias primals_18 = self.convPa.weight primals_19 = self.convPa.bias primals_20 = self.convPb.weight primals_21 = self.convPb.bias primals_22 = self.convDa.weight primals_23 = self.convDa.bias primals_24 = self.convDb.weight primals_25 = self.convDb.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return output[0], output[1]
Merical/pytorch-superpoint
SuperPointNet
false
2,697
[ "MIT" ]
0
b1f6e587b0f68a8a647773e4128b4f504edb4d58
https://github.com/Merical/pytorch-superpoint/tree/b1f6e587b0f68a8a647773e4128b4f504edb4d58
SpatialSELayer3D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/h3/ch3jaerz3yy2cwhlkdxgu5zovr4b3pud2kkovjsigzdkknwn2xvn.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/am/camsrjlmg6ylm6yctgyff74j6yb72ujqgwncb6u2hoguvhy5bd5b.py # Topologically Sorted Source Nodes: [squeeze_tensor, output_tensor], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # output_tensor => mul # squeeze_tensor => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 64 x2 = (xindex // 256) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [squeeze_tensor, output_tensor], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 1024, grid=grid(1024), stream=stream0) return (buf2, primals_1, primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SpatialSELayer3D(nn.Module): """ 3D extension of SE block -- squeezing spatially and exciting channel-wise described in: *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018* """ def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer3D, self).__init__() self.conv = nn.Conv3d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor, weights=None): """ :param weights: weights for few shot learning :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output_tensor """ batch_size, channel, D, H, W = input_tensor.size() if weights: weights = weights.view(1, channel, 1, 1) out = F.conv2d(input_tensor, weights) else: out = self.conv(input_tensor) squeeze_tensor = self.sigmoid(out) output_tensor = torch.mul(input_tensor, squeeze_tensor.view( batch_size, 1, D, H, W)) return output_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 64 x2 = xindex // 256 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(1024)](primals_1, buf1, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf1 class SpatialSELayer3DNew(nn.Module): """ 3D extension of SE block -- squeezing spatially and exciting channel-wise described in: *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018* """ def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer3DNew, self).__init__() self.conv = nn.Conv3d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Nightmare4214/FracNet
SpatialSELayer3D
false
2,698
[ "Apache-2.0" ]
0
db397adb50f71387155d9d110302a5968f86f756
https://github.com/Nightmare4214/FracNet/tree/db397adb50f71387155d9d110302a5968f86f756
ResizeTransform
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2h/c2hzrtqhbvxaedsmk5yf4w3blae4viyram4eduvj75lltgf3jdhn.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, add_1, clamp_max_1, clamp_min, clamp_min_1, convert_element_type, convert_element_type_1, iota, mul, mul_1, sub, sub_1 # x_1 => mul_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (1,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0), kwargs = {}) # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.25), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 - tmp0 tmp3 = 0.0 tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as nnf class ResizeTransform(nn.Module): """ Resize a transform, which involves resizing the vector field *and* rescaling it. """ def __init__(self, vel_resize, ndims): super().__init__() self.factor = 1.0 / vel_resize self.mode = 'linear' if ndims == 2: self.mode = 'bi' + self.mode elif ndims == 3: self.mode = 'tri' + self.mode def forward(self, x): if self.factor < 1: x = nnf.interpolate(x, align_corners=True, scale_factor=self. factor, mode=self.mode) x = self.factor * x elif self.factor > 1: x = self.factor * x x = nnf.interpolate(x, align_corners=True, scale_factor=self. factor, mode=self.mode) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'vel_resize': 4, 'ndims': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 - tmp0 tmp3 = 0.0 tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return buf0, class ResizeTransformNew(nn.Module): """ Resize a transform, which involves resizing the vector field *and* rescaling it. """ def __init__(self, vel_resize, ndims): super().__init__() self.factor = 1.0 / vel_resize self.mode = 'linear' if ndims == 2: self.mode = 'bi' + self.mode elif ndims == 3: self.mode = 'tri' + self.mode def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NingAnMe/voxelmorph
ResizeTransform
false
2,699
[ "Apache-2.0" ]
0
3a1a4c2f456af2dba5552efc1b08c68af38e54dc
https://github.com/NingAnMe/voxelmorph/tree/3a1a4c2f456af2dba5552efc1b08c68af38e54dc
MedianPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/kl/cklbhlzu6ep4tn3xzeimxej75uhafkeejjqdokpj65pjetqowyyf.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unfold_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex % 3 x4 = (xindex // 3) y0 = yindex % 2 y1 = (yindex // 2) % 2 y2 = (yindex // 4) x6 = xindex y5 = yindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + x3 + y0))) + ((-4)*(tl_math.abs((-3) + x4 + y1))) + (16*y2)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x6 + (9*y5)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2, 3, 3), (144, 36, 18, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 64, 9, grid=grid(64, 9), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [median], Original ATen: [aten.median] buf1 = torch.ops.aten.median.dim(reinterpret_tensor(buf0, (4, 4, 2, 2, 9), (144, 36, 18, 9, 1), 0), -1) del buf0 buf2 = buf1[0] del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair from torch.nn.modules.utils import _quadruple from torch import optim as optim import torch.nn.parallel class MedianPool2d(nn.Module): """ Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=False): super(MedianPool2d, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - ih % self.stride[0], 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - iw % self.stride[1], 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = pl, pr, pt, pb else: padding = self.padding return padding def forward(self, x): x = F.pad(x, self._padding(x), mode='reflect') x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data import torch.nn as nn from torch.nn.modules.utils import _pair from torch.nn.modules.utils import _quadruple from torch import optim as optim import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex % 3 x4 = xindex // 3 y0 = yindex % 2 y1 = yindex // 2 % 2 y2 = yindex // 4 x6 = xindex y5 = yindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + x3 + y0) + -4 * tl_math.abs(-3 + x4 + y1) + 16 * y2), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x6 + 9 * y5), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2, 3, 3), (144, 36, 18, 9, 3, 1 ), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 9)](arg0_1, buf0, 64, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del arg0_1 buf1 = torch.ops.aten.median.dim(reinterpret_tensor(buf0, (4, 4, 2, 2, 9), (144, 36, 18, 9, 1), 0), -1) del buf0 buf2 = buf1[0] del buf1 return buf2, class MedianPool2dNew(nn.Module): """ Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=False): super(MedianPool2dNew, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - ih % self.stride[0], 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - iw % self.stride[1], 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = pl, pr, pt, pb else: padding = self.padding return padding def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Exir-lxr/crldr-prune-pytorch
MedianPool2d
false
2,700
[ "Apache-2.0" ]
0
adeb5e0b24ce66ff9531d4d947f72412c1b5c033
https://github.com/Exir-lxr/crldr-prune-pytorch/tree/adeb5e0b24ce66ff9531d4d947f72412c1b5c033
PlanarNormalizingFlow
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/il/cil5hpoi7ygpsypgim2u7imeqozhugxjb3qehifbgnc6wf4rjrsp.py # Topologically Sorted Source Nodes: [uw, softplus, muw, sub, mul, pow_1, sum_1, truediv, uhat, mv, zwb, psi, psi_u, add_4, abs_1, add_5, logdet_jacobian], Original ATen: [aten.dot, aten.softplus, aten.add, aten.sub, aten.mul, aten.pow, aten.sum, aten.div, aten.mv, aten.abs, aten.log] # Source node to ATen node mapping: # abs_1 => abs_1 # add_4 => add_4 # add_5 => add_5 # logdet_jacobian => log # mul => mul_1 # muw => add # mv => mul_2, sum_3 # pow_1 => pow_1 # psi => mul_4 # psi_u => mul_5, sum_4 # softplus => exp, gt, log1p, where # sub => sub # sum_1 => sum_2 # truediv => div # uhat => add_1 # uw => mul, sum_1 # zwb => add_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sum_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sum_1, 20), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sum_1, %log1p), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, -1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %sum_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sum_2), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %div), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %primals_2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %primals_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_3), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [1]), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add_4,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_5,), kwargs = {}) triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {8: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=(8,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp10 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (0)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (1)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp19 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (2)) tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (3)) tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr3 + (0)) tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr0 + (0)) tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp52 = tl.load(in_ptr0 + (1)) tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp60 = tl.load(in_ptr0 + (2)) tmp61 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp68 = tl.load(in_ptr0 + (3)) tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK]) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tmp1 * tmp1 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp13 = tmp10 * tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp22 = tmp19 * tmp21 tmp23 = tmp18 + tmp22 tmp27 = tmp24 * tmp26 tmp28 = tmp23 + tmp27 tmp31 = tmp28 + tmp30 tmp32 = libdevice.tanh(tmp31) tmp33 = tmp32 * tmp32 tmp34 = 1.0 tmp35 = tmp34 - tmp33 tmp36 = tmp35 * tmp12 tmp39 = 20.0 tmp40 = tmp5 > tmp39 tmp41 = tl_math.exp(tmp5) tmp42 = libdevice.log1p(tmp41) tmp43 = tl.where(tmp40, tmp5, tmp42) tmp44 = -1.0 tmp45 = tmp43 + tmp44 tmp46 = tmp45 - tmp5 tmp47 = tmp46 * tmp12 tmp48 = tmp47 / tmp9 tmp49 = tmp38 + tmp48 tmp50 = tmp36 * tmp49 tmp51 = tmp35 * tmp16 tmp54 = tmp46 * tmp16 tmp55 = tmp54 / tmp9 tmp56 = tmp53 + tmp55 tmp57 = tmp51 * tmp56 tmp58 = tmp50 + tmp57 tmp59 = tmp35 * tmp21 tmp62 = tmp46 * tmp21 tmp63 = tmp62 / tmp9 tmp64 = tmp61 + tmp63 tmp65 = tmp59 * tmp64 tmp66 = tmp58 + tmp65 tmp67 = tmp35 * tmp26 tmp70 = tmp46 * tmp26 tmp71 = tmp70 / tmp9 tmp72 = tmp69 + tmp71 tmp73 = tmp67 * tmp72 tmp74 = tmp66 + tmp73 tmp75 = tmp74 + tmp34 tmp76 = tl_math.abs(tmp75) tmp77 = 1e-08 tmp78 = tmp76 + tmp77 tmp79 = tl_math.log(tmp78) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp31, None) tl.store(in_out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp79, None) tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kk/ckkz4nmmavawr3cwhzxvsdtcrjydick2txrs43laojgo3e6wua2r.py # Topologically Sorted Source Nodes: [mul_1, f_z], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # f_z => add_3 # mul_1 => mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_3), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (0)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp4 = 20.0 tmp5 = tmp3 > tmp4 tmp6 = tl_math.exp(tmp3) tmp7 = libdevice.log1p(tmp6) tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = -1.0 tmp10 = tmp8 + tmp9 tmp11 = tmp10 - tmp3 tmp13 = tmp11 * tmp12 tmp16 = tmp13 / tmp15 tmp17 = tmp1 + tmp16 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp17 * tmp19 tmp21 = tmp0 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) buf4 = empty_strided_cuda((4, ), (1, ), torch.float32) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [uw, softplus, muw, sub, mul, pow_1, sum_1, truediv, uhat, mv, zwb, psi, psi_u, add_4, abs_1, add_5, logdet_jacobian], Original ATen: [aten.dot, aten.softplus, aten.add, aten.sub, aten.mul, aten.pow, aten.sum, aten.div, aten.mv, aten.abs, aten.log] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0.run(buf5, primals_1, primals_2, primals_3, primals_4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, f_z], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_1.run(primals_3, primals_1, buf0, primals_2, buf1, buf2, buf3, 16, grid=grid(16), stream=stream0) del buf0 del buf1 del buf2 return (buf3, buf5, primals_1, primals_2, primals_3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class PlanarNormalizingFlow(nn.Module): """ Planar normalizing flow [Rezende & Mohamed 2015]. Provides a tighter bound on the ELBO by giving more expressive power to the approximate distribution, such as by introducing covariance between terms. """ def __init__(self, in_features): super(PlanarNormalizingFlow, self).__init__() self.u = nn.Parameter(torch.randn(in_features)) self.w = nn.Parameter(torch.randn(in_features)) self.b = nn.Parameter(torch.ones(1)) def forward(self, z): uw = torch.dot(self.u, self.w) muw = -1 + F.softplus(uw) uhat = self.u + (muw - uw) * torch.transpose(self.w, 0, -1 ) / torch.sum(self.w ** 2) zwb = torch.mv(z, self.w) + self.b f_z = z + uhat.view(1, -1) * F.tanh(zwb).view(-1, 1) psi = (1 - F.tanh(zwb) ** 2).view(-1, 1) * self.w.view(1, -1) psi_u = torch.mv(psi, uhat) logdet_jacobian = torch.log(torch.abs(1 + psi_u) + 1e-08) return f_z, logdet_jacobian def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp10 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 0) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + 1) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp19 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + 2) tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + 3) tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr3 + 0) tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr0 + 0) tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp52 = tl.load(in_ptr0 + 1) tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp60 = tl.load(in_ptr0 + 2) tmp61 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp68 = tl.load(in_ptr0 + 3) tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK]) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tmp1 * tmp1 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp13 = tmp10 * tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp22 = tmp19 * tmp21 tmp23 = tmp18 + tmp22 tmp27 = tmp24 * tmp26 tmp28 = tmp23 + tmp27 tmp31 = tmp28 + tmp30 tmp32 = libdevice.tanh(tmp31) tmp33 = tmp32 * tmp32 tmp34 = 1.0 tmp35 = tmp34 - tmp33 tmp36 = tmp35 * tmp12 tmp39 = 20.0 tmp40 = tmp5 > tmp39 tmp41 = tl_math.exp(tmp5) tmp42 = libdevice.log1p(tmp41) tmp43 = tl.where(tmp40, tmp5, tmp42) tmp44 = -1.0 tmp45 = tmp43 + tmp44 tmp46 = tmp45 - tmp5 tmp47 = tmp46 * tmp12 tmp48 = tmp47 / tmp9 tmp49 = tmp38 + tmp48 tmp50 = tmp36 * tmp49 tmp51 = tmp35 * tmp16 tmp54 = tmp46 * tmp16 tmp55 = tmp54 / tmp9 tmp56 = tmp53 + tmp55 tmp57 = tmp51 * tmp56 tmp58 = tmp50 + tmp57 tmp59 = tmp35 * tmp21 tmp62 = tmp46 * tmp21 tmp63 = tmp62 / tmp9 tmp64 = tmp61 + tmp63 tmp65 = tmp59 * tmp64 tmp66 = tmp58 + tmp65 tmp67 = tmp35 * tmp26 tmp70 = tmp46 * tmp26 tmp71 = tmp70 / tmp9 tmp72 = tmp69 + tmp71 tmp73 = tmp67 * tmp72 tmp74 = tmp66 + tmp73 tmp75 = tmp74 + tmp34 tmp76 = tl_math.abs(tmp75) tmp77 = 1e-08 tmp78 = tmp76 + tmp77 tmp79 = tl_math.log(tmp78) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp31, None) tl.store(in_out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp79, None) tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + 0) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp4 = 20.0 tmp5 = tmp3 > tmp4 tmp6 = tl_math.exp(tmp3) tmp7 = libdevice.log1p(tmp6) tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = -1.0 tmp10 = tmp8 + tmp9 tmp11 = tmp10 - tmp3 tmp13 = tmp11 * tmp12 tmp16 = tmp13 / tmp15 tmp17 = tmp1 + tmp16 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp17 * tmp19 tmp21 = tmp0 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.float32) buf4 = empty_strided_cuda((4,), (1,), torch.float32) buf5 = buf4 del buf4 get_raw_stream(0) triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0[grid (1)](buf5, primals_1, primals_2, primals_3, primals_4, buf0, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(16)](primals_3, primals_1, buf0, primals_2, buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 return buf3, buf5, primals_1, primals_2, primals_3, primals_4 class PlanarNormalizingFlowNew(nn.Module): """ Planar normalizing flow [Rezende & Mohamed 2015]. Provides a tighter bound on the ELBO by giving more expressive power to the approximate distribution, such as by introducing covariance between terms. """ def __init__(self, in_features): super(PlanarNormalizingFlowNew, self).__init__() self.u = nn.Parameter(torch.randn(in_features)) self.w = nn.Parameter(torch.randn(in_features)) self.b = nn.Parameter(torch.ones(1)) def forward(self, input_0): primals_1 = self.u primals_2 = self.w primals_4 = self.b primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
NightmareNyx/semi-supervised-pytorch
PlanarNormalizingFlow
false
2,701
[ "MIT" ]
0
43bb86bc6757345bd7a4eb37d6948ee62a268f7e
https://github.com/NightmareNyx/semi-supervised-pytorch/tree/43bb86bc6757345bd7a4eb37d6948ee62a268f7e
Classifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf4, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Classifier(nn.Module): def __init__(self, dims): """ Single hidden layer classifier with softmax output. """ super(Classifier, self).__init__() [x_dim, h_dim, y_dim] = dims self.dense = nn.Linear(x_dim, h_dim) self.logits = nn.Linear(h_dim, y_dim) def forward(self, x): x = F.relu(self.dense(x)) x = F.softmax(self.logits(x), dim=-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dims': [4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf4, primals_4, buf5 class ClassifierNew(nn.Module): def __init__(self, dims): """ Single hidden layer classifier with softmax output. """ super(ClassifierNew, self).__init__() [x_dim, h_dim, y_dim] = dims self.dense = nn.Linear(x_dim, h_dim) self.logits = nn.Linear(h_dim, y_dim) def forward(self, input_0): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_4 = self.logits.weight primals_5 = self.logits.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
NightmareNyx/semi-supervised-pytorch
Classifier
false
2,702
[ "MIT" ]
0
43bb86bc6757345bd7a4eb37d6948ee62a268f7e
https://github.com/NightmareNyx/semi-supervised-pytorch/tree/43bb86bc6757345bd7a4eb37d6948ee62a268f7e
ProjectExciteLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7n/c7nk2rbl67lakkbhjz3lqc5xbd3ao7y6jdx5wajcdriaj6jxs2po.py # Topologically Sorted Source Nodes: [add, add_1, final_squeeze_tensor], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # final_squeeze_tensor => add_2 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_adaptive_avg_pool3d, 0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %_adaptive_avg_pool3d_1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %_adaptive_avg_pool3d_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = (xindex // 64) x1 = (xindex // 4) % 4 x6 = (xindex // 16) x7 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1 + (4*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (x7), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wn/cwn2swz25ji5y7ygs6wwihpkqqou43xvaxqan7bvon337mjfezlc.py # Topologically Sorted Source Nodes: [conv3d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv3d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_2, %primals_2, %primals_3, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pl/cplxqsfqqof27kbjodzxu4pu6azywb4g5d5veo2vlgeqofc2mfzq.py # Topologically Sorted Source Nodes: [conv3d_1, final_squeeze_tensor_1, output_tensor], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv3d_1 => convolution_1 # final_squeeze_tensor_1 => sigmoid # output_tensor => mul # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2, 1, 1, 1), (2, 1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [squeeze_tensor_w], Original ATen: [aten._adaptive_avg_pool3d] buf0 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 1, 4]) buf1 = buf0 del buf0 # Topologically Sorted Source Nodes: [squeeze_tensor_h], Original ATen: [aten._adaptive_avg_pool3d] buf2 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 4, 1]) buf3 = buf2 del buf2 # Topologically Sorted Source Nodes: [squeeze_tensor_d], Original ATen: [aten._adaptive_avg_pool3d] buf4 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [4, 1, 1]) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, add_1, final_squeeze_tensor], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, buf3, buf5, buf6, 1024, grid=grid(1024), stream=stream0) del buf1 del buf3 del buf5 # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv3d, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf8, primals_3, 512, grid=grid(512), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_4, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv3d_1, final_squeeze_tensor_1, output_tensor], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] triton_poi_fused_convolution_mul_sigmoid_2.run(buf10, primals_5, primals_1, buf11, 1024, grid=grid(1024), stream=stream0) del primals_5 return (buf11, primals_1, primals_2, primals_4, buf6, buf8, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 1, 1, 1), (2, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ProjectExciteLayer(nn.Module): """ Project & Excite Module, specifically designed for 3D inputs *quote* """ def __init__(self, num_channels, reduction_ratio=2): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ProjectExciteLayer, self).__init__() num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.relu = nn.ReLU() self.conv_c = nn.Conv3d(in_channels=num_channels, out_channels= num_channels_reduced, kernel_size=1, stride=1) self.conv_cT = nn.Conv3d(in_channels=num_channels_reduced, out_channels=num_channels, kernel_size=1, stride=1) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor): """ :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output tensor """ batch_size, num_channels, D, H, W = input_tensor.size() squeeze_tensor_w = F.adaptive_avg_pool3d(input_tensor, (1, 1, W)) squeeze_tensor_h = F.adaptive_avg_pool3d(input_tensor, (1, H, 1)) squeeze_tensor_d = F.adaptive_avg_pool3d(input_tensor, (D, 1, 1)) final_squeeze_tensor = sum([squeeze_tensor_w.view(batch_size, num_channels, 1, 1, W), squeeze_tensor_h.view(batch_size, num_channels, 1, H, 1), squeeze_tensor_d.view(batch_size, num_channels, D, 1, 1)]) final_squeeze_tensor = self.sigmoid(self.conv_cT(self.relu(self. conv_c(final_squeeze_tensor)))) output_tensor = torch.mul(input_tensor, final_squeeze_tensor) return output_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex // 64 x1 = xindex // 4 % 4 x6 = xindex // 16 x7 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr1 + (x1 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x7, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2, 1, 1, 1), (2, 1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 1, 4] ) buf1 = buf0 del buf0 buf2 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 4, 1] ) buf3 = buf2 del buf2 buf4 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [4, 1, 1] ) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(1024)](buf1, buf3, buf5, buf6, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf3 del buf5 buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_1[grid(512)](buf8, primals_3, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf9 = extern_kernels.convolution(buf8, primals_4, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf10 = buf9 del buf9 buf11 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_mul_sigmoid_2[grid(1024)](buf10, primals_5, primals_1, buf11, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf11, primals_1, primals_2, primals_4, buf6, buf8, buf10 class ProjectExciteLayerNew(nn.Module): """ Project & Excite Module, specifically designed for 3D inputs *quote* """ def __init__(self, num_channels, reduction_ratio=2): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ProjectExciteLayerNew, self).__init__() num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.relu = nn.ReLU() self.conv_c = nn.Conv3d(in_channels=num_channels, out_channels= num_channels_reduced, kernel_size=1, stride=1) self.conv_cT = nn.Conv3d(in_channels=num_channels_reduced, out_channels=num_channels, kernel_size=1, stride=1) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv_c.weight primals_3 = self.conv_c.bias primals_4 = self.conv_cT.weight primals_5 = self.conv_cT.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Nightmare4214/FracNet
ProjectExciteLayer
false
2,703
[ "Apache-2.0" ]
0
db397adb50f71387155d9d110302a5968f86f756
https://github.com/Nightmare4214/FracNet/tree/db397adb50f71387155d9d110302a5968f86f756
ChannelSpatialSELayer3D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/32/c32gpnu7y6kwawwiknabqcyafcipv27fjg22cpx6wzdxmd52bm4o.py # Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean] # Source node to ATen node mapping: # squeeze_tensor => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2, -3], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eb/cebpbupczy3a7z6yffgxybumq5trdt3jp5hxwuoo6w6cunzz7d7h.py # Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # fc_out_1 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ax/caxmkeh2jmhek2zyocohuinrfepl4v5et355vmxjthmuz7flndr3.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/z7/cz7mevd2o6hdj4eaxrrxrpsfzm35rl36w36g7y7kgur4bbck562g.py # Topologically Sorted Source Nodes: [output_tensor, squeeze_tensor_1, output_tensor_1, output_tensor_2], Original ATen: [aten.mul, aten.sigmoid, aten.maximum] # Source node to ATen node mapping: # output_tensor => mul # output_tensor_1 => mul_1 # output_tensor_2 => maximum # squeeze_tensor_1 => sigmoid_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid_1), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_maximum_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_maximum_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_maximum_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 64) x0 = xindex % 64 x2 = (xindex // 256) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tl.sigmoid(tmp4) tmp6 = tmp0 * tmp5 tmp7 = triton_helpers.maximum(tmp3, tmp6) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_3, 8, grid=grid(8), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4) del primals_5 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf6, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_tensor, squeeze_tensor_1, output_tensor_1, output_tensor_2], Original ATen: [aten.mul, aten.sigmoid, aten.maximum] triton_poi_fused_maximum_mul_sigmoid_3.run(primals_1, buf4, buf6, buf7, 1024, grid=grid(1024), stream=stream0) return (buf7, primals_1, primals_6, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, buf6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ChannelSELayer3D(nn.Module): """ 3D extension of Squeeze-and-Excitation (SE) block described in: *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507* *Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238* """ def __init__(self, num_channels, reduction_ratio=16): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ChannelSELayer3D, self).__init__() self.avg_pool = nn.AdaptiveAvgPool3d(1) num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True) self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input_tensor): """ :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output tensor """ batch_size, num_channels, _D, _H, _W = input_tensor.size() squeeze_tensor = self.avg_pool(input_tensor) fc_out_1 = self.relu(self.fc1(squeeze_tensor.view(batch_size, num_channels))) fc_out_2 = self.sigmoid(self.fc2(fc_out_1)) output_tensor = torch.mul(input_tensor, fc_out_2.view(batch_size, num_channels, 1, 1, 1)) return output_tensor class SpatialSELayer3D(nn.Module): """ 3D extension of SE block -- squeezing spatially and exciting channel-wise described in: *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018* """ def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer3D, self).__init__() self.conv = nn.Conv3d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor, weights=None): """ :param weights: weights for few shot learning :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output_tensor """ batch_size, channel, D, H, W = input_tensor.size() if weights: weights = weights.view(1, channel, 1, 1) out = F.conv2d(input_tensor, weights) else: out = self.conv(input_tensor) squeeze_tensor = self.sigmoid(out) output_tensor = torch.mul(input_tensor, squeeze_tensor.view( batch_size, 1, D, H, W)) return output_tensor class ChannelSpatialSELayer3D(nn.Module): """ 3D extension of concurrent spatial and channel squeeze & excitation: *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, arXiv:1803.02579* """ def __init__(self, num_channels, reduction_ratio=2): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ChannelSpatialSELayer3D, self).__init__() self.cSE = ChannelSELayer3D(num_channels, reduction_ratio) self.sSE = SpatialSELayer3D(num_channels) def forward(self, input_tensor): """ :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output_tensor """ output_tensor = torch.max(self.cSE(input_tensor), self.sSE( input_tensor)) return output_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_maximum_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 64 x0 = xindex % 64 x2 = xindex // 256 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tl.sigmoid(tmp4) tmp6 = tmp0 * tmp5 tmp7 = triton_helpers.maximum(tmp3, tmp6) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(8)](buf3, primals_3, 8, XBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_2[grid(256)](buf6, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_maximum_mul_sigmoid_3[grid(1024)](primals_1, buf4, buf6, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1) return buf7, primals_1, primals_6, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, buf6, primals_4 class ChannelSELayer3D(nn.Module): """ 3D extension of Squeeze-and-Excitation (SE) block described in: *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507* *Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238* """ def __init__(self, num_channels, reduction_ratio=16): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ChannelSELayer3D, self).__init__() self.avg_pool = nn.AdaptiveAvgPool3d(1) num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True) self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input_tensor): """ :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output tensor """ batch_size, num_channels, _D, _H, _W = input_tensor.size() squeeze_tensor = self.avg_pool(input_tensor) fc_out_1 = self.relu(self.fc1(squeeze_tensor.view(batch_size, num_channels))) fc_out_2 = self.sigmoid(self.fc2(fc_out_1)) output_tensor = torch.mul(input_tensor, fc_out_2.view(batch_size, num_channels, 1, 1, 1)) return output_tensor class SpatialSELayer3D(nn.Module): """ 3D extension of SE block -- squeezing spatially and exciting channel-wise described in: *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018* """ def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer3D, self).__init__() self.conv = nn.Conv3d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor, weights=None): """ :param weights: weights for few shot learning :param input_tensor: X, shape = (batch_size, num_channels, D, H, W) :return: output_tensor """ batch_size, channel, D, H, W = input_tensor.size() if weights: weights = weights.view(1, channel, 1, 1) out = F.conv2d(input_tensor, weights) else: out = self.conv(input_tensor) squeeze_tensor = self.sigmoid(out) output_tensor = torch.mul(input_tensor, squeeze_tensor.view( batch_size, 1, D, H, W)) return output_tensor class ChannelSpatialSELayer3DNew(nn.Module): """ 3D extension of concurrent spatial and channel squeeze & excitation: *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, arXiv:1803.02579* """ def __init__(self, num_channels, reduction_ratio=2): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ChannelSpatialSELayer3DNew, self).__init__() self.cSE = ChannelSELayer3D(num_channels, reduction_ratio) self.sSE = SpatialSELayer3D(num_channels) def forward(self, input_0): primals_2 = self.cSE.fc1.weight primals_3 = self.cSE.fc1.bias primals_4 = self.cSE.fc2.weight primals_5 = self.cSE.fc2.bias primals_6 = self.sSE.conv.weight primals_7 = self.sSE.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Nightmare4214/FracNet
ChannelSpatialSELayer3D
false
2,704
[ "Apache-2.0" ]
0
db397adb50f71387155d9d110302a5968f86f756
https://github.com/Nightmare4214/FracNet/tree/db397adb50f71387155d9d110302a5968f86f756
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # add => add # x => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del primals_6 buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0) del buf5 return (buf6, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True, init_method= 'xavier'): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters(method=init_method) def reset_parameters(self, method='xavier'): if method == 'uniform': stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) elif method == 'kaiming': nn.init.kaiming_normal_(self.weight.data, a=0, mode='fan_in') if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) elif method == 'xavier': nn.init.xavier_normal_(self.weight.data, gain=0.02) if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) else: raise NotImplementedError def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, init_method='xavier', dropout_input=False): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid, init_method=init_method) self.gc2 = GraphConvolution(nhid, nclass, init_method=init_method) self.dropout = dropout self.dropout_input = dropout_input def bottleneck(self, path1, path2, path3, adj, in_x): return F.relu(path3(F.relu(path2(F.relu(path1(in_x, adj)), adj)), adj)) def forward(self, x, adj): if self.dropout_input: x = F.dropout(x, self.dropout, training=self.training) x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import math import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK= 16, num_warps=1, num_stages=1) del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del primals_6 buf5 = buf3 del buf3 triton_poi_fused__log_softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf5 return buf6, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True, init_method= 'xavier'): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters(method=init_method) def reset_parameters(self, method='xavier'): if method == 'uniform': stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) elif method == 'kaiming': nn.init.kaiming_normal_(self.weight.data, a=0, mode='fan_in') if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) elif method == 'xavier': nn.init.xavier_normal_(self.weight.data, gain=0.02) if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) else: raise NotImplementedError def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCNNew(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, init_method='xavier', dropout_input=False): super(GCNNew, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid, init_method=init_method) self.gc2 = GraphConvolution(nhid, nclass, init_method=init_method) self.dropout = dropout self.dropout_input = dropout_input def bottleneck(self, path1, path2, path3, adj, in_x): return F.relu(path3(F.relu(path2(F.relu(path1(in_x, adj)), adj)), adj)) def forward(self, input_0, input_1): primals_1 = self.gc1.weight primals_4 = self.gc1.bias primals_2 = self.gc2.weight primals_6 = self.gc2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
NightmareNyx/pygcn
GCN
false
2,705
[ "MIT" ]
0
3972f167ce7fcc41cb21284d75816dfd9a15f7ef
https://github.com/NightmareNyx/pygcn/tree/3972f167ce7fcc41cb21284d75816dfd9a15f7ef
Join
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4w/c4wnsgoc33twicaodq5y5dd6anhipb3zir4gnwilzg5rby6lukqe.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%index, %index_1, %arg3_1], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.full([XBLOCK], 4, tl.int32) tmp7 = tmp5 + tmp6 tmp8 = tmp5 < 0 tmp9 = tl.where(tmp8, tmp7, tmp5) tl.device_assert(((0 <= tl.broadcast_to(tmp9, [XBLOCK])) & (tl.broadcast_to(tmp9, [XBLOCK]) < 4)) | ~(tmp4 & xmask), "index out of bounds: 0 <= tl.broadcast_to(tmp9, [XBLOCK]) < 4") tmp11 = tl.load(in_ptr1 + ((4*tmp9) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11.to(tl.float32) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr2 + (x1), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp6 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tl.device_assert(((0 <= tl.broadcast_to(tmp22, [XBLOCK])) & (tl.broadcast_to(tmp22, [XBLOCK]) < 4)) | ~(tmp18 & xmask), "index out of bounds: 0 <= tl.broadcast_to(tmp22, [XBLOCK]) < 4") tmp24 = tl.load(in_ptr1 + ((4*tmp22) + ((-4) + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp24.to(tl.float32) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp18, tmp25, tmp26) tmp28 = tmp0 >= tmp16 tmp29 = tl.full([1], 12, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tl.load(in_ptr3 + ((4*x1) + ((-8) + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tl.where(tmp18, tmp27, tmp31) tmp33 = tl.where(tmp4, tmp14, tmp32) tl.store(out_ptr0 + (x2), tmp33, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, ), (1, )) assert_size_stride(arg1_1, (4, ), (1, )) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, arg2_1, arg1_1, arg3_1, buf0, 48, grid=grid(48), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg3_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Join(torch.nn.Module): """Join layer """ def forward(self, unary: 'torch.Tensor', binary: 'torch.Tensor', index1: 'torch.Tensor', index2: 'torch.Tensor'): """Join the unary and binary tensors. :param unary: [u, |U|] the tensor with unary predicates pre-activations :param binary: [b, |B|] the tensor with binary predicates pre-activations :param index1: [b] a vector containing the indices of the first object of the pair referred by binary tensor :param index1: [b] a vector containing the indices of the second object of the pair referred by binary tensor :returns [b, 2|U| + |B|] """ index1 = torch.squeeze(index1) index2 = torch.squeeze(index2) if index1.ndim == 0 and index2.ndim == 0: index1 = torch.unsqueeze(index1, 0) index2 = torch.unsqueeze(index2, 0) u1 = unary[index1] u2 = unary[index2] return torch.cat([u1, u2, binary], dim=1) def get_inputs(): return [torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4]), torch.ones([4], dtype=torch.int64), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.full([XBLOCK], 4, tl.int32) tmp7 = tmp5 + tmp6 tmp8 = tmp5 < 0 tmp9 = tl.where(tmp8, tmp7, tmp5) tl.device_assert((0 <= tl.broadcast_to(tmp9, [XBLOCK])) & (tl. broadcast_to(tmp9, [XBLOCK]) < 4) | ~(tmp4 & xmask), 'index out of bounds: 0 <= tl.broadcast_to(tmp9, [XBLOCK]) < 4') tmp11 = tl.load(in_ptr1 + (4 * tmp9 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11.to(tl.float32) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr2 + x1, tmp18 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tmp19 + tmp6 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tl.device_assert((0 <= tl.broadcast_to(tmp22, [XBLOCK])) & (tl. broadcast_to(tmp22, [XBLOCK]) < 4) | ~(tmp18 & xmask), 'index out of bounds: 0 <= tl.broadcast_to(tmp22, [XBLOCK]) < 4') tmp24 = tl.load(in_ptr1 + (4 * tmp22 + (-4 + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp24.to(tl.float32) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp18, tmp25, tmp26) tmp28 = tmp0 >= tmp16 tl.full([1], 12, tl.int64) tmp31 = tl.load(in_ptr3 + (4 * x1 + (-8 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tl.where(tmp18, tmp27, tmp31) tmp33 = tl.where(tmp4, tmp14, tmp32) tl.store(out_ptr0 + x2, tmp33, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4,), (1,)) assert_size_stride(arg1_1, (4,), (1,)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](arg0_1, arg2_1, arg1_1, arg3_1, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf0, class JoinNew(torch.nn.Module): """Join layer """ def forward(self, input_0, input_1, input_2, input_3): arg2_1 = input_0 arg3_1 = input_1 arg0_1 = input_2 arg1_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
NooneBug/entity_typing_framework
Join
false
2,706
[ "MIT" ]
0
e4c3cf3a6d9c3a3453ce516de855fc22b49ae5c0
https://github.com/NooneBug/entity_typing_framework/tree/e4c3cf3a6d9c3a3453ce516de855fc22b49ae5c0
LR
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/py/cpyh6ec2iz3sra6zt6fob44e43stdscxhsedjuqcx4asmxctkvns.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4d/c4dt5pzm3sjzbrpt3mnynwuc6f3g56zyd4axenrdjh4irnqbjg4n.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 128, grid=grid(128), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 128, grid=grid(128), stream=stream0) del buf1 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data class LR(nn.Module): def __init__(self, dimension, num_class=2): super(LR, self).__init__() self.last_layer = nn.Linear(dimension, num_class) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = self.last_layer(x) x = self.softmax(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dimension': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(128)](buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(128)](buf1, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf1 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2 class LRNew(nn.Module): def __init__(self, dimension, num_class=2): super(LRNew, self).__init__() self.last_layer = nn.Linear(dimension, num_class) self.softmax = nn.Softmax(dim=1) def forward(self, input_0): primals_1 = self.last_layer.weight primals_2 = self.last_layer.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Ottovonxu/islide
LR
false
2,707
[ "Apache-2.0" ]
0
5ee9954e378f0b5a0722292351cb3cc74b95c1b3
https://github.com/Ottovonxu/islide/tree/5ee9954e378f0b5a0722292351cb3cc74b95c1b3
MeanPoolingLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yg/cygecf2e27degigeyd2exfoclgmkwvm5yxqjcwk2xkleafozjsb7.py # Topologically Sorted Source Nodes: [sum_1, truediv], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # sum_1 => sum_1 # truediv => div # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {}) triton_poi_fused_div_sum_0 = async_compile.triton('triton_poi_fused_div_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, truediv], Original ATen: [aten.sum, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_sum_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class BaseLayer(torch.nn.Module): def __repr__(self): return self.__class__.__name__ + '()' class MeanPoolingLayer(BaseLayer): def __init__(self): super(MeanPoolingLayer, self).__init__() def forward(self, input, dim=2): length = input.shape[2] return torch.sum(input, dim=2) / length def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_sum_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class BaseLayer(torch.nn.Module): def __repr__(self): return self.__class__.__name__ + '()' class MeanPoolingLayerNew(BaseLayer): def __init__(self): super(MeanPoolingLayerNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Otybrian/blogpost
MeanPoolingLayer
false
2,708
[ "MIT" ]
0
518599019e11cd7ee11e01470c4d51dfb4583274
https://github.com/Otybrian/blogpost/tree/518599019e11cd7ee11e01470c4d51dfb4583274
BasicConvTestModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/bp/cbpsi7uwlydcd7y2kls25pvhwekyxrjudqkrogdjrqus4cqarq6e.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 31752 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3969) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2, 1, 2, 2), (4, 4, 2, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 63, 63), (7938, 3969, 63, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 31752, grid=grid(31752), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 1, 2, 2), (4, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx def fill_bias(module, value): module.bias.data.fill_(value) def fill_conv_weight(conv, value): conv.weight.data.fill_(value) with torch.no_grad(): mask = torch.eye(conv.kernel_size[0]) conv.weight += mask def create_conv(in_channels, out_channels, kernel_size, weight_init, bias_init ): conv = nn.Conv2d(in_channels, out_channels, kernel_size) fill_conv_weight(conv, weight_init) fill_bias(conv, bias_init) return conv class conv(nn.Module): def __init__(self, in_channels, out_channels, stride=1, groups=1): super(conv, self).__init__() self.conv1 = nn.Conv3d(in_channels=in_channels, out_channels= out_channels, kernel_size=(5, 5, 3), stride=(stride, stride, 1), padding=(2, 2, 1), bias=False, groups=groups) def forward(self, x): out = x out = self.conv1(out) return out class BasicConvTestModel(nn.Module): def __init__(self, in_channels=1, out_channels=2, kernel_size=2, weight_init=-1, bias_init=-2): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.weight_init = weight_init self.bias_init = bias_init self.conv = create_conv(in_channels, out_channels, kernel_size, weight_init, bias_init) @staticmethod def default_weight(): return torch.tensor([[[[0.0, -1.0], [-1.0, 0.0]]], [[[0.0, -1.0], [ -1.0, 0.0]]]]) @staticmethod def default_bias(): return torch.tensor([-2.0, -2]) def forward(self, x): return self.conv(x) @property def weights_num(self): return self.out_channels * self.kernel_size ** 2 @property def bias_num(self): return self.kernel_size @property def nz_weights_num(self): return self.kernel_size * self.out_channels @property def nz_bias_num(self): return self.kernel_size def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 31752 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3969 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2, 1, 2, 2), (4, 4, 2, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 63, 63), (7938, 3969, 63, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(31752)](buf1, primals_2, 31752, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 def fill_bias(module, value): module.bias.data.fill_(value) def fill_conv_weight(conv, value): conv.weight.data.fill_(value) with torch.no_grad(): mask = torch.eye(conv.kernel_size[0]) conv.weight += mask def create_conv(in_channels, out_channels, kernel_size, weight_init, bias_init ): conv = nn.Conv2d(in_channels, out_channels, kernel_size) fill_conv_weight(conv, weight_init) fill_bias(conv, bias_init) return conv class conv(nn.Module): def __init__(self, in_channels, out_channels, stride=1, groups=1): super(conv, self).__init__() self.conv1 = nn.Conv3d(in_channels=in_channels, out_channels= out_channels, kernel_size=(5, 5, 3), stride=(stride, stride, 1), padding=(2, 2, 1), bias=False, groups=groups) def forward(self, x): out = x out = self.conv1(out) return out class BasicConvTestModelNew(nn.Module): def __init__(self, in_channels=1, out_channels=2, kernel_size=2, weight_init=-1, bias_init=-2): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.weight_init = weight_init self.bias_init = bias_init self.conv = create_conv(in_channels, out_channels, kernel_size, weight_init, bias_init) @staticmethod def default_weight(): return torch.tensor([[[[0.0, -1.0], [-1.0, 0.0]]], [[[0.0, -1.0], [ -1.0, 0.0]]]]) @staticmethod def default_bias(): return torch.tensor([-2.0, -2]) @property def weights_num(self): return self.out_channels * self.kernel_size ** 2 @property def bias_num(self): return self.kernel_size @property def nz_weights_num(self): return self.kernel_size * self.out_channels @property def nz_bias_num(self): return self.kernel_size def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
JinYAnGHe/openvino_training_extensions
BasicConvTestModel
false
2,709
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
SimpleNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hr/chrb4easzia4dw753qymwrkwdvp5554y3k2pc6zt3dtjbxgoihzj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3h/c3h4j2ijkg2jblud277lnet2ev5gdk6lyerwb36365pdquknq43k.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_2 => tanh_2 # Graph fragment: # %tanh_2 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64), (64, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (1, 64), (64, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf5, primals_7, 4096, grid=grid(4096), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 64), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf7, primals_9, 4096, grid=grid(4096), stream=stream0) del primals_9 buf9 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf9) del primals_11 return (reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SimpleNet(nn.Module): def __init__(self, ni): super().__init__() self.linear1 = nn.Linear(ni, 128) self.linear2 = nn.Linear(128, 128) self.linear3 = nn.Linear(128, 64) self.linear4 = nn.Linear(64, 64) self.linear5 = nn.Linear(64, 1) def forward(self, x): x = F.tanh(self.linear1(x)) x = F.tanh(self.linear2(x)) x = F.tanh(self.linear3(x)) x = F.tanh(self.linear4(x)) x = self.linear5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'ni': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64), (64, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (1, 64), (64, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(8192)](buf1, primals_2, 8192, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(8192)](buf3, primals_5, 8192, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf4 triton_poi_fused_tanh_1[grid(4096)](buf5, primals_7, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 64), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf6 triton_poi_fused_tanh_1[grid(4096)](buf7, primals_9, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf9 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 1), (1, 64), 0 ), alpha=1, beta=1, out=buf9) del primals_11 return reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf5, buf7, primals_10, primals_8, primals_6, primals_4 class SimpleNetNew(nn.Module): def __init__(self, ni): super().__init__() self.linear1 = nn.Linear(ni, 128) self.linear2 = nn.Linear(128, 128) self.linear3 = nn.Linear(128, 64) self.linear4 = nn.Linear(64, 64) self.linear5 = nn.Linear(64, 1) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_8 = self.linear4.weight primals_9 = self.linear4.bias primals_10 = self.linear5.weight primals_11 = self.linear5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
P403n1x87/AI-Feynman
SimpleNet
false
2,710
[ "MIT" ]
0
73398ad1b739d02b4cb8d9648b208e76d0a9085d
https://github.com/P403n1x87/AI-Feynman/tree/73398ad1b739d02b4cb8d9648b208e76d0a9085d
HardSwish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4n/c4n4t4ob46tjofubvbx7kuypv4fkq77j7kjunchukdfb6wpttdx6.py # Topologically Sorted Source Nodes: [add, relu6, inner, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # inner => div # mul => mul # relu6 => clamp_max, clamp_min # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp0 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, inner, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F def hard_swish(x: 'torch.Tensor', inplace: 'bool'=False): """Hard swish.""" inner = F.relu6(x + 3.0).div_(6.0) return x.mul_(inner) if inplace else x.mul(inner) class HardSwish(nn.Module): """Custom hardswish to work with onnx.""" def __init__(self, inplace: 'bool'=False): """Initialize.""" super().__init__() self.inplace = inplace def forward(self, x: 'torch.Tensor'): """Forward.""" return hard_swish(x, self.inplace) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp0 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def hard_swish(x: 'torch.Tensor', inplace: 'bool'=False): """Hard swish.""" inner = F.relu6(x + 3.0).div_(6.0) return x.mul_(inner) if inplace else x.mul(inner) class HardSwishNew(nn.Module): """Custom hardswish to work with onnx.""" def __init__(self, inplace: 'bool'=False): """Initialize.""" super().__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Oh-Donggyu/model-optimization-level3-nlp-01
HardSwish
false
2,711
[ "MIT" ]
0
3cfe03fd67fa1c5d08e9548c32dcf3c3981923a8
https://github.com/Oh-Donggyu/model-optimization-level3-nlp-01/tree/3cfe03fd67fa1c5d08e9548c32dcf3c3981923a8
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k3/ck3futvjgnn5ywxhit2wnwjstmaqothiqqhmuc5447rgoovbelmt.py # Topologically Sorted Source Nodes: [invprobs, neg_3, mul_1, sub_2, mul_2, mul_3, exp_2, mul, sub, neg, max_val, add, neg_1, exp, neg_2, sub_1, exp_1, add_1, log, loss, loss_1, sum_1, mean], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.mul, aten.sub, aten.exp, aten.clamp, aten.add, aten.log, aten.sum, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # exp => exp # exp_1 => exp_1 # exp_2 => exp_3 # invprobs => abs_1, exp_2, full_default, log1p, minimum, neg_4, sub_3 # log => log # loss => add_2 # loss_1 => mul_4 # max_val => clamp_min # mean => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # neg => neg # neg_1 => neg_1 # neg_2 => neg_2 # neg_3 => neg_3 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_1 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1.0), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_3, %sub_2), kwargs = {}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %mul_2), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_2,), kwargs = {}) # %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_4,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_2,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 2), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%neg, 0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %clamp_min), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_min,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg_2, %clamp_min), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, %exp_1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %log), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_3, %add_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp2 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp29 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp31 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp56 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp58 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp83 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp85 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp1 = -tmp0 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl_math.abs(tmp7) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp14 * tmp3 tmp16 = tl_math.exp(tmp15) tmp17 = tmp0 * tmp2 tmp18 = tmp0 - tmp17 tmp19 = triton_helpers.maximum(tmp1, tmp8) tmp20 = tmp18 + tmp19 tmp21 = -tmp19 tmp22 = tl_math.exp(tmp21) tmp23 = tmp1 - tmp19 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tl_math.log(tmp25) tmp27 = tmp20 + tmp26 tmp28 = tmp16 * tmp27 tmp30 = -tmp29 tmp32 = tmp31 * tmp3 tmp33 = tmp32 - tmp5 tmp34 = tmp30 * tmp33 tmp35 = triton_helpers.minimum(tmp8, tmp34) tmp36 = tl_math.abs(tmp34) tmp37 = -tmp36 tmp38 = tl_math.exp(tmp37) tmp39 = libdevice.log1p(tmp38) tmp40 = tmp35 - tmp39 tmp41 = tmp40 * tmp3 tmp42 = tl_math.exp(tmp41) tmp43 = tmp29 * tmp31 tmp44 = tmp29 - tmp43 tmp45 = triton_helpers.maximum(tmp30, tmp8) tmp46 = tmp44 + tmp45 tmp47 = -tmp45 tmp48 = tl_math.exp(tmp47) tmp49 = tmp30 - tmp45 tmp50 = tl_math.exp(tmp49) tmp51 = tmp48 + tmp50 tmp52 = tl_math.log(tmp51) tmp53 = tmp46 + tmp52 tmp54 = tmp42 * tmp53 tmp55 = tmp28 + tmp54 tmp57 = -tmp56 tmp59 = tmp58 * tmp3 tmp60 = tmp59 - tmp5 tmp61 = tmp57 * tmp60 tmp62 = triton_helpers.minimum(tmp8, tmp61) tmp63 = tl_math.abs(tmp61) tmp64 = -tmp63 tmp65 = tl_math.exp(tmp64) tmp66 = libdevice.log1p(tmp65) tmp67 = tmp62 - tmp66 tmp68 = tmp67 * tmp3 tmp69 = tl_math.exp(tmp68) tmp70 = tmp56 * tmp58 tmp71 = tmp56 - tmp70 tmp72 = triton_helpers.maximum(tmp57, tmp8) tmp73 = tmp71 + tmp72 tmp74 = -tmp72 tmp75 = tl_math.exp(tmp74) tmp76 = tmp57 - tmp72 tmp77 = tl_math.exp(tmp76) tmp78 = tmp75 + tmp77 tmp79 = tl_math.log(tmp78) tmp80 = tmp73 + tmp79 tmp81 = tmp69 * tmp80 tmp82 = tmp55 + tmp81 tmp84 = -tmp83 tmp86 = tmp85 * tmp3 tmp87 = tmp86 - tmp5 tmp88 = tmp84 * tmp87 tmp89 = triton_helpers.minimum(tmp8, tmp88) tmp90 = tl_math.abs(tmp88) tmp91 = -tmp90 tmp92 = tl_math.exp(tmp91) tmp93 = libdevice.log1p(tmp92) tmp94 = tmp89 - tmp93 tmp95 = tmp94 * tmp3 tmp96 = tl_math.exp(tmp95) tmp97 = tmp83 * tmp85 tmp98 = tmp83 - tmp97 tmp99 = triton_helpers.maximum(tmp84, tmp8) tmp100 = tmp98 + tmp99 tmp101 = -tmp99 tmp102 = tl_math.exp(tmp101) tmp103 = tmp84 - tmp99 tmp104 = tl_math.exp(tmp103) tmp105 = tmp102 + tmp104 tmp106 = tl_math.log(tmp105) tmp107 = tmp100 + tmp106 tmp108 = tmp96 * tmp107 tmp109 = tmp82 + tmp108 tmp110 = tl.broadcast_to(tmp109, [XBLOCK, RBLOCK]) tmp112 = tl.sum(tmp110, 1)[:, None] tmp113 = 64.0 tmp114 = tmp112 / tmp113 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp114, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [invprobs, neg_3, mul_1, sub_2, mul_2, mul_3, exp_2, mul, sub, neg, max_val, add, neg_1, exp, neg_2, sub_1, exp_1, add_1, log, loss, loss_1, sum_1, mean], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.mul, aten.sub, aten.exp, aten.clamp, aten.add, aten.log, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0.run(buf2, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, gamma=2): super().__init__() self.gamma = gamma def forward(self, input, target): if not target.size() == input.size(): raise ValueError( 'Target size ({}) must be the same as input size ({})'. format(target.size(), input.size())) max_val = (-input).clamp(min=0) loss = input - input * target + max_val + ((-max_val).exp() + (- input - max_val).exp()).log() invprobs = F.logsigmoid(-input * (target * 2.0 - 1.0)) loss = (invprobs * self.gamma).exp() * loss return loss.sum(dim=1).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp2 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp29 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp31 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp56 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp58 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp83 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp85 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = -tmp0 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl_math.abs(tmp7) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp14 * tmp3 tmp16 = tl_math.exp(tmp15) tmp17 = tmp0 * tmp2 tmp18 = tmp0 - tmp17 tmp19 = triton_helpers.maximum(tmp1, tmp8) tmp20 = tmp18 + tmp19 tmp21 = -tmp19 tmp22 = tl_math.exp(tmp21) tmp23 = tmp1 - tmp19 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tl_math.log(tmp25) tmp27 = tmp20 + tmp26 tmp28 = tmp16 * tmp27 tmp30 = -tmp29 tmp32 = tmp31 * tmp3 tmp33 = tmp32 - tmp5 tmp34 = tmp30 * tmp33 tmp35 = triton_helpers.minimum(tmp8, tmp34) tmp36 = tl_math.abs(tmp34) tmp37 = -tmp36 tmp38 = tl_math.exp(tmp37) tmp39 = libdevice.log1p(tmp38) tmp40 = tmp35 - tmp39 tmp41 = tmp40 * tmp3 tmp42 = tl_math.exp(tmp41) tmp43 = tmp29 * tmp31 tmp44 = tmp29 - tmp43 tmp45 = triton_helpers.maximum(tmp30, tmp8) tmp46 = tmp44 + tmp45 tmp47 = -tmp45 tmp48 = tl_math.exp(tmp47) tmp49 = tmp30 - tmp45 tmp50 = tl_math.exp(tmp49) tmp51 = tmp48 + tmp50 tmp52 = tl_math.log(tmp51) tmp53 = tmp46 + tmp52 tmp54 = tmp42 * tmp53 tmp55 = tmp28 + tmp54 tmp57 = -tmp56 tmp59 = tmp58 * tmp3 tmp60 = tmp59 - tmp5 tmp61 = tmp57 * tmp60 tmp62 = triton_helpers.minimum(tmp8, tmp61) tmp63 = tl_math.abs(tmp61) tmp64 = -tmp63 tmp65 = tl_math.exp(tmp64) tmp66 = libdevice.log1p(tmp65) tmp67 = tmp62 - tmp66 tmp68 = tmp67 * tmp3 tmp69 = tl_math.exp(tmp68) tmp70 = tmp56 * tmp58 tmp71 = tmp56 - tmp70 tmp72 = triton_helpers.maximum(tmp57, tmp8) tmp73 = tmp71 + tmp72 tmp74 = -tmp72 tmp75 = tl_math.exp(tmp74) tmp76 = tmp57 - tmp72 tmp77 = tl_math.exp(tmp76) tmp78 = tmp75 + tmp77 tmp79 = tl_math.log(tmp78) tmp80 = tmp73 + tmp79 tmp81 = tmp69 * tmp80 tmp82 = tmp55 + tmp81 tmp84 = -tmp83 tmp86 = tmp85 * tmp3 tmp87 = tmp86 - tmp5 tmp88 = tmp84 * tmp87 tmp89 = triton_helpers.minimum(tmp8, tmp88) tmp90 = tl_math.abs(tmp88) tmp91 = -tmp90 tmp92 = tl_math.exp(tmp91) tmp93 = libdevice.log1p(tmp92) tmp94 = tmp89 - tmp93 tmp95 = tmp94 * tmp3 tmp96 = tl_math.exp(tmp95) tmp97 = tmp83 * tmp85 tmp98 = tmp83 - tmp97 tmp99 = triton_helpers.maximum(tmp84, tmp8) tmp100 = tmp98 + tmp99 tmp101 = -tmp99 tmp102 = tl_math.exp(tmp101) tmp103 = tmp84 - tmp99 tmp104 = tl_math.exp(tmp103) tmp105 = tmp102 + tmp104 tmp106 = tl_math.log(tmp105) tmp107 = tmp100 + tmp106 tmp108 = tmp96 * tmp107 tmp109 = tmp82 + tmp108 tmp110 = tl.broadcast_to(tmp109, [XBLOCK, RBLOCK]) tmp112 = tl.sum(tmp110, 1)[:, None] tmp113 = 64.0 tmp114 = tmp112 / tmp113 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp114, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_sum_0[ grid(1)](buf2, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class FocalLossNew(nn.Module): def __init__(self, gamma=2): super().__init__() self.gamma = gamma def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
OctThe16th/COMP-652-FinalProject
FocalLoss
false
2,712
[ "MIT" ]
0
00b8a2328516d8ca76d365004c753a91cc426b30
https://github.com/OctThe16th/COMP-652-FinalProject/tree/00b8a2328516d8ca76d365004c753a91cc426b30
UpsamplingPixelShuffle
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yx/cyxwcwgbozey4rpepwv2gcbun3js4cdbc2hqrvjd5khr6fuk545n.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 2], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x6 = xindex y0 = yindex % 4 y1 = (yindex // 4) % 2 y2 = (yindex // 8) % 4 y3 = (yindex // 32) % 2 y4 = (yindex // 64) % 4 y5 = (yindex // 256) y7 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*y2) + (16*y4) + (64*x6) + (128*y1) + (256*y3) + (512*y5)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x6 + (2*y7)), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (32, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 4, 4, 4), (2048, 64, 16, 4, 1)) buf1 = empty_strided_cuda((16, 4, 2, 4, 2, 4, 2), (512, 128, 64, 16, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf1, 4096, 2, grid=grid(4096, 2), stream=stream0) del buf0 return (reinterpret_tensor(buf1, (4, 4, 8, 8, 8), (2048, 512, 64, 8, 1), 0), primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx class shuffle(nn.Module): def __init__(self, ratio): super(shuffle, self).__init__() self.ratio = ratio def forward(self, x): batch_size, in_channels, d, h, w = x.shape out_channels = in_channels // (self.ratio * self.ratio * self.ratio) out = x.view(batch_size * out_channels, self.ratio, self.ratio, self.ratio, d, h, w) out = out.permute(0, 4, 1, 5, 2, 6, 3) return out.contiguous().view(batch_size, out_channels, d * self. ratio, h * self.ratio, w * self.ratio) class UpsamplingPixelShuffle(nn.Module): def __init__(self, input_channels, output_channels, ratio=2): super(UpsamplingPixelShuffle, self).__init__() self.input_channels = input_channels self.output_channels = output_channels self.conv = nn.Conv3d(in_channels=input_channels, out_channels= output_channels * int(ratio ** 3), kernel_size=1, padding=0, bias=False) self.relu = nn.LeakyReLU(0.02, inplace=True) self.shuffle = shuffle(ratio=ratio) def forward(self, x): out = self.conv(x) out = self.shuffle(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x6 = xindex y0 = yindex % 4 y1 = yindex // 4 % 2 y2 = yindex // 8 % 4 y3 = yindex // 32 % 2 y4 = yindex // 64 % 4 y5 = yindex // 256 y7 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * y2 + 16 * y4 + 64 * x6 + 128 * y1 + 256 * y3 + 512 * y5), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x6 + 2 * y7), tmp0, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (32, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 4, 4, 4), (2048, 64, 16, 4, 1)) buf1 = empty_strided_cuda((16, 4, 2, 4, 2, 4, 2), (512, 128, 64, 16, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4096, 2)](buf0, buf1, 4096, 2, XBLOCK =2, YBLOCK=512, num_warps=4, num_stages=1) del buf0 return reinterpret_tensor(buf1, (4, 4, 8, 8, 8), (2048, 512, 64, 8, 1), 0 ), primals_1, primals_2 class shuffle(nn.Module): def __init__(self, ratio): super(shuffle, self).__init__() self.ratio = ratio def forward(self, x): batch_size, in_channels, d, h, w = x.shape out_channels = in_channels // (self.ratio * self.ratio * self.ratio) out = x.view(batch_size * out_channels, self.ratio, self.ratio, self.ratio, d, h, w) out = out.permute(0, 4, 1, 5, 2, 6, 3) return out.contiguous().view(batch_size, out_channels, d * self. ratio, h * self.ratio, w * self.ratio) class UpsamplingPixelShuffleNew(nn.Module): def __init__(self, input_channels, output_channels, ratio=2): super(UpsamplingPixelShuffleNew, self).__init__() self.input_channels = input_channels self.output_channels = output_channels self.conv = nn.Conv3d(in_channels=input_channels, out_channels= output_channels * int(ratio ** 3), kernel_size=1, padding=0, bias=False) self.relu = nn.LeakyReLU(0.02, inplace=True) self.shuffle = shuffle(ratio=ratio) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
JinYAnGHe/openvino_training_extensions
UpsamplingPixelShuffle
false
2,713
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
SmallBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.relu] # Source node to ATen node mapping: # output => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3g/c3gulbvr4xrfq3wps6kqjc3yuakrgtdcdvb44tmfrvggj56xwcm6.py # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # output_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/y4/cy4ywivrvoulzmyoy5vjymbnro5whqtv6677rwbojlx53jirk7ab.py # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.add] # Source node to ATen node mapping: # output_4 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_1), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf4, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 return (buf4, primals_2, primals_3, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx class SmallBlock(nn.Module): def __init__(self, channels): super(SmallBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=False) self.conv2 = nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, stride=1, padding=1, bias=False) def forward(self, x): identity_data = x output = self.relu(x) output = self.conv1(output) output = self.relu(output) output = self.conv2(output) output = torch.add(output, identity_data) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(256)](buf2, 256, XBLOCK=256, num_warps =4, num_stages=1) buf3 = extern_kernels.convolution(buf2, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_2[grid(256)](buf4, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf4, primals_2, primals_3, buf0, buf2 class SmallBlockNew(nn.Module): def __init__(self, channels): super(SmallBlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=False) self.conv2 = nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, stride=1, padding=1, bias=False) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
JinYAnGHe/openvino_training_extensions
SmallBlock
false
2,714
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
ReferenceActivationBinarizationModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jk/cjkynfhdedz7y3b3hvbu4hdmvvzdpblksjkk7w4zwyp2faqbugxt.py # Topologically Sorted Source Nodes: [gt, type_1, output], Original ATen: [aten.gt, aten._to_copy, aten.mul] # Source node to ATen node mapping: # gt => gt # output => mul_1 # type_1 => convert_element_type # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%arg0_1, %view), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %arg2_1), kwargs = {}) triton_poi_fused__to_copy_gt_mul_0 = async_compile.triton('triton_poi_fused__to_copy_gt_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_gt_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_gt_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 * tmp3 tmp5 = tmp0 > tmp4 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp3 tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 4), (4, 1)) assert_size_stride(arg2_1, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gt, type_1, output], Original ATen: [aten.gt, aten._to_copy, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_gt_mul_0.run(arg0_1, arg1_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx def get_per_channel_scale_shape(input_shape, is_weights): scale_shape = [(1) for _ in input_shape] if is_weights: scale_shape[0] = input_shape[0] else: scale_shape[1] = input_shape[1] elements = 1 for i in scale_shape: elements *= i if elements == 1: return 1 return scale_shape def get_test_scale(num_channels): torch.manual_seed(0) retval = torch.Tensor(num_channels) retval.random_(0, 1) return retval def get_test_threshold(input_shape): torch.manual_seed(0) threshold_shape = get_per_channel_scale_shape(input_shape, is_weights=False ) retval = torch.Tensor(torch.zeros(threshold_shape)) retval.random_(-10, 10) return retval class ReferenceActivationBinarize(torch.autograd.Function): @staticmethod def forward(ctx, input_, scale, threshold): shape = [(1) for s in input_.shape] shape[1] = input_.shape[1] t = (threshold * scale).view(shape) output = (input_ > t).type(input_.dtype) * scale ctx.save_for_backward(input_, scale, output) return output @staticmethod def backward(ctx, grad_output): input_, scale, output = ctx.saved_variables mask_lower = (input_ <= scale).type(input_.dtype) grad_input = grad_output * (input_ >= 0).type(input_.dtype ) * mask_lower err = (output - input_) * scale.reciprocal() grad_scale = grad_output * (mask_lower * err + (1 - mask_lower)) grad_scale = grad_scale.sum().view(1) grad_threshold = -grad_output * (input_ > 0).type(input_.dtype) * ( input_ < scale).type(input_.dtype) for idx, _ in enumerate(input_.shape): if idx != 1: grad_threshold = grad_threshold.sum(idx, keepdim=True) return grad_input, grad_scale, grad_threshold class ReferenceActivationBinarizationModule(nn.Module): def __init__(self, input_shape): super().__init__() self.input_shape = input_shape self.scale = torch.nn.Parameter(get_test_scale(num_channels=1)) self.threshold = torch.nn.Parameter(get_test_threshold(input_shape)) def forward(self, input_): return ReferenceActivationBinarize.apply(input_, self.scale, self. threshold) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_shape': [4, 4]}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_gt_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 * tmp3 tmp5 = tmp0 > tmp4 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp3 tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 4), (4, 1)) assert_size_stride(arg2_1, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy_gt_mul_0[grid(256)](arg0_1, arg1_1, arg2_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, def get_per_channel_scale_shape(input_shape, is_weights): scale_shape = [(1) for _ in input_shape] if is_weights: scale_shape[0] = input_shape[0] else: scale_shape[1] = input_shape[1] elements = 1 for i in scale_shape: elements *= i if elements == 1: return 1 return scale_shape def get_test_scale(num_channels): torch.manual_seed(0) retval = torch.Tensor(num_channels) retval.random_(0, 1) return retval def get_test_threshold(input_shape): torch.manual_seed(0) threshold_shape = get_per_channel_scale_shape(input_shape, is_weights=False ) retval = torch.Tensor(torch.zeros(threshold_shape)) retval.random_(-10, 10) return retval class ReferenceActivationBinarize(torch.autograd.Function): @staticmethod def forward(ctx, input_, scale, threshold): shape = [(1) for s in input_.shape] shape[1] = input_.shape[1] t = (threshold * scale).view(shape) output = (input_ > t).type(input_.dtype) * scale ctx.save_for_backward(input_, scale, output) return output @staticmethod def backward(ctx, grad_output): input_, scale, output = ctx.saved_variables mask_lower = (input_ <= scale).type(input_.dtype) grad_input = grad_output * (input_ >= 0).type(input_.dtype ) * mask_lower err = (output - input_) * scale.reciprocal() grad_scale = grad_output * (mask_lower * err + (1 - mask_lower)) grad_scale = grad_scale.sum().view(1) grad_threshold = -grad_output * (input_ > 0).type(input_.dtype) * ( input_ < scale).type(input_.dtype) for idx, _ in enumerate(input_.shape): if idx != 1: grad_threshold = grad_threshold.sum(idx, keepdim=True) return grad_input, grad_scale, grad_threshold class ReferenceActivationBinarizationModuleNew(nn.Module): def __init__(self, input_shape): super().__init__() self.input_shape = input_shape self.scale = torch.nn.Parameter(get_test_scale(num_channels=1)) self.threshold = torch.nn.Parameter(get_test_threshold(input_shape)) def forward(self, input_0): arg2_1 = self.scale arg1_1 = self.threshold arg0_1 = input_0 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
JinYAnGHe/openvino_training_extensions
ReferenceActivationBinarizationModule
false
2,715
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
ResBlockWithFusedBN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out => convolution # out_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l3/cl3kktfjbfxvoqsgvjon5fk5ycnqjp7n2a3dk3gk4gw4n2jfe25m.py # Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_4 => convolution_2 # out_5 => add # out_6 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %primals_1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(in_out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf5, primals_7, primals_1, buf6, 256, grid=grid(256), stream=stream0) del primals_7 return (buf5, primals_1, primals_2, primals_4, primals_6, buf1, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx class ResBlockWithFusedBN(nn.Module): """ Bottleneck Residual Block """ def __init__(self, inplanes, outplanes, innerplanes, stride=1, dilation =1, group=1, stride_1x1=True): super().__init__() str1x1, str3x3 = (stride, 1) if stride_1x1 else (1, stride) self.conv1 = nn.Conv2d(inplanes, innerplanes, kernel_size=1, stride =str1x1, bias=True) self.conv2 = nn.Conv2d(innerplanes, innerplanes, kernel_size=3, stride=str3x3, bias=True, padding=1 * dilation, dilation= dilation, groups=group) self.conv3 = nn.Conv2d(innerplanes, outplanes, kernel_size=1, stride=1, bias=True) self.downsample = None if stride != 1 or inplanes != outplanes: self.downsample = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=True) self.relu = nn.ReLU(inplace=True) self._init_weights() def _init_weights(self): for submodule in self.modules(): if isinstance(submodule, nn.Conv2d): nn.init.kaiming_uniform_(submodule.weight) if submodule.bias is not None: nn.init.constant_(submodule.bias, 0) def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) out = self.relu(out) out = self.conv3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inplanes': 4, 'outplanes': 4, 'innerplanes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(in_out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)]( buf5, primals_7, primals_1, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf5, primals_1, primals_2, primals_4, primals_6, buf1, buf3, buf6 class ResBlockWithFusedBNNew(nn.Module): """ Bottleneck Residual Block """ def __init__(self, inplanes, outplanes, innerplanes, stride=1, dilation =1, group=1, stride_1x1=True): super().__init__() str1x1, str3x3 = (stride, 1) if stride_1x1 else (1, stride) self.conv1 = nn.Conv2d(inplanes, innerplanes, kernel_size=1, stride =str1x1, bias=True) self.conv2 = nn.Conv2d(innerplanes, innerplanes, kernel_size=3, stride=str3x3, bias=True, padding=1 * dilation, dilation= dilation, groups=group) self.conv3 = nn.Conv2d(innerplanes, outplanes, kernel_size=1, stride=1, bias=True) self.downsample = None if stride != 1 or inplanes != outplanes: self.downsample = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=True) self.relu = nn.ReLU(inplace=True) self._init_weights() def _init_weights(self): for submodule in self.modules(): if isinstance(submodule, nn.Conv2d): nn.init.kaiming_uniform_(submodule.weight) if submodule.bias is not None: nn.init.constant_(submodule.bias, 0) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
JinYAnGHe/openvino_training_extensions
ResBlockWithFusedBN
false
2,716
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
ResBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ye/cye7l2jaf362rrj43bugwtiqncxa3xnlfse2dg7bg4rqz2wqm2ew.py # Topologically Sorted Source Nodes: [instance_norm, output], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.relu] # Source node to ATen node mapping: # instance_norm => add, repeat, rsqrt, var_mean # output => relu # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_3, [4]), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_per_fused__native_batch_norm_legit_relu_repeat_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_relu_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_relu_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_relu_repeat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0) tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = tl.full([XBLOCK, 1], 16, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp2 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tmp18 = tmp1 - tmp11 tmp19 = 16.0 tmp20 = tmp17 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp18 * tmp23 tmp25 = tmp24 * tmp0 tmp27 = tmp25 + tmp26 tmp28 = tl.full([1, 1], 0, tl.int32) tmp29 = triton_helpers.maximum(tmp28, tmp27) tl.store(out_ptr0 + (x0), tmp0, xmask) tl.store(out_ptr3 + (r1 + (16*x0)), tmp29, xmask) tl.store(out_ptr4 + (x0), tmp23, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i2/ci2jmbrazm5naptlijw4vyjquzzztqfkwcf67vgpuwbsxa3llhgy.py # Topologically Sorted Source Nodes: [output_1, output_2], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.add] # Source node to ATen node mapping: # output_1 => add_2, repeat_2, rsqrt_1, var_mean_1 # output_2 => add_4 # Graph fragment: # %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_6, [4]), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_6, %primals_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_repeat_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_repeat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_repeat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0) tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr3 + (r1 + (16*x0)), xmask, other=0.0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = tl.full([XBLOCK, 1], 16, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp2 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tmp18 = tmp1 - tmp11 tmp19 = 16.0 tmp20 = tmp17 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp18 * tmp23 tmp25 = tmp24 * tmp0 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tl.store(out_ptr0 + (x0), tmp0, xmask) tl.store(out_ptr3 + (r1 + (16*x0)), tmp29, xmask) tl.store(out_ptr4 + (x0), tmp23, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((16, ), (1, ), torch.float32) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [instance_norm, output], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.relu] stream0 = get_raw_stream(0) triton_per_fused__native_batch_norm_legit_relu_repeat_0.run(primals_3, buf0, primals_4, buf1, buf2, buf6, buf5, 16, 16, grid=grid(16), stream=stream0) del primals_3 del primals_4 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = empty_strided_cuda((16, ), (1, ), torch.float32) buf9 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [output_1, output_2], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.add] triton_per_fused__native_batch_norm_legit_add_repeat_1.run(primals_6, buf7, primals_7, primals_1, buf8, buf9, buf13, buf12, 16, 16, grid=grid(16), stream=stream0) del primals_6 del primals_7 return (buf13, primals_1, primals_2, primals_5, buf0, buf1, reinterpret_tensor(buf5, (16, ), (1, ), 0), buf6, buf7, buf8, reinterpret_tensor(buf12, (16, ), (1, ), 0), reinterpret_tensor(buf9, (1, 16, 1, 1), (16, 1, 1, 1), 0), reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx class ResBlock(nn.Module): def __init__(self, num_of_channels): super(ResBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=num_of_channels, out_channels= num_of_channels, kernel_size=3, stride=1, padding=1, bias=False) self.in1 = nn.InstanceNorm2d(num_of_channels, affine=True) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(in_channels=num_of_channels, out_channels= num_of_channels, kernel_size=3, stride=1, padding=1, bias=False) self.in2 = nn.InstanceNorm2d(num_of_channels, affine=True) def forward(self, x): orig = x output = self.relu(self.in1(self.conv1(x))) output = self.in2(self.conv2(output)) output = torch.add(output, orig) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_of_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_relu_repeat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tl.where(xmask, tmp2, 0) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = tl.full([XBLOCK, 1], 16, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp2 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tmp18 = tmp1 - tmp11 tmp19 = 16.0 tmp20 = tmp17 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp18 * tmp23 tmp25 = tmp24 * tmp0 tmp27 = tmp25 + tmp26 tmp28 = tl.full([1, 1], 0, tl.int32) tmp29 = triton_helpers.maximum(tmp28, tmp27) tl.store(out_ptr0 + x0, tmp0, xmask) tl.store(out_ptr3 + (r1 + 16 * x0), tmp29, xmask) tl.store(out_ptr4 + x0, tmp23, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_repeat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr3 + (r1 + 16 * x0), xmask, other=0.0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tl.where(xmask, tmp2, 0) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = tl.full([XBLOCK, 1], 16, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp2 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tmp18 = tmp1 - tmp11 tmp19 = 16.0 tmp20 = tmp17 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp18 * tmp23 tmp25 = tmp24 * tmp0 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tl.store(out_ptr0 + x0, tmp0, xmask) tl.store(out_ptr3 + (r1 + 16 * x0), tmp29, xmask) tl.store(out_ptr4 + x0, tmp23, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((16,), (1,), torch.float32) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) get_raw_stream(0) triton_per_fused__native_batch_norm_legit_relu_repeat_0[grid(16)]( primals_3, buf0, primals_4, buf1, buf2, buf6, buf5, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_3 del primals_4 buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = empty_strided_cuda((16,), (1,), torch.float32) buf9 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) triton_per_fused__native_batch_norm_legit_add_repeat_1[grid(16)]( primals_6, buf7, primals_7, primals_1, buf8, buf9, buf13, buf12, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_6 del primals_7 return (buf13, primals_1, primals_2, primals_5, buf0, buf1, reinterpret_tensor(buf5, (16,), (1,), 0), buf6, buf7, buf8, reinterpret_tensor(buf12, (16,), (1,), 0), reinterpret_tensor(buf9, (1, 16, 1, 1), (16, 1, 1, 1), 0), reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0)) class ResBlockNew(nn.Module): def __init__(self, num_of_channels): super(ResBlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=num_of_channels, out_channels= num_of_channels, kernel_size=3, stride=1, padding=1, bias=False) self.in1 = nn.InstanceNorm2d(num_of_channels, affine=True) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(in_channels=num_of_channels, out_channels= num_of_channels, kernel_size=3, stride=1, padding=1, bias=False) self.in2 = nn.InstanceNorm2d(num_of_channels, affine=True) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.in1.weight primals_4 = self.in1.bias primals_5 = self.conv2.weight primals_6 = self.in2.weight primals_7 = self.in2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
JinYAnGHe/openvino_training_extensions
ResBlock
false
2,717
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
WeightedSumLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/75/c75l6kden2xhn246u6yp3h4kmrt3ud36fmpq3rkzfs652niuh3mw.py # Topologically Sorted Source Nodes: [total_loss], Original ATen: [aten.zero] # Source node to ATen node mapping: # total_loss => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zero_0 = async_compile.triton('triton_poi_fused_zero_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {1: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=(1,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zero_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zero_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = 0.0 tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp0, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [total_loss], Original ATen: [aten.zero] stream0 = get_raw_stream(0) triton_poi_fused_zero_0.run(buf0, 1, grid=grid(1), stream=stream0) return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx class WeightedSumLoss(nn.Module): """Aggregate multiple loss functions in one weighted sum.""" def __init__(self, normalize=False): super().__init__() self.normalize = normalize self.losses = nn.ModuleDict() self.weights = {} self.values = {} def forward(self, outputs, **kwargs): total_loss = outputs.new(1).zero_() for loss in self.losses: loss_val = self.losses[loss](outputs=outputs, **kwargs) total_loss += self.weights[loss] * loss_val self.values[loss] = loss_val if self.normalize: total_loss /= sum(self.weights.values()) return total_loss def add_loss(self, name, loss, weight=1.0): self.weights[name] = weight self.losses.add_module(name, loss) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_zero_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = 0.0 tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp0, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_zero_0[grid(1)](buf0, 1, XBLOCK=1, num_warps=1, num_stages=1) return buf0, class WeightedSumLossNew(nn.Module): """Aggregate multiple loss functions in one weighted sum.""" def __init__(self, normalize=False): super().__init__() self.normalize = normalize self.losses = nn.ModuleDict() self.weights = {} self.values = {} def add_loss(self, name, loss, weight=1.0): self.weights[name] = weight self.losses.add_module(name, loss) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
JinYAnGHe/openvino_training_extensions
WeightedSumLoss
false
2,718
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
Decoder4_2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5d/c5dw65h6nafj4s44sgiahjrq6lb3zgwonovnkpx75jkkuxpl34xg.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yo/cyo5lw5lsshov4dyabpetkgqjt6nabkx24xbzfzek4r7bxtb6w7r.py # Topologically Sorted Source Nodes: [conv2d, y, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d => convolution # pad_1 => _unsafe_index_2, _unsafe_index_3 # y => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_1 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = (xindex // 6) % 6 x4 = (xindex // 36) x2 = (xindex // 36) % 512 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mj/cmj32jiuifctv3sgkaosqisczxnn3q3qbclkfmkpt5s6la3pkiuj.py # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_2 => add, add_1, convert_element_type, convert_element_type_1, iota_4, mul, mul_1 # Graph fragment: # %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_4, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_2 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_2(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3j/c3jnwsu5ofualjo7vedn2ue444y4l2pf4px2hutemztxdaiwkd6p.py # Topologically Sorted Source Nodes: [conv2d_1, y_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_2 => _unsafe_index_5, _unsafe_index_6 # y_1 => relu_1 # y_2 => _unsafe_index_4 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 102400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 10) % 10 x0 = xindex % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6z/c6zqisnf5qzosjab7opbkn4gjebem57ih3zuiazqozl3gq24lybi.py # Topologically Sorted Source Nodes: [conv2d_2, y_3, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # pad_3 => _unsafe_index_7, _unsafe_index_8 # y_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_6, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_7, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_4 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 102400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oi/coik5p6vp7gpgli2c742eorprieg3ksiwhta5jh2rgrjqcmzhvdb.py # Topologically Sorted Source Nodes: [y_7], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_7 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_14, mul_4, mul_5 # Graph fragment: # %iota_14 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_14, 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cw/ccwdjpijcowux2dx4arcbqc63lhuewiqjbxvafd6ob5qmnjcs5fj.py # Topologically Sorted Source Nodes: [conv2d_5, y_6, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # pad_6 => _unsafe_index_14, _unsafe_index_15 # y_6 => relu_5 # y_7 => _unsafe_index_13 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_12, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_13, [None, None, %sub_25, None]), kwargs = {}) # %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_25]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 18) % 18 x0 = xindex % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lb/clb5z725wrv5eejybuujd5ttocwkkq6ntimyqeneeaxgiq3w6zla.py # Topologically Sorted Source Nodes: [conv2d_6, y_8, pad_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # pad_7 => _unsafe_index_16, _unsafe_index_17 # y_8 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %_unsafe_index_16 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_6, [None, None, %sub_25, None]), kwargs = {}) # %_unsafe_index_17 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_16, [None, None, None, %sub_25]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_7 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/w4/cw4ipglnbnoi4subklxjqr7rjz4rhgysvyccjb2bydgfvyoze5sm.py # Topologically Sorted Source Nodes: [y_10], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_10 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_20, mul_8, mul_9 # Graph fragment: # %iota_20 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_20, 1), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_8 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_8(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qm/cqmvll3j6uu5nbs6kxh4bmx2cmqmwbhpal65uadh3qp2akcaqa4x.py # Topologically Sorted Source Nodes: [conv2d_7, y_9, y_10, pad_8], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # pad_8 => _unsafe_index_19, _unsafe_index_20 # y_10 => _unsafe_index_18 # y_9 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %_unsafe_index_18 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) # %_unsafe_index_19 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_18, [None, None, %sub_33, None]), kwargs = {}) # %_unsafe_index_20 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_19, [None, None, None, %sub_33]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 34) % 34 x0 = xindex % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zd/czdzu2xj2rxgo55zgji63467gic6245zguzry2n3f3iuvd2dmxs6.py # Topologically Sorted Source Nodes: [conv2d_8, y_11, pad_9], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # pad_9 => _unsafe_index_21, _unsafe_index_22 # y_11 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_20, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %_unsafe_index_21 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_8, [None, None, %sub_33, None]), kwargs = {}) # %_unsafe_index_22 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_21, [None, None, None, %sub_33]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_10 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v5/cv5hjgpwbpb7is32glysv46pvtmig55neupxyk35ge6df7pgejqn.py # Topologically Sorted Source Nodes: [conv2d_9, y_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # y_12 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gy/cgy3qcv6xklfb746ntxglxdycr34i277n5oou2si4cam4zk4p66y.py # Topologically Sorted Source Nodes: [conv2d_8, y_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # y_11 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_20, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %le_19 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_8, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_12 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zc/czcq33opuaorqn4kpse3tyrlp2gyplem5335tft64e2u4sciu6nz.py # Topologically Sorted Source Nodes: [conv2d_7, y_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # y_9 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_38 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_13 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tg/ctgx2tqfpirv4e7hf6fekn7ckkcwdv54ufwovj7w7lpudlkytnaq.py # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # y_8 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %le_57 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/d7/cd7m5y3bf2pn2fikn4bdqrr5b7re5emtzyczr55vv3ypb3leiu53.py # Topologically Sorted Source Nodes: [conv2d_5, y_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # y_6 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_12, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le_76 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rl/crlxtzh4ytg746mjjyzhjlovmuws6p4oywru3j3mklarlpmwk6wy.py # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # y_5 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_95 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vx/cvxxwnb2h3x6rahmsqcrhewlq4qjtkgw4l6kxzxglemwe33fwf6w.py # Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # y_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_152 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pf/cpf56lcc6bsxl7aybm74iotk5jdfqnr4huuqjjg7izzzyxn75dn4.py # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # y => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_171 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21 = args args.clear() assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 73728, grid=grid(73728), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1)) buf2 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, y, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_1.run(buf1, primals_3, buf2, 73728, grid=grid(73728), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 4, 4), (4096, 16, 4, 1)) buf4 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_2.run(buf4, 8, grid=grid(8), stream=stream0) buf5 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, y_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3.run(buf4, buf3, primals_5, buf5, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 8, 8), (16384, 64, 8, 1)) buf7 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, y_3, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_4.run(buf6, primals_7, buf7, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 8, 8), (16384, 64, 8, 1)) buf9 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, y_4, pad_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_4.run(buf8, primals_9, buf9, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1)) buf11 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, y_5, pad_5], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_4.run(buf10, primals_11, buf11, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 8, 8), (8192, 64, 8, 1)) buf13 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_7], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_5.run(buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, y_6, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6.run(buf13, buf12, primals_13, buf14, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 128, 16, 16), (32768, 256, 16, 1)) buf16 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, y_8, pad_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_7.run(buf15, primals_15, buf16, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 16, 16), (16384, 256, 16, 1)) buf18 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_10], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_8.run(buf18, 32, grid=grid(32), stream=stream0) buf19 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, y_9, y_10, pad_8], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9.run(buf18, buf17, primals_17, buf19, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf21 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_8, y_11, pad_9], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_10.run(buf20, primals_19, buf21, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 3, 32, 32), (3072, 1024, 32, 1)) buf23 = buf22; del buf22 # reuse buf24 = empty_strided_cuda((4, 3, 32, 32), (3072, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, y_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_11.run(buf23, primals_21, buf24, 12288, grid=grid(12288), stream=stream0) del primals_21 buf25 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_8, y_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_12.run(buf20, primals_19, buf25, 262144, grid=grid(262144), stream=stream0) del buf20 del primals_19 buf26 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, y_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_13.run(buf17, primals_17, buf26, 65536, grid=grid(65536), stream=stream0) del buf17 del primals_17 buf27 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_14.run(buf15, primals_15, buf27, 131072, grid=grid(131072), stream=stream0) del buf15 del primals_15 buf28 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, y_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf12, primals_13, buf28, 32768, grid=grid(32768), stream=stream0) del buf12 del primals_13 buf29 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf10, primals_11, buf29, 65536, grid=grid(65536), stream=stream0) del buf10 del primals_11 buf30 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf8, primals_9, buf30, 65536, grid=grid(65536), stream=stream0) del buf8 del primals_9 buf31 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf6, primals_7, buf31, 65536, grid=grid(65536), stream=stream0) del buf6 del primals_7 buf32 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf3, primals_5, buf32, 16384, grid=grid(16384), stream=stream0) del buf3 del primals_5 buf33 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_18.run(buf1, primals_3, buf33, 32768, grid=grid(32768), stream=stream0) del buf1 del primals_3 return (buf23, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, buf0, buf2, buf4, buf5, buf7, buf9, buf11, buf13, buf14, buf16, buf18, buf19, buf21, buf24, buf25, buf26, buf27, buf28, buf29, buf30, buf31, buf32, buf33, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder4_2(nn.Module): def __init__(self, model=None, fixed=False): super(Decoder4_2, self).__init__() self.fixed = fixed self.conv42 = nn.Conv2d(512, 512, 3, 1, 0) self.conv41 = nn.Conv2d(512, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv31 = nn.Conv2d(256, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv21 = nn.Conv2d(128, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv11 = nn.Conv2d(64, 3, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: assert os.path.splitext(model)[1] in {'.t7', '.pth'} if model.endswith('.t7'): t7_model = load_lua(model) load_param(t7_model, 1, self.conv51) load_param(t7_model, 5, self.conv44) load_param(t7_model, 8, self.conv43) load_param(t7_model, 11, self.conv42) load_param(t7_model, 14, self.conv41) load_param(t7_model, 18, self.conv34) load_param(t7_model, 21, self.conv33) load_param(t7_model, 24, self.conv32) load_param(t7_model, 27, self.conv31) load_param(t7_model, 31, self.conv22) load_param(t7_model, 34, self.conv21) load_param(t7_model, 38, self.conv12) load_param(t7_model, 41, self.conv11) else: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv42(self.pad(y))) y = self.relu(self.conv41(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv34(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.relu(self.conv11(self.pad(y))) return y def get_inputs(): return [torch.rand([4, 512, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = xindex // 6 % 6 x4 = xindex // 36 x2 = xindex // 36 % 512 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_2(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 10 % 10 x0 = xindex % 10 x4 = xindex // 100 x2 = xindex // 100 % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1 ))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0 ))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 18 % 18 x0 = xindex % 18 x4 = xindex // 324 x2 = xindex // 324 % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_8(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 34 % 34 x0 = xindex % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21) = args args.clear() assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch. float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(73728)](primals_1, buf0, 73728, XBLOCK=1024, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1)) buf2 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch. float32) triton_poi_fused_convolution_reflection_pad2d_relu_1[grid(73728)](buf1, primals_3, buf2, 73728, XBLOCK=1024, num_warps=4, num_stages=1) buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 4, 4), (4096, 16, 4, 1)) buf4 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_2[grid(8)](buf4, 8, XBLOCK =8, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_3[grid (102400)](buf4, buf3, primals_5, buf5, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 8, 8), (16384, 64, 8, 1)) buf7 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_4[grid(102400)](buf6 , primals_7, buf7, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 8, 8), (16384, 64, 8, 1)) buf9 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_4[grid(102400)](buf8 , primals_9, buf9, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1)) buf11 = empty_strided_cuda((4, 256, 10, 10), (25600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_4[grid(102400)]( buf10, primals_11, buf11, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf11, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 8, 8), (8192, 64, 8, 1)) buf13 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_5[grid(16)](buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_6[grid (165888)](buf13, buf12, primals_13, buf14, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 128, 16, 16), (32768, 256, 16, 1)) buf16 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_7[grid(165888)]( buf15, primals_15, buf16, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 16, 16), (16384, 256, 16, 1)) buf18 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_8[grid(32)](buf18, 32, XBLOCK=32, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_9[grid (295936)](buf18, buf17, primals_17, buf19, 295936, XBLOCK=1024, num_warps=4, num_stages=1) buf20 = extern_kernels.convolution(buf19, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf21 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_10[grid(295936)]( buf20, primals_19, buf21, 295936, XBLOCK=512, num_warps=8, num_stages=1) buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 3, 32, 32), (3072, 1024, 32, 1)) buf23 = buf22 del buf22 buf24 = empty_strided_cuda((4, 3, 32, 32), (3072, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_11[grid(12288)]( buf23, primals_21, buf24, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_21 buf25 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_12[grid(262144)]( buf20, primals_19, buf25, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf20 del primals_19 buf26 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_13[grid(65536)]( buf17, primals_17, buf26, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf17 del primals_17 buf27 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_14[grid(131072)]( buf15, primals_15, buf27, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del buf15 del primals_15 buf28 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_15[grid(32768)]( buf12, primals_13, buf28, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf12 del primals_13 buf29 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(65536)]( buf10, primals_11, buf29, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf10 del primals_11 buf30 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(65536)]( buf8, primals_9, buf30, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf8 del primals_9 buf31 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(65536)]( buf6, primals_7, buf31, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_7 buf32 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_17[grid(16384)]( buf3, primals_5, buf32, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del primals_5 buf33 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_18[grid(32768)]( buf1, primals_3, buf33, 32768, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_3 return (buf23, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, buf0, buf2, buf4, buf5, buf7, buf9, buf11, buf13, buf14, buf16, buf18, buf19, buf21, buf24, buf25, buf26, buf27, buf28, buf29, buf30, buf31, buf32, buf33) class Decoder4_2New(nn.Module): def __init__(self, model=None, fixed=False): super(Decoder4_2New, self).__init__() self.fixed = fixed self.conv42 = nn.Conv2d(512, 512, 3, 1, 0) self.conv41 = nn.Conv2d(512, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv31 = nn.Conv2d(256, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv21 = nn.Conv2d(128, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv11 = nn.Conv2d(64, 3, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: assert os.path.splitext(model)[1] in {'.t7', '.pth'} if model.endswith('.t7'): t7_model = load_lua(model) load_param(t7_model, 1, self.conv51) load_param(t7_model, 5, self.conv44) load_param(t7_model, 8, self.conv43) load_param(t7_model, 11, self.conv42) load_param(t7_model, 14, self.conv41) load_param(t7_model, 18, self.conv34) load_param(t7_model, 21, self.conv33) load_param(t7_model, 24, self.conv32) load_param(t7_model, 27, self.conv31) load_param(t7_model, 31, self.conv22) load_param(t7_model, 34, self.conv21) load_param(t7_model, 38, self.conv12) load_param(t7_model, 41, self.conv11) else: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input_0): primals_2 = self.conv42.weight primals_3 = self.conv42.bias primals_4 = self.conv41.weight primals_5 = self.conv41.bias primals_6 = self.conv34.weight primals_7 = self.conv34.bias primals_8 = self.conv33.weight primals_9 = self.conv33.bias primals_10 = self.conv32.weight primals_11 = self.conv32.bias primals_12 = self.conv31.weight primals_13 = self.conv31.bias primals_14 = self.conv22.weight primals_15 = self.conv22.bias primals_16 = self.conv21.weight primals_17 = self.conv21.bias primals_18 = self.conv12.weight primals_19 = self.conv12.bias primals_20 = self.conv11.weight primals_21 = self.conv11.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21]) return output[0]
MingSun-Tse/pytorch-AdaIN
Decoder4_2
false
2,719
[ "MIT" ]
0
02ae320345232983c754ea233613aedc21e4d348
https://github.com/MingSun-Tse/pytorch-AdaIN/tree/02ae320345232983c754ea233613aedc21e4d348
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat] # Source node to ATen node mapping: # sa => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu] # Source node to ATen node mapping: # q => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (256, 8), (8, 1)) assert_size_stride(primals_4, (256, ), (1, )) assert_size_stride(primals_5, (256, 256), (256, 1)) assert_size_stride(primals_6, (256, ), (1, )) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 1024, grid=grid(1024), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (1, 256), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf4, primals_6, 1024, grid=grid(1024), stream=stream0) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [q_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_8 return (buf6, buf0, buf2, buf4, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def weight_init(m): """Custom weight init for Conv2D and Linear layers.""" if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): assert m.weight.size(2) == m.weight.size(3) m.weight.data.fill_(0.0) m.bias.data.fill_(0.0) mid = m.weight.size(2) // 2 gain = nn.init.calculate_gain('relu') nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain) class Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim=256): super(Critic, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_dim) self.l2 = nn.Linear(hidden_dim, hidden_dim) self.l3 = nn.Linear(hidden_dim, 1) self.apply(weight_init) def forward(self, state, action): sa = torch.cat([state, action], dim=1) q = F.relu(self.l1(sa)) q = F.relu(self.l2(q)) q = self.l3(q) return q def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (256, 8), (8, 1)) assert_size_stride(primals_4, (256,), (1,)) assert_size_stride(primals_5, (256, 256), (256, 1)) assert_size_stride(primals_6, (256,), (1,)) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(1024)](buf2, primals_4, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), ( 1, 256), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_relu_1[grid(1024)](buf4, primals_6, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_8 return buf6, buf0, buf2, buf4, primals_7, primals_5 def weight_init(m): """Custom weight init for Conv2D and Linear layers.""" if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): assert m.weight.size(2) == m.weight.size(3) m.weight.data.fill_(0.0) m.bias.data.fill_(0.0) mid = m.weight.size(2) // 2 gain = nn.init.calculate_gain('relu') nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain) class CriticNew(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim=256): super(CriticNew, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_dim) self.l2 = nn.Linear(hidden_dim, hidden_dim) self.l3 = nn.Linear(hidden_dim, 1) self.apply(weight_init) def forward(self, input_0, input_1): primals_3 = self.l1.weight primals_4 = self.l1.bias primals_5 = self.l2.weight primals_6 = self.l2.bias primals_7 = self.l3.weight primals_8 = self.l3.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
LQNew/SDQ-CAL
Critic
false
2,720
[ "MIT" ]
0
f24301c84b40b90561527ed192497873bac2051f
https://github.com/LQNew/SDQ-CAL/tree/f24301c84b40b90561527ed192497873bac2051f
LayerNorm2D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/dh/cdh3wzar7v3jeecdkgdges7tspn6a4p3x652erhlgsavecnwuelm.py # Topologically Sorted Source Nodes: [xs, xs_1], Original ATen: [aten.clone, aten.native_layer_norm] # Source node to ATen node mapping: # xs => clone # xs_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_per_fused_clone_native_layer_norm_0 = async_compile.triton('triton_per_fused_clone_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clone_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_clone_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 4 r3 = (rindex // 4) x0 = xindex % 4 x1 = (xindex // 4) x4 = xindex r5 = rindex tmp0 = tl.load(in_ptr0 + (r2 + (4*x0) + (16*r3) + (64*x1)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r5), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r5), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-12 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 * tmp21 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (x4), tmp21, xmask) tl.store(out_ptr1 + (r5 + (16*x4)), tmp27, xmask) tl.store(out_ptr0 + (x4), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [xs, xs_1], Original ATen: [aten.clone, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_per_fused_clone_native_layer_norm_0.run(buf3, primals_1, primals_2, primals_3, buf0, buf4, 16, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 4, 16, 1), 0), primals_1, buf0, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm2D(nn.Module): """Layer normalization for CNN outputs.""" def __init__(self, channel, idim, eps=1e-12): super(LayerNorm2D, self).__init__() self.norm = nn.LayerNorm([channel, idim], eps=eps) def forward(self, xs): """Forward pass. Args: xs (FloatTensor): `[B, C, T, F]` Returns: xs (FloatTensor): `[B, C, T, F]` """ _B, _C, _T, _F = xs.size() xs = xs.transpose(2, 1).contiguous() xs = self.norm(xs) xs = xs.transpose(2, 1) return xs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4, 'idim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_clone_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 4 r3 = rindex // 4 x0 = xindex % 4 x1 = xindex // 4 x4 = xindex r5 = rindex tmp0 = tl.load(in_ptr0 + (r2 + 4 * x0 + 16 * r3 + 64 * x1), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r5, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r5, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-12 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 * tmp21 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + x4, tmp21, xmask) tl.store(out_ptr1 + (r5 + 16 * x4), tmp27, xmask) tl.store(out_ptr0 + x4, tmp10, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_clone_native_layer_norm_0[grid(16)](buf3, primals_1, primals_2, primals_3, buf0, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_2 del primals_3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 4, 16, 1), 0 ), primals_1, buf0, buf3 class LayerNorm2DNew(nn.Module): """Layer normalization for CNN outputs.""" def __init__(self, channel, idim, eps=1e-12): super(LayerNorm2DNew, self).__init__() self.norm = nn.LayerNorm([channel, idim], eps=eps) def forward(self, input_0): primals_2 = self.norm.weight primals_3 = self.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Park-Jong-Min/neural_sp
LayerNorm2D
false
2,721
[ "Apache-2.0" ]
0
a4f300ae9c16c6e9ea3128292fbc141f68f38081
https://github.com/Park-Jong-Min/neural_sp/tree/a4f300ae9c16c6e9ea3128292fbc141f68f38081
downsampled_get_normal
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lx/clx7iispm5cwdfjbr3qv475f4mtretd4uhfknhufmrffy7pszpnz.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rf/crfd5c7kohyyzwn73wvaqym7hmieypfyolk7sshdo7awh6hlwbc3.py # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (3, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 6, 6), (36, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 144, grid=grid(144), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 3, 2, 2), (12, 4, 2, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 48, grid=grid(48), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.sparse class downsampled_get_normal(nn.Module): def __init__(self, num_in_layers): super(downsampled_get_normal, self).__init__() self.conv1 = nn.Conv2d(num_in_layers, 3, kernel_size=3, stride=2) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): p = 1 p2d = p, p, p, p x_out = self.conv1(F.pad(x, p2d)) return x_out def get_inputs(): return [torch.rand([4, 1, 4, 4])] def get_init_inputs(): return [[], {'num_in_layers': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch import torch.nn as nn import torch.sparse assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (3, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 6, 6), (36, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(144)](primals_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 3, 2, 2), (12, 4, 2, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(48)](buf2, primals_3, 48, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0 class downsampled_get_normalNew(nn.Module): def __init__(self, num_in_layers): super(downsampled_get_normalNew, self).__init__() self.conv1 = nn.Conv2d(num_in_layers, 3, kernel_size=3, stride=2) self.sigmoid = torch.nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
PrendiProgramming/UprightNet
downsampled_get_normal
false
2,722
[ "MIT" ]
0
73a0677079e27a806b48bf9ede70b8377002b2f3
https://github.com/PrendiProgramming/UprightNet/tree/73a0677079e27a806b48bf9ede70b8377002b2f3
IrisClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (10, 4), (4, 1)) assert_size_stride(primals_2, (10, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (10, 10), (10, 1)) assert_size_stride(primals_5, (10, ), (1, )) assert_size_stride(primals_6, (3, 10), (10, 1)) assert_size_stride(primals_7, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 640, grid=grid(640), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 10), (1, 10), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 640, grid=grid(640), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.relu, aten.native_dropout] buf4 = torch.ops.aten.native_dropout.default(buf3, 0.2, True) del buf3 buf5 = buf4[0] buf6 = buf4[1] del buf4 buf7 = empty_strided_cuda((64, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 10), (10, 1), 0), reinterpret_tensor(primals_6, (10, 3), (1, 10), 0), alpha=1, beta=1, out=buf7) del primals_7 return (reinterpret_tensor(buf7, (4, 4, 4, 3), (48, 12, 3, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), buf6, reinterpret_tensor(buf5, (64, 10), (10, 1), 0), primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((3, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.onnx class IrisClassifier(nn.Module): def __init__(self): super(IrisClassifier, self).__init__() self.fc1 = nn.Linear(4, 10) self.fc2 = nn.Linear(10, 10) self.fc3 = nn.Linear(10, 3) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.dropout(x, 0.2) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (10, 4), (4, 1)) assert_size_stride(primals_2, (10,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (10, 10), (10, 1)) assert_size_stride(primals_5, (10,), (1,)) assert_size_stride(primals_6, (3, 10), (10, 1)) assert_size_stride(primals_7, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1, primals_2, buf9, 640, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 10), (1, 10), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(640)](buf3, primals_5, buf8, 640, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = torch.ops.aten.native_dropout.default(buf3, 0.2, True) del buf3 buf5 = buf4[0] buf6 = buf4[1] del buf4 buf7 = empty_strided_cuda((64, 3), (3, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 10), (10, 1), 0), reinterpret_tensor(primals_6, (10, 3), (1, 10), 0), alpha=1, beta=1, out=buf7) del primals_7 return reinterpret_tensor(buf7, (4, 4, 4, 3), (48, 12, 3, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 10), (10, 1), 0 ), buf6, reinterpret_tensor(buf5, (64, 10), (10, 1), 0 ), primals_6, buf8, primals_4, buf9 class IrisClassifierNew(nn.Module): def __init__(self): super(IrisClassifierNew, self).__init__() self.fc1 = nn.Linear(4, 10) self.fc2 = nn.Linear(10, 10) self.fc3 = nn.Linear(10, 3) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ParikhKadam/mlflow
IrisClassifier
false
2,723
[ "Apache-2.0" ]
0
21d64d45c6131b62bb956f77327aa1abd9df66b2
https://github.com/ParikhKadam/mlflow/tree/21d64d45c6131b62bb956f77327aa1abd9df66b2
PositionwiseFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py # Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv1d => convolution # output => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/in/ciniyjn7eyz6kfao5xoph2rbugonh4ujhobeqsni3egmy2cyb6jq.py # Topologically Sorted Source Nodes: [add, mu, sigma], Original ATen: [aten.add, aten.mean, aten.std] # Source node to ATen node mapping: # add => add # mu => mean # sigma => var # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True}) triton_poi_fused_add_mean_std_3 = async_compile.triton('triton_poi_fused_add_mean_std_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp4 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp8 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = 3.0 tmp29 = tmp27 / tmp28 tl.store(in_out_ptr0 + (x2), tmp29, xmask) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3p/c3pxygonyvwt7htiobzn7yqzmectxzeqvh7ezkgsvmrrsjmztpuc.py # Topologically Sorted Source Nodes: [add, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.sub, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # ln_out => div # ln_out_1 => add_2 # mul => mul # sub => sub # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %expand), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 0.001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {}) triton_poi_fused_add_div_mul_sub_4 = async_compile.triton('triton_poi_fused_add_div_mul_sub_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (y0), ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = libdevice.sqrt(tmp5) tmp7 = 0.001 tmp8 = tmp6 + tmp7 tmp9 = tmp4 / tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + (4*y3)), tmp13, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = buf5; del buf5 # reuse buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, mu, sigma], Original ATen: [aten.add, aten.mean, aten.std] triton_poi_fused_add_mean_std_3.run(buf6, buf4, primals_1, buf7, 16, grid=grid(16), stream=stream0) buf8 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.sub, aten.div, aten.mul] triton_poi_fused_add_div_mul_sub_4.run(buf4, primals_1, buf7, buf6, primals_6, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del buf6 del buf7 del primals_7 return (buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx class Identity(nn.Module): def forward(self, input_): return input_ class LayerNormalization(nn.Module): """ Layer normalization module """ def __init__(self, d_hid, eps=0.001): super(LayerNormalization, self).__init__() self.eps = eps self.a_2 = nn.Parameter(torch.ones(d_hid), requires_grad=True) self.b_2 = nn.Parameter(torch.zeros(d_hid), requires_grad=True) def forward(self, z): if z.size(1) == 1: return z mu = torch.mean(z, keepdim=True, dim=-1) sigma = torch.std(z, keepdim=True, dim=-1) ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps) ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as( ln_out) return ln_out class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_hid, d_inner_hid, dropout=0.1, layer_norm=True): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1) self.w_2 = nn.Conv1d(d_inner_hid, d_hid, 1) self.layer_norm = LayerNormalization(d_hid ) if layer_norm else Identity() self.dropout = nn.Dropout(dropout) self.relu = nn.ReLU() def forward(self, x): residual = x output = self.relu(self.w_1(x.transpose(1, 2))) output = self.w_2(output).transpose(2, 1) output = self.dropout(output) return self.layer_norm(output + residual) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_hid': 4, 'd_inner_hid': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torchvision import models as models import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = 3.0 tmp29 = tmp27 / tmp28 tl.store(in_out_ptr0 + x2, tmp29, xmask) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_add_div_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2 + 4 * y1), xmask & ymask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr3 + (x2 + 4 * y1), xmask & ymask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr4 + y0, ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = libdevice.sqrt(tmp5) tmp7 = 0.001 tmp8 = tmp6 + tmp7 tmp9 = tmp4 / tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + 4 * y3), tmp13, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = buf5 del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_mean_std_3[grid(16)](buf6, buf4, primals_1, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0) del buf0 triton_poi_fused_add_div_mul_sub_4[grid(16, 4)](buf4, primals_1, buf7, buf6, primals_6, primals_7, buf8, 16, 4, XBLOCK=4, YBLOCK =16, num_warps=1, num_stages=1) del buf6 del buf7 del primals_7 return buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4 class Identity(nn.Module): def forward(self, input_): return input_ class LayerNormalization(nn.Module): """ Layer normalization module """ def __init__(self, d_hid, eps=0.001): super(LayerNormalization, self).__init__() self.eps = eps self.a_2 = nn.Parameter(torch.ones(d_hid), requires_grad=True) self.b_2 = nn.Parameter(torch.zeros(d_hid), requires_grad=True) def forward(self, z): if z.size(1) == 1: return z mu = torch.mean(z, keepdim=True, dim=-1) sigma = torch.std(z, keepdim=True, dim=-1) ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps) ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as( ln_out) return ln_out class PositionwiseFeedForwardNew(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_hid, d_inner_hid, dropout=0.1, layer_norm=True): super(PositionwiseFeedForwardNew, self).__init__() self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1) self.w_2 = nn.Conv1d(d_inner_hid, d_hid, 1) self.layer_norm = LayerNormalization(d_hid ) if layer_norm else Identity() self.dropout = nn.Dropout(dropout) self.relu = nn.ReLU() def forward(self, input_0): primals_2 = self.w_1.weight primals_3 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_6 = self.layer_norm.a_2 primals_7 = self.layer_norm.b_2 primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
JinYAnGHe/openvino_training_extensions
PositionwiseFeedForward
false
2,724
[ "Apache-2.0" ]
0
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
LinearGLUBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fg/cfgseyxhpu7b6i4xtsiblktsjg6wbg2mlcsyld7lmr4dhbh7u4xc.py # Topologically Sorted Source Nodes: [glu], Original ATen: [aten.glu] # Source node to ATen node mapping: # glu => glu # Graph fragment: # %glu : [num_users=1] = call_function[target=torch.ops.aten.glu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_glu_0 = async_compile.triton('triton_poi_fused_glu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_glu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_glu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [glu], Original ATen: [aten.glu] stream0 = get_raw_stream(0) triton_poi_fused_glu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LinearGLUBlock(nn.Module): """A linear GLU block. Args: size (int): input and output dimension """ def __init__(self, size): super().__init__() self.fc = nn.Linear(size, size * 2) def forward(self, xs): return F.glu(self.fc(xs), dim=-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_glu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_glu_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0) class LinearGLUBlockNew(nn.Module): """A linear GLU block. Args: size (int): input and output dimension """ def __init__(self, size): super().__init__() self.fc = nn.Linear(size, size * 2) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Park-Jong-Min/neural_sp
LinearGLUBlock
false
2,725
[ "Apache-2.0" ]
0
a4f300ae9c16c6e9ea3128292fbc141f68f38081
https://github.com/Park-Jong-Min/neural_sp/tree/a4f300ae9c16c6e9ea3128292fbc141f68f38081
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/in/cin6bebkpfuweyzzgtljy26zh2yhrs7rpusw2jnlmszgn4jg27lx.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone, aten.transpose] # Source node to ATen node mapping: # contiguous_1 => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %permute_8 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%clone, [0, 2, 1]), kwargs = {}) triton_poi_fused_clone_transpose_0 = async_compile.triton('triton_poi_fused_clone_transpose_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_transpose_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + (4*x1) + (16*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wd/cwdechbtujfh3khensgj7m65ycmclcmrggkwsxpoa3is2n47bah4.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %view_1], 2), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oj/coje6ro7aly3k4hwvxmkcoxi6nwxzpg23gh2inoddo4imx7svkus.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # output_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_4 = async_compile.triton('triton_poi_fused_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf9 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone, aten.transpose] stream0 = get_raw_stream(0) triton_poi_fused_clone_transpose_0.run(primals_2, buf1, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1, attention_scores], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf2, (16, 4), (4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mix], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, buf0, buf6, 128, grid=grid(128), stream=stream0) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_4.run(buf8, 64, grid=grid(64), stream=stream0) return (buf8, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), buf4, reinterpret_tensor(buf6, (16, 8), (8, 1), 0), buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Attention(nn.Module): def __init__(self, dims, method='general', dropout=0.0): super().__init__() if method not in ('dot', 'general'): raise ValueError('Invalid attention type selected') self.method = method if method == 'general': self.linear_in = nn.Linear(dims, dims, bias=False) self.dropout = nn.Dropout(dropout) self.linear_out = nn.Linear(dims * 2, dims, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, query, context): batch_size, output_len, dims = query.size() query_len = context.size(1) if self.method == 'general': query = query.contiguous() query = query.view(batch_size * output_len, dims) query = self.linear_in(query) query = query.view(batch_size, output_len, dims) attention_scores = torch.bmm(query, context.transpose(1, 2). contiguous()) attention_scores = attention_scores.view(batch_size * output_len, query_len) attention_weights = self.softmax(attention_scores) if self.dropout.p != 0.0: attention_weights = self.dropout(attention_weights) attention_weights = attention_weights.view(batch_size, output_len, query_len) mix = torch.bmm(attention_weights, context) combined = torch.cat((mix, query), dim=2) combined = combined.view(batch_size * output_len, 2 * dims) output = self.linear_out(combined).view(batch_size, output_len, dims) output = self.tanh(output) return output, attention_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dims': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + 4 * x1 + 16 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf9 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_transpose_0[grid(16, 4)](primals_2, buf1, buf9, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0) del buf1 triton_poi_fused__softmax_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (16, 4), (4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_3[grid(128)](buf5, buf0, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0) del buf5 extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0) del buf7 triton_poi_fused_tanh_4[grid(64)](buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf8, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0 ), buf4, reinterpret_tensor(buf6, (16, 8), (8, 1), 0 ), buf8, primals_4, buf9 class AttentionNew(nn.Module): def __init__(self, dims, method='general', dropout=0.0): super().__init__() if method not in ('dot', 'general'): raise ValueError('Invalid attention type selected') self.method = method if method == 'general': self.linear_in = nn.Linear(dims, dims, bias=False) self.dropout = nn.Dropout(dropout) self.linear_out = nn.Linear(dims * 2, dims, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, input_0, input_1): primals_3 = self.linear_in.weight primals_4 = self.linear_out.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
Palem1988/NeMo
Attention
false
2,726
[ "Apache-2.0" ]
0
56c909b4088f345bf28fe0d0730380527df584f6
https://github.com/Palem1988/NeMo/tree/56c909b4088f345bf28fe0d0730380527df584f6
get_normal
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lx/clx7iispm5cwdfjbr3qv475f4mtretd4uhfknhufmrffy7pszpnz.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/er/ceran7cepmoot3unpkyiv6ws2wivez2mb54b3w5bjh4gxygcg23y.py # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (3, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 6, 6), (36, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 144, grid=grid(144), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 3, 4, 4), (48, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 192, grid=grid(192), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.sparse class get_normal(nn.Module): def __init__(self, num_in_layers, num_out_layers=3): super(get_normal, self).__init__() self.conv1 = nn.Conv2d(num_in_layers, num_out_layers, kernel_size=3, stride=1) def forward(self, x): p = 1 p2d = p, p, p, p x_out = self.conv1(F.pad(x, p2d)) return x_out def get_inputs(): return [torch.rand([4, 1, 4, 4])] def get_init_inputs(): return [[], {'num_in_layers': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch import torch.nn as nn import torch.sparse assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (3, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 6, 6), (36, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(144)](primals_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 3, 4, 4), (48, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(192)](buf2, primals_3, 192, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class get_normalNew(nn.Module): def __init__(self, num_in_layers, num_out_layers=3): super(get_normalNew, self).__init__() self.conv1 = nn.Conv2d(num_in_layers, num_out_layers, kernel_size=3, stride=1) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
PrendiProgramming/UprightNet
get_normal
false
2,727
[ "MIT" ]
0
73a0677079e27a806b48bf9ede70b8377002b2f3
https://github.com/PrendiProgramming/UprightNet/tree/73a0677079e27a806b48bf9ede70b8377002b2f3
SNR_block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zj/czjaechlprlkjglbwp643m6s32bsijubwzfmehmbzuhxhtouhtmg.py # Topologically Sorted Source Nodes: [x_IN, x_style, x, adaptive_avg_pool2d_1, stack], Original ATen: [aten._native_batch_norm_legit, aten.sub, aten.mean, aten.stack] # Source node to ATen node mapping: # adaptive_avg_pool2d_1 => mean_1 # stack => cat # x => mean # x_IN => add, add_1, mul, mul_1, rsqrt, sub, var_mean # x_style => sub_1 # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %unsqueeze_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_3), kwargs = {}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%sub_1, [-1, -2], True), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_1, [-1, -2], True), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_2, %view_3, %view_4, %view_2, %view_3, %view_4],), kwargs = {}) triton_per_fused__native_batch_norm_legit_mean_stack_sub_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_mean_stack_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_mean_stack_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 6, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_mean_stack_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (x0 % 4), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (x0 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 16.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = tmp0 - tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp35 = tl.where(xmask, tmp33, 0) tmp36 = tl.sum(tmp35, 1)[:, None] tmp37 = tmp32 / tmp18 tmp38 = tmp36 / tmp18 tl.store(out_ptr2 + (r1 + (16*x0)), tmp27, xmask) tl.store(out_ptr4 + (x0), tmp22, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp37, xmask) tl.store(out_ptr5 + (x0), tmp38, xmask) tl.store(out_ptr6 + (x0), tmp38, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/52/c52i4cztkphz4ng2rziy4p2gzp4csl3xuwgdzvptquhjnd4ypbbd.py # Topologically Sorted Source Nodes: [x_style, x_3, x_4, x_style_reid_useful, sub_1, x_style_reid_useless, x_5, x_useless, adaptive_avg_pool2d_2, adaptive_avg_pool2d_3, stack], Original ATen: [aten.sub, aten.convolution, aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.mean, aten.stack] # Source node to ATen node mapping: # adaptive_avg_pool2d_2 => mean_2 # adaptive_avg_pool2d_3 => mean_3 # stack => cat # sub_1 => sub_2 # x_3 => convolution_1 # x_4 => sigmoid # x_5 => add_2 # x_style => sub_1 # x_style_reid_useful => mul_2 # x_style_reid_useless => mul_3 # x_useless => add_3 # Graph fragment: # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %sigmoid), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %sub_2), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_2), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_3), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1, -2], True), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_3, [-1, -2], True), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_2, %view_3, %view_4, %view_2, %view_3, %view_4],), kwargs = {}) triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2 = async_compile.triton('triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4 r3 = rindex tmp0 = tl.load(in_out_ptr0 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (r3 + (16*x2)), xmask, other=0.0) tmp4 = tl.load(in_ptr2 + (r3 + (16*x2)), xmask, other=0.0) tmp2 = tmp0 + tmp1 tmp5 = tmp4 - tmp3 tmp6 = tl.sigmoid(tmp2) tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tmp9 = 1.0 tmp10 = tmp9 - tmp6 tmp11 = tmp5 * tmp10 tmp12 = tmp3 + tmp11 tmp13 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp19 = tl.where(xmask, tmp17, 0) tmp20 = tl.sum(tmp19, 1)[:, None] tmp21 = 16.0 tmp22 = tmp16 / tmp21 tmp23 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (r3 + (16*x2)), tmp8, xmask) tl.store(out_ptr1 + (r3 + (16*x2)), tmp12, xmask) tl.store(out_ptr4 + (x2), tmp22, xmask) tl.store(out_ptr5 + (x2), tmp22, xmask) tl.store(out_ptr6 + (x2), tmp23, xmask) tl.store(out_ptr7 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2k/c2kk4aj3ma5jzheo3nb7d3rijrhsps4q44lv4kbxtymqwm5nyjde.py # Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ho/chorlwvbtp7bfohpjteyvwvqsctocimgalkrzgrqhz4r7w44opvj.py # Topologically Sorted Source Nodes: [baddbmm], Original ATen: [aten.baddbmm] # Source node to ATen node mapping: # baddbmm => add_4 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_6, %bmm), kwargs = {}) triton_poi_fused_baddbmm_4 = async_compile.triton('triton_poi_fused_baddbmm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_baddbmm_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_baddbmm_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/o2/co2mil2lduksu6va5pslk66mwg7zgv3ghj2ysonswywbr6m5dldr.py # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_2 => amax, div, exp, sub_3, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%getitem_7, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%getitem_7, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (40 + x2), xmask) tmp1 = tl.load(in_ptr0 + (40 + (2*x1)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (41 + (2*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gj/cgjuqwwoq6ephumpdrzdku4pi57w23vtwhjxtm5hdualxwlfijqo.py # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_1 => amax_1, div_1, exp_1, sub_4, sum_2 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%getitem_6, [1], True), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%getitem_6, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (32 + x2), xmask) tmp1 = tl.load(in_ptr0 + (32 + (2*x1)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (33 + (2*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fb/cfbidfncscwksi2motuclghifko4wlxrjolvaszwudfixmnuc5nm.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax_2, div_2, exp_2, sub_5, sum_3 # Graph fragment: # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%getitem_5, [1], True), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%getitem_5, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {}) triton_poi_fused__softmax_7 = async_compile.triton('triton_poi_fused__softmax_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (24 + x2), xmask) tmp1 = tl.load(in_ptr0 + (24 + (2*x1)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (25 + (2*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (2, 4), (4, 1)) assert_size_stride(primals_9, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf4 = empty_strided_cuda((1, 16, 4, 4), (256, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf6 = reinterpret_tensor(buf5, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf5 # reuse buf22 = empty_strided_cuda((24, 4), (4, 1), torch.float32) buf16 = reinterpret_tensor(buf22, (4, 4), (4, 1), 0) # alias buf19 = reinterpret_tensor(buf22, (4, 4), (4, 1), 48) # alias # Topologically Sorted Source Nodes: [x_IN, x_style, x, adaptive_avg_pool2d_1, stack], Original ATen: [aten._native_batch_norm_legit, aten.sub, aten.mean, aten.stack] stream0 = get_raw_stream(0) triton_per_fused__native_batch_norm_legit_mean_stack_sub_0.run(buf6, primals_1, primals_2, primals_3, buf0, buf4, buf3, buf16, buf19, 16, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 1), (1, 1, 1, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf8, primals_5, 4, grid=grid(4), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 1, 1), (4, 1, 1, 1)) buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf17 = reinterpret_tensor(buf22, (4, 4), (4, 1), 16) # alias buf20 = reinterpret_tensor(buf22, (4, 4), (4, 1), 64) # alias buf18 = reinterpret_tensor(buf22, (4, 4), (4, 1), 32) # alias buf21 = reinterpret_tensor(buf22, (4, 4), (4, 1), 80) # alias # Topologically Sorted Source Nodes: [x_style, x_3, x_4, x_style_reid_useful, sub_1, x_style_reid_useless, x_5, x_useless, adaptive_avg_pool2d_2, adaptive_avg_pool2d_3, stack], Original ATen: [aten.sub, aten.convolution, aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.mean, aten.stack] triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2.run(buf10, primals_7, buf4, primals_1, buf11, buf12, buf17, buf20, buf18, buf21, 16, 16, grid=grid(16), stream=stream0) del primals_7 buf23 = empty_strided_cuda((6, 2, 4), (8, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack] triton_poi_fused_stack_3.run(primals_8, buf23, 48, grid=grid(48), stream=stream0) del primals_8 buf24 = empty_strided_cuda((6, 4, 2), (8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [baddbmm], Original ATen: [aten.baddbmm] extern_kernels.bmm(reinterpret_tensor(buf22, (6, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (6, 4, 2), (8, 1, 4), 0), out=buf24) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [baddbmm], Original ATen: [aten.baddbmm] triton_poi_fused_baddbmm_4.run(buf25, primals_9, 48, grid=grid(48), stream=stream0) del primals_9 buf26 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf25, buf26, 8, grid=grid(8), stream=stream0) buf27 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf25, buf27, 8, grid=grid(8), stream=stream0) buf28 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_7.run(buf25, buf28, 8, grid=grid(8), stream=stream0) return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf11, buf12, buf28, buf27, buf26, reinterpret_tensor(buf25, (4, 2), (2, 1), 0), reinterpret_tensor(buf25, (4, 2), (2, 1), 8), reinterpret_tensor(buf25, (4, 2), (2, 1), 16), primals_1, primals_4, primals_6, reinterpret_tensor(buf3, (16, ), (1, ), 0), reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf6, buf8, buf10, buf26, buf27, buf28, buf23, reinterpret_tensor(buf22, (6, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (1, 16, 1, 1), (16, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class ChannelGate_sub(nn.Module): """A mini-network that generates channel-wise gates conditioned on input tensor.""" def __init__(self, in_channels, num_gates=None, return_gates=False, gate_activation='sigmoid', reduction=16, layer_norm=False): super(ChannelGate_sub, self).__init__() if num_gates is None: num_gates = in_channels self.return_gates = return_gates self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, kernel_size=1, bias=True, padding=0) self.norm1 = None if layer_norm: self.norm1 = nn.LayerNorm((in_channels // reduction, 1, 1)) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction, num_gates, kernel_size=1, bias=True, padding=0) if gate_activation == 'sigmoid': self.gate_activation = nn.Sigmoid() elif gate_activation == 'relu': self.gate_activation = nn.ReLU(inplace=True) elif gate_activation == 'linear': self.gate_activation = None else: raise RuntimeError('Unknown gate activation: {}'.format( gate_activation)) def forward(self, x): input = x x = self.global_avgpool(x) x = self.fc1(x) if self.norm1 is not None: x = self.norm1(x) x = self.relu(x) x = self.fc2(x) if self.gate_activation is not None: x = self.gate_activation(x) if self.return_gates: return x return input * x, input * (1 - x), x class SNR_block(nn.Module): """A mini-network for the SNR module 1. Instance normalization 2. Channel attention """ def __init__(self, in_channels, num_classes=2): super(SNR_block, self).__init__() self.IN = nn.InstanceNorm2d(in_channels, affine=True) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(in_channels, num_classes) self.style_reid_laye = ChannelGate_sub(in_channels, num_gates= in_channels, return_gates=False, gate_activation='sigmoid', reduction=4, layer_norm=False) def forward(self, x): x_IN = self.IN(x) x_style = x - x_IN (x_style_reid_useful, x_style_reid_useless, _selective_weight_useful ) = self.style_reid_laye(x_style) x = x_IN + x_style_reid_useful x_useless = x_IN + x_style_reid_useless return x_IN, x, x_useless, F.softmax(self.fc(self.global_avgpool( x_IN).view(x_IN.size(0), -1))), F.softmax(self.fc(self. global_avgpool(x).view(x.size(0), -1))), F.softmax(self.fc(self .global_avgpool(x_useless).view(x_useless.size(0), -1))), self.fc( self.global_avgpool(x_IN).view(x_IN.size(0), -1)), self.fc(self .global_avgpool(x).view(x.size(0), -1)), self.fc(self. global_avgpool(x_useless).view(x_useless.size(0), -1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_mean_stack_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + x0 % 4, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + x0 % 4, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 16.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = tmp0 - tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp35 = tl.where(xmask, tmp33, 0) tmp36 = tl.sum(tmp35, 1)[:, None] tmp37 = tmp32 / tmp18 tmp38 = tmp36 / tmp18 tl.store(out_ptr2 + (r1 + 16 * x0), tmp27, xmask) tl.store(out_ptr4 + x0, tmp22, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp37, xmask) tl.store(out_ptr5 + x0, tmp38, xmask) tl.store(out_ptr6 + x0, tmp38, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4 r3 = rindex tmp0 = tl.load(in_out_ptr0 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (r3 + 16 * x2), xmask, other=0.0) tmp4 = tl.load(in_ptr2 + (r3 + 16 * x2), xmask, other=0.0) tmp2 = tmp0 + tmp1 tmp5 = tmp4 - tmp3 tmp6 = tl.sigmoid(tmp2) tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tmp9 = 1.0 tmp10 = tmp9 - tmp6 tmp11 = tmp5 * tmp10 tmp12 = tmp3 + tmp11 tmp13 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp19 = tl.where(xmask, tmp17, 0) tmp20 = tl.sum(tmp19, 1)[:, None] tmp21 = 16.0 tmp22 = tmp16 / tmp21 tmp23 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + (r3 + 16 * x2), tmp8, xmask) tl.store(out_ptr1 + (r3 + 16 * x2), tmp12, xmask) tl.store(out_ptr4 + x2, tmp22, xmask) tl.store(out_ptr5 + x2, tmp22, xmask) tl.store(out_ptr6 + x2, tmp23, xmask) tl.store(out_ptr7 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_stack_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_baddbmm_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + (40 + x2), xmask) tmp1 = tl.load(in_ptr0 + (40 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tl.load(in_ptr0 + (41 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + (32 + x2), xmask) tmp1 = tl.load(in_ptr0 + (32 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tl.load(in_ptr0 + (33 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + (24 + x2), xmask) tmp1 = tl.load(in_ptr0 + (24 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tl.load(in_ptr0 + (25 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (2, 4), (4, 1)) assert_size_stride(primals_9, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf4 = empty_strided_cuda((1, 16, 4, 4), (256, 16, 4, 1), torch.float32 ) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf6 = reinterpret_tensor(buf5, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf5 buf22 = empty_strided_cuda((24, 4), (4, 1), torch.float32) buf16 = reinterpret_tensor(buf22, (4, 4), (4, 1), 0) buf19 = reinterpret_tensor(buf22, (4, 4), (4, 1), 48) get_raw_stream(0) triton_per_fused__native_batch_norm_legit_mean_stack_sub_0[grid(16)]( buf6, primals_1, primals_2, primals_3, buf0, buf4, buf3, buf16, buf19, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 1), (1, 1, 1, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_1[grid(4)](buf8, primals_5, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_5 buf9 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 1, 1), (4, 1, 1, 1)) buf10 = buf9 del buf9 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf17 = reinterpret_tensor(buf22, (4, 4), (4, 1), 16) buf20 = reinterpret_tensor(buf22, (4, 4), (4, 1), 64) buf18 = reinterpret_tensor(buf22, (4, 4), (4, 1), 32) buf21 = reinterpret_tensor(buf22, (4, 4), (4, 1), 80) triton_per_fused_add_convolution_mean_mul_rsub_sigmoid_stack_sub_2[grid (16)](buf10, primals_7, buf4, primals_1, buf11, buf12, buf17, buf20, buf18, buf21, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_7 buf23 = empty_strided_cuda((6, 2, 4), (8, 4, 1), torch.float32) triton_poi_fused_stack_3[grid(48)](primals_8, buf23, 48, XBLOCK=64, num_warps=1, num_stages=1) del primals_8 buf24 = empty_strided_cuda((6, 4, 2), (8, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf22, (6, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (6, 4, 2), (8, 1, 4), 0), out=buf24) buf25 = buf24 del buf24 triton_poi_fused_baddbmm_4[grid(48)](buf25, primals_9, 48, XBLOCK= 64, num_warps=1, num_stages=1) del primals_9 buf26 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused__softmax_5[grid(8)](buf25, buf26, 8, XBLOCK=8, num_warps=1, num_stages=1) buf27 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused__softmax_6[grid(8)](buf25, buf27, 8, XBLOCK=8, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused__softmax_7[grid(8)](buf25, buf28, 8, XBLOCK=8, num_warps=1, num_stages=1) return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf11, buf12, buf28, buf27, buf26, reinterpret_tensor(buf25, (4, 2), (2, 1), 0), reinterpret_tensor(buf25, (4, 2), (2, 1), 8 ), reinterpret_tensor(buf25, (4, 2), (2, 1), 16 ), primals_1, primals_4, primals_6, reinterpret_tensor(buf3, (16,), (1,), 0), reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf6, buf8, buf10, buf26, buf27, buf28, buf23, reinterpret_tensor( buf22, (6, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (1, 16, 1, 1), (16, 1, 1, 1), 0) class ChannelGate_sub(nn.Module): """A mini-network that generates channel-wise gates conditioned on input tensor.""" def __init__(self, in_channels, num_gates=None, return_gates=False, gate_activation='sigmoid', reduction=16, layer_norm=False): super(ChannelGate_sub, self).__init__() if num_gates is None: num_gates = in_channels self.return_gates = return_gates self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, kernel_size=1, bias=True, padding=0) self.norm1 = None if layer_norm: self.norm1 = nn.LayerNorm((in_channels // reduction, 1, 1)) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction, num_gates, kernel_size=1, bias=True, padding=0) if gate_activation == 'sigmoid': self.gate_activation = nn.Sigmoid() elif gate_activation == 'relu': self.gate_activation = nn.ReLU(inplace=True) elif gate_activation == 'linear': self.gate_activation = None else: raise RuntimeError('Unknown gate activation: {}'.format( gate_activation)) def forward(self, x): input = x x = self.global_avgpool(x) x = self.fc1(x) if self.norm1 is not None: x = self.norm1(x) x = self.relu(x) x = self.fc2(x) if self.gate_activation is not None: x = self.gate_activation(x) if self.return_gates: return x return input * x, input * (1 - x), x class SNR_blockNew(nn.Module): """A mini-network for the SNR module 1. Instance normalization 2. Channel attention """ def __init__(self, in_channels, num_classes=2): super(SNR_blockNew, self).__init__() self.IN = nn.InstanceNorm2d(in_channels, affine=True) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(in_channels, num_classes) self.style_reid_laye = ChannelGate_sub(in_channels, num_gates= in_channels, return_gates=False, gate_activation='sigmoid', reduction=4, layer_norm=False) def forward(self, input_0): primals_2 = self.IN.weight primals_3 = self.IN.bias primals_8 = self.fc.weight primals_9 = self.fc.bias primals_4 = self.style_reid_laye.fc1.weight primals_5 = self.style_reid_laye.fc1.bias primals_6 = self.style_reid_laye.fc2.weight primals_7 = self.style_reid_laye.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1], output[2], output[3], output[4], output[5 ], output[6], output[7], output[8]
Ohyeon5/DN_uncrowding
SNR_block
false
2,728
[ "Apache-2.0" ]
0
cb13ef2db4b15271517e06e4f323f667d01fcdb1
https://github.com/Ohyeon5/DN_uncrowding/tree/cb13ef2db4b15271517e06e4f323f667d01fcdb1
UpSampling
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jk/cjkkgl2tmfzxsagp3zurtn7be2fhj3k2srsa2cxvjtqpbqnaj777.py # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # interpolate => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%permute, [None, None, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 4 x2 = (xindex // 32) x3 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = tl.load(in_ptr0 + (x1 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wg/cwgrr2ddwdbqdqjfpbbm5yqmrr3fpzqy7qy7dav2abelxlmbgfxc.py # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten.add, aten.transpose] # Source node to ATen node mapping: # out1_1 => add_2, permute_3 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_4), kwargs = {}) # %permute_3 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%permute_2, [0, 2, 1]), kwargs = {}) triton_poi_fused_add_transpose_1 = async_compile.triton('triton_poi_fused_add_transpose_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_transpose_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_transpose_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 8 y1 = (yindex // 8) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (8*x2) + (32*y1)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7o/c7o6xqk6z4pz2ptfmguqzfkkexkpwwfqdwh5v72xl5bjartq6vlx.py # Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # interpolate_1 => add_3, add_4, convert_element_type_2, convert_element_type_3, iota_1, mul_2, mul_3 # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_1, 1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 0), kwargs = {}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_3, torch.float32), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 0.5), kwargs = {}) # %convert_element_type_3 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_3, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_2 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_2(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wz/cwz7kg3cjcoyfryvn77ptw2mo4i6ztz2lmfwofq44amkpreiz3vv.py # Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # interpolate_1 => _unsafe_index_1 # Graph fragment: # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%permute_7, [None, None, %convert_element_type_3]), kwargs = {}) triton_poi_fused__unsafe_index_3 = async_compile.triton('triton_poi_fused__unsafe_index_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 4 x2 = (xindex // 64) x3 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = tl.load(in_ptr0 + (x1 + (4*tmp4) + (32*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vs/cvsrdu7meh3cqqfd24cmr3qxqgwp6bjx6xewaycwqngiexspii2c.py # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_5, %primals_6, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 8, 4), (32, 4, 1)) assert_size_stride(primals_5, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 8), (32, 8, 1)) buf2 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 8, 4), (32, 1, 8), torch.float32) # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten.add, aten.transpose] triton_poi_fused_add_transpose_1.run(buf1, primals_3, primals_4, buf2, buf3, 32, 4, grid=grid(32, 4), stream=stream0) del buf1 del primals_3 del primals_4 buf4 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_2.run(buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten._unsafe_index] triton_poi_fused__unsafe_index_3.run(buf2, buf5, 256, grid=grid(256), stream=stream0) del buf2 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_5, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 16), (64, 16, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf7, primals_6, 256, grid=grid(256), stream=stream0) del primals_6 return (buf3, reinterpret_tensor(buf7, (4, 16, 4), (64, 1, 16), 0), primals_2, primals_5, buf0, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8, 4), (32, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class UpSampling(nn.Module): def __init__(self, in_c): super().__init__() self.unpool1 = nn.Upsample(scale_factor=2) self.conv1 = nn.Conv1d(in_c, in_c, 3, padding=1) self.unpool2 = nn.Upsample(scale_factor=2) self.conv2 = nn.Conv1d(in_c, in_c, 3, padding=1) def forward(self, x, x2): out1 = self.conv1(self.unpool1(x.transpose(-1, -2))).transpose(-1, -2) if x2 is not None: out1 += x2 out2 = self.conv2(self.unpool2(out1.transpose(-1, -2))).transpose(- 1, -2) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 8, 4])] def get_init_inputs(): return [[], {'in_c': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 4 x2 = xindex // 32 x3 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = tl.load(in_ptr0 + (x1 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp5, xmask) @triton.jit def triton_poi_fused_add_transpose_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 32 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 8 y1 = yindex // 8 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 8 * x2 + 32 * y1), tmp4, xmask & ymask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_2(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 4 x2 = xindex // 64 x3 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = tl.load(in_ptr0 + (x1 + 4 * tmp4 + 32 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 8, 4), (32, 4, 1)) assert_size_stride(primals_5, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 8), (32, 8, 1)) buf2 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 8, 4), (32, 1, 8), torch.float32) triton_poi_fused_add_transpose_1[grid(32, 4)](buf1, primals_3, primals_4, buf2, buf3, 32, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del buf1 del primals_3 del primals_4 buf4 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_2[grid(16)](buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused__unsafe_index_3[grid(256)](buf2, buf5, 256, XBLOCK =128, num_warps=4, num_stages=1) del buf2 buf6 = extern_kernels.convolution(buf5, primals_5, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 16), (64, 16, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_4[grid(256)](buf7, primals_6, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 return buf3, reinterpret_tensor(buf7, (4, 16, 4), (64, 1, 16), 0 ), primals_2, primals_5, buf0, buf4, buf5 class UpSamplingNew(nn.Module): def __init__(self, in_c): super().__init__() self.unpool1 = nn.Upsample(scale_factor=2) self.conv1 = nn.Conv1d(in_c, in_c, 3, padding=1) self.unpool2 = nn.Upsample(scale_factor=2) self.conv2 = nn.Conv1d(in_c, in_c, 3, padding=1) def forward(self, input_0, input_1): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_5 = self.conv2.weight primals_6 = self.conv2.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
PatrickChoDev/LiDAR-ObjDetect
UpSampling
false
2,729
[ "MIT" ]
0
a839220d28a1fda045278ded0992e46f408a5442
https://github.com/PatrickChoDev/LiDAR-ObjDetect/tree/a839220d28a1fda045278ded0992e46f408a5442
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2v/c2vp5v5lhi576atqlpgbqybgeme2kl36xyodaeliq6wg4ob3gcgc.py # Topologically Sorted Source Nodes: [loss, mul, sub, mul_1, alpha_factor, pred_prob, sub_1, abs_1, modulating_factor, mul_2, loss_1, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.sub, aten.abs, aten.pow, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_2 # alpha_factor => add # loss => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2 # loss_1 => mul_4 # mean => mean # modulating_factor => pow_1 # mul => mul_1 # mul_1 => mul_2 # mul_2 => mul_3 # pred_prob => sigmoid # sub => sub_3 # sub_1 => sub_4 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.25), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 0.75), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %sigmoid), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_4,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_2, 1.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %mul_3), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_4,), kwargs = {}) triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = 0.25 tmp14 = tmp0 * tmp13 tmp15 = 0.75 tmp16 = tmp2 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tl.sigmoid(tmp3) tmp19 = tmp0 - tmp18 tmp20 = tl_math.abs(tmp19) tmp21 = 1.5 tmp22 = libdevice.pow(tmp20, tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp12 * tmp23 tmp25 = tl.broadcast_to(tmp24, [RBLOCK]) tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0)) tmp28 = 256.0 tmp29 = tmp27 / tmp28 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss, mul, sub, mul_1, alpha_factor, pred_prob, sub_1, abs_1, modulating_factor, mul_2, loss_1, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.sub, aten.abs, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FocalLoss(nn.Module): def __init__(self, gamma=1.5, alpha=0.25, reduction=torch.mean): super(FocalLoss, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, pred, true): true = true pred = pred loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor return self.reduction(loss) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = 0.25 tmp14 = tmp0 * tmp13 tmp15 = 0.75 tmp16 = tmp2 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tl.sigmoid(tmp3) tmp19 = tmp0 - tmp18 tmp20 = tl_math.abs(tmp19) tmp21 = 1.5 tmp22 = libdevice.pow(tmp20, tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp12 * tmp23 tmp25 = tl.broadcast_to(tmp24, [RBLOCK]) tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0)) tmp28 = 256.0 tmp29 = tmp27 / tmp28 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_sub_0[ grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class FocalLossNew(nn.Module): def __init__(self, gamma=1.5, alpha=0.25, reduction=torch.mean): super(FocalLossNew, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
PatrickChoDev/LiDAR-ObjDetect
FocalLoss
false
2,730
[ "MIT" ]
0
a839220d28a1fda045278ded0992e46f408a5442
https://github.com/PatrickChoDev/LiDAR-ObjDetect/tree/a839220d28a1fda045278ded0992e46f408a5442
ScaledDotProductAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vw/cvwqcezjgw4hcr2zvuks3igdsd4iniq3ke5z3ruhzsvxj35eqh2j.py # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, sum_1], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.sum] # Source node to ATen node mapping: # attn_1 => div # e_x => exp # e_x_1 => mul_1 # max_1 => max_1 # sub => sub # sum_1 => sum_1 # x => clamp_max, clamp_min # x_1 => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 4), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div, -15.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15.0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %arg2_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul, 2, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2], True), kwargs = {}) triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0 = async_compile.triton('triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = triton_helpers.maximum(tmp10, tmp3) tmp12 = triton_helpers.minimum(tmp11, tmp5) tmp14 = tmp12 * tmp13 tmp15 = triton_helpers.maximum(tmp8, tmp14) tmp17 = tmp16 * tmp1 tmp18 = triton_helpers.maximum(tmp17, tmp3) tmp19 = triton_helpers.minimum(tmp18, tmp5) tmp21 = tmp19 * tmp20 tmp22 = triton_helpers.maximum(tmp15, tmp21) tmp24 = tmp23 * tmp1 tmp25 = triton_helpers.maximum(tmp24, tmp3) tmp26 = triton_helpers.minimum(tmp25, tmp5) tmp28 = tmp26 * tmp27 tmp29 = triton_helpers.maximum(tmp22, tmp28) tmp30 = tmp8 - tmp29 tmp31 = tl_math.exp(tmp30) tmp32 = tmp31 * tmp7 tmp33 = tmp14 - tmp29 tmp34 = tl_math.exp(tmp33) tmp35 = tmp34 * tmp13 tmp36 = tmp32 + tmp35 tmp37 = tmp21 - tmp29 tmp38 = tl_math.exp(tmp37) tmp39 = tmp38 * tmp20 tmp40 = tmp36 + tmp39 tmp41 = tmp28 - tmp29 tmp42 = tl_math.exp(tmp41) tmp43 = tmp42 * tmp27 tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + (x0), tmp29, xmask) tl.store(out_ptr1 + (x0), tmp44, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/73/c73ulpsraxahj2gseyz7pjma7y7eg6gvtqpca55bh6jaui66cdc5.py # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, add, softmax], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.add] # Source node to ATen node mapping: # add => add # attn_1 => div # e_x => exp # e_x_1 => mul_1 # max_1 => max_1 # softmax => div_1 # sub => sub # x => clamp_max, clamp_min # x_1 => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 4), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div, -15.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15.0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %arg2_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul, 2, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %arg2_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-06), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add), kwargs = {}) triton_poi_fused_add_clamp_div_exp_max_mul_sub_1 = async_compile.triton('triton_poi_fused_add_clamp_div_exp_max_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_exp_max_mul_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_exp_max_mul_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp7 = tl.load(in_ptr0 + (x2), xmask) tmp9 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = tmp11 * tmp7 tmp14 = 1e-06 tmp15 = tmp13 + tmp14 tmp16 = tmp12 / tmp15 tl.store(in_out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, sum_1], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0.run(buf0, arg2_1, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, add, softmax], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.add] triton_poi_fused_add_clamp_div_exp_max_mul_sub_1.run(buf3, arg2_1, buf1, buf2, 64, grid=grid(64), stream=stream0) del arg2_1 del buf1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, arg3_1, out=buf4) del arg3_1 return (buf4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def masked_softmax(x, m=None, dim=-1): """ Softmax with mask (optional) """ x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=dim, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=dim, keepdim=True) + 1e-06) return softmax class ScaledDotProductAttention(torch.nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, dropout=0.1): super().__init__() self.temperature = temperature self.dropout = torch.nn.Dropout(dropout) def forward(self, q, k, v, mask): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature attn = masked_softmax(attn, mask, 2) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'temperature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = triton_helpers.maximum(tmp10, tmp3) tmp12 = triton_helpers.minimum(tmp11, tmp5) tmp14 = tmp12 * tmp13 tmp15 = triton_helpers.maximum(tmp8, tmp14) tmp17 = tmp16 * tmp1 tmp18 = triton_helpers.maximum(tmp17, tmp3) tmp19 = triton_helpers.minimum(tmp18, tmp5) tmp21 = tmp19 * tmp20 tmp22 = triton_helpers.maximum(tmp15, tmp21) tmp24 = tmp23 * tmp1 tmp25 = triton_helpers.maximum(tmp24, tmp3) tmp26 = triton_helpers.minimum(tmp25, tmp5) tmp28 = tmp26 * tmp27 tmp29 = triton_helpers.maximum(tmp22, tmp28) tmp30 = tmp8 - tmp29 tmp31 = tl_math.exp(tmp30) tmp32 = tmp31 * tmp7 tmp33 = tmp14 - tmp29 tmp34 = tl_math.exp(tmp33) tmp35 = tmp34 * tmp13 tmp36 = tmp32 + tmp35 tmp37 = tmp21 - tmp29 tmp38 = tl_math.exp(tmp37) tmp39 = tmp38 * tmp20 tmp40 = tmp36 + tmp39 tmp41 = tmp28 - tmp29 tmp42 = tl_math.exp(tmp41) tmp43 = tmp42 * tmp27 tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + x0, tmp29, xmask) tl.store(out_ptr1 + x0, tmp44, xmask) @triton.jit def triton_poi_fused_add_clamp_div_exp_max_mul_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp7 = tl.load(in_ptr0 + x2, xmask) tmp9 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = tmp11 * tmp7 tmp14 = 1e-06 tmp15 = tmp13 + tmp14 tmp16 = tmp12 / tmp15 tl.store(in_out_ptr0 + x2, tmp16, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0[grid(16)](buf0, arg2_1, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf0 del buf0 triton_poi_fused_add_clamp_div_exp_max_mul_sub_1[grid(64)](buf3, arg2_1, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg2_1 del buf1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, arg3_1, out=buf4) del arg3_1 return buf4, buf3 def masked_softmax(x, m=None, dim=-1): """ Softmax with mask (optional) """ x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=dim, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=dim, keepdim=True) + 1e-06) return softmax class ScaledDotProductAttentionNew(torch.nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, dropout=0.1): super().__init__() self.temperature = temperature self.dropout = torch.nn.Dropout(dropout) def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1]
Prasath2001/commonsense-rl
ScaledDotProductAttention
false
2,731
[ "Apache-2.0" ]
0
ef3e83270d34cf211b2d2086120cccae0621477b
https://github.com/Prasath2001/commonsense-rl/tree/ef3e83270d34cf211b2d2086120cccae0621477b
eca_layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] # Source node to ATen node mapping: # y => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hx/chxvgixiwduvwuumo7j2hhpjfvzwfh7g2wp26wd4453y6egzxpmt.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_1, buf2, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class eca_layer(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, channel, k_size=3): super(eca_layer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2 ).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4 ), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(256)](primals_1, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf3, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf2 class eca_layerNew(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, channel, k_size=3): super(eca_layerNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
QJYBall/NNDL-Final-Project
eca_layer
false
2,732
[ "MIT" ]
0
9906fb59e888b51b33f3c61dd5a0737a1a0f0761
https://github.com/QJYBall/NNDL-Final-Project/tree/9906fb59e888b51b33f3c61dd5a0737a1a0f0761
TokenLabelSoftTargetCrossEntropy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7e/c7eos52pj4trwrwevfplxacwgfirtfuiycj3hrmzuhm4mq7vguud.py # Topologically Sorted Source Nodes: [neg, log_softmax, mul, loss, mean], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # loss => sum_2 # mean => mean # mul => mul # neg => neg # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp1 = -tmp0 tmp3 = tl_math.exp(tmp2) tmp5 = tl_math.exp(tmp4) tmp6 = tmp3 + tmp5 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp11 = tl_math.exp(tmp10) tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp1 * tmp14 tmp17 = -tmp16 tmp18 = tmp4 - tmp13 tmp19 = tmp17 * tmp18 tmp20 = tmp15 + tmp19 tmp22 = -tmp21 tmp23 = tmp7 - tmp13 tmp24 = tmp22 * tmp23 tmp25 = tmp20 + tmp24 tmp27 = -tmp26 tmp28 = tmp10 - tmp13 tmp29 = tmp27 * tmp28 tmp30 = tmp25 + tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp34 = 64.0 tmp35 = tmp33 / tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [neg, log_softmax, mul, loss, mean], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.mean] triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf3, arg1_1, buf0, 1, 64, grid=grid(1), stream=stream0) del arg1_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel class TokenLabelSoftTargetCrossEntropy(nn.Module): """ Token labeling dense loss with soft target, see more from token labeling input: x is output of model, target is ground truth return: loss """ def __init__(self): super(TokenLabelSoftTargetCrossEntropy, self).__init__() def forward(self, x, target): N_rep = x.shape[0] N = target.shape[0] if not N == N_rep: target = target.repeat(N_rep // N, 1) if len(target.shape) == 3 and target.shape[-1] == 2: target = target[:, :, 1] loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = -tmp0 tmp3 = tl_math.exp(tmp2) tmp5 = tl_math.exp(tmp4) tmp6 = tmp3 + tmp5 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp11 = tl_math.exp(tmp10) tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp1 * tmp14 tmp17 = -tmp16 tmp18 = tmp4 - tmp13 tmp19 = tmp17 * tmp18 tmp20 = tmp15 + tmp19 tmp22 = -tmp21 tmp23 = tmp7 - tmp13 tmp24 = tmp22 * tmp23 tmp25 = tmp20 + tmp24 tmp27 = -tmp26 tmp28 = tmp10 - tmp13 tmp29 = tmp27 * tmp28 tmp30 = tmp25 + tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp34 = 64.0 tmp35 = tmp33 / tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf3, arg1_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf0 return buf3, class TokenLabelSoftTargetCrossEntropyNew(nn.Module): """ Token labeling dense loss with soft target, see more from token labeling input: x is output of model, target is ground truth return: loss """ def __init__(self): super(TokenLabelSoftTargetCrossEntropyNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
QLSong/cv-classify
TokenLabelSoftTargetCrossEntropy
false
2,733
[ "Apache-2.0" ]
0
02f53d03868f299a08b5c97a266b50a7fdcd3f2b
https://github.com/QLSong/cv-classify/tree/02f53d03868f299a08b5c97a266b50a7fdcd3f2b
get_confidence
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lx/clx7iispm5cwdfjbr3qv475f4mtretd4uhfknhufmrffy7pszpnz.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/go/cgofqcgduqrtcjakfd7uk3wkcrpwsqxispluihwsstry6ekodk2u.py # Topologically Sorted Source Nodes: [x_out, sigmoid], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # x_out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 6, 6), (36, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 144, grid=grid(144), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_out, sigmoid], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.sparse class get_confidence(nn.Module): def __init__(self, num_in_layers, num_out_layers=1): super(get_confidence, self).__init__() self.conv1 = nn.Conv2d(num_in_layers, num_out_layers, kernel_size=3, stride=1) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): p = 1 p2d = p, p, p, p x_out = self.conv1(F.pad(x, p2d)) return self.sigmoid(x_out) def get_inputs(): return [torch.rand([4, 1, 4, 4])] def get_init_inputs(): return [[], {'num_in_layers': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch import torch.nn as nn import torch.sparse assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 6, 6), (36, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(144)](primals_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_sigmoid_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0, buf2 class get_confidenceNew(nn.Module): def __init__(self, num_in_layers, num_out_layers=1): super(get_confidenceNew, self).__init__() self.conv1 = nn.Conv2d(num_in_layers, num_out_layers, kernel_size=3, stride=1) self.sigmoid = torch.nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
PrendiProgramming/UprightNet
get_confidence
false
2,734
[ "MIT" ]
0
73a0677079e27a806b48bf9ede70b8377002b2f3
https://github.com/PrendiProgramming/UprightNet/tree/73a0677079e27a806b48bf9ede70b8377002b2f3
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/in/cin6bebkpfuweyzzgtljy26zh2yhrs7rpusw2jnlmszgn4jg27lx.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone, aten.transpose] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %permute_8 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%clone, [0, 2, 1]), kwargs = {}) triton_poi_fused_clone_transpose_0 = async_compile.triton('triton_poi_fused_clone_transpose_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_transpose_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + (4*x1) + (16*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wd/cwdechbtujfh3khensgj7m65ycmclcmrggkwsxpoa3is2n47bah4.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %view_1], 2), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oj/coje6ro7aly3k4hwvxmkcoxi6nwxzpg23gh2inoddo4imx7svkus.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # output_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_4 = async_compile.triton('triton_poi_fused_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6h/c6hrz6skegptbwysr7x2cgs54meeqjj4yiqej4kdtkfcybd253z5.py # Topologically Sorted Source Nodes: [attention_weights_2], Original ATen: [aten.mean] # Source node to ATen node mapping: # attention_weights_2 => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_3, [1]), kwargs = {}) triton_poi_fused_mean_5 = async_compile.triton('triton_poi_fused_mean_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf10 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone, aten.transpose] stream0 = get_raw_stream(0) triton_poi_fused_clone_transpose_0.run(primals_2, buf1, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous, attention_scores], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mix], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, buf0, buf6, 128, grid=grid(128), stream=stream0) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_4.run(buf8, 64, grid=grid(64), stream=stream0) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights_2], Original ATen: [aten.mean] triton_poi_fused_mean_5.run(buf4, buf9, 16, grid=grid(16), stream=stream0) del buf4 return (buf8, buf9, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), buf2, reinterpret_tensor(buf6, (16, 8), (8, 1), 0), buf8, primals_4, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Attention(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, query_dim, context_dim, attention_type='general'): super(Attention, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(query_dim, query_dim, bias=False) if query_dim != context_dim: self.linear_proj = nn.Linear(query_dim, context_dim, bias=False) self.linear_out = nn.Linear(context_dim * 2, context_dim, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, query, context): """ Args: query (:class:`torch.FloatTensor` [batch size, output length, dimensions]): Sequence of queries to query the context. context (:class:`torch.FloatTensor` [batch size, query length, dimensions]): Data overwhich to apply the attention mechanism. Returns: :class:`tuple` with `output` and `weights`: * **output** (:class:`torch.LongTensor` [batch size, output length, dimensions]): Tensor containing the attended features. * **weights** (:class:`torch.FloatTensor` [batch size, output length, query length]): Tensor containing attention weights. """ batch_size, output_len, query_dim = query.size() batch_size, query_len, context_dim = context.size() if self.attention_type == 'general': query = query.reshape(batch_size * output_len, query_dim) query = self.linear_in(query) query = query.reshape(batch_size, output_len, query_dim) if query_dim != context_dim: query = self.linear_proj(query) attention_scores = torch.bmm(query, context.transpose(1, 2). contiguous()) attention_scores = attention_scores.view(batch_size * output_len, query_len) attention_weights = self.softmax(attention_scores) attention_weights = attention_weights.view(batch_size, output_len, query_len) mix = torch.bmm(attention_weights, context) combined = torch.cat((mix, query), dim=2) combined = combined.view(batch_size * output_len, 2 * context_dim) output = self.linear_out(combined).view(batch_size, output_len, context_dim) output = self.tanh(output) attention_weights = attention_weights.mean(dim=1) return output, attention_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'query_dim': 4, 'context_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + 4 * x1 + 16 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf10 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_transpose_0[grid(16, 4)](primals_2, buf1, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0) del buf1 triton_poi_fused__softmax_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_3[grid(128)](buf5, buf0, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0) del buf5 extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0) del buf7 triton_poi_fused_tanh_4[grid(64)](buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mean_5[grid(16)](buf4, buf9, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 return buf8, buf9, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0 ), buf2, reinterpret_tensor(buf6, (16, 8), (8, 1), 0 ), buf8, primals_4, buf10 class AttentionNew(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, query_dim, context_dim, attention_type='general'): super(AttentionNew, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(query_dim, query_dim, bias=False) if query_dim != context_dim: self.linear_proj = nn.Linear(query_dim, context_dim, bias=False) self.linear_out = nn.Linear(context_dim * 2, context_dim, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, input_0, input_1): primals_3 = self.linear_in.weight primals_4 = self.linear_out.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
Prasath2001/commonsense-rl
Attention
false
2,735
[ "Apache-2.0" ]
0
ef3e83270d34cf211b2d2086120cccae0621477b
https://github.com/Prasath2001/commonsense-rl/tree/ef3e83270d34cf211b2d2086120cccae0621477b
Shifted_softplus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fk/cfkre7tbjeltmedfz7lb2anfxujrt4eo3nj6bes7djl54knc2yvv.py # Topologically Sorted Source Nodes: [softplus, node_feats], Original ATen: [aten.softplus, aten.sub] # Source node to ATen node mapping: # node_feats => sub # softplus => div, exp, gt, log1p, mul, where # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 20.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %div), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %arg1_1), kwargs = {}) triton_poi_fused_softplus_sub_0 = async_compile.triton('triton_poi_fused_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp9 = tl.load(in_ptr1 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = 20.0 tmp4 = tmp2 > tmp3 tmp5 = tl_math.exp(tmp2) tmp6 = libdevice.log1p(tmp5) tmp7 = tmp6 * tmp1 tmp8 = tl.where(tmp4, tmp0, tmp7) tmp11 = tmp8 - tmp10 tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, node_feats], Original ATen: [aten.softplus, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_softplus_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class Shifted_softplus(nn.Module): """ Performs a Shifter softplus loss, which modifies with a value of log(2) """ def __init__(self): super(Shifted_softplus, self).__init__() self.act = nn.Softplus() self.shift = nn.Parameter(torch.tensor([0.6931]), False) def forward(self, X): """ Applies the Activation function Parameters ---------- node_feats: torch.Tensor The node features. Returns ------- node_feats: torch.Tensor The updated node features. """ node_feats = self.act(X) - self.shift return node_feats def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp9 = tl.load(in_ptr1 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = 20.0 tmp4 = tmp2 > tmp3 tmp5 = tl_math.exp(tmp2) tmp6 = libdevice.log1p(tmp5) tmp7 = tmp6 * tmp1 tmp8 = tl.where(tmp4, tmp0, tmp7) tmp11 = tmp8 - tmp10 tl.store(out_ptr0 + x0, tmp11, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_softplus_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class Shifted_softplusNew(nn.Module): """ Performs a Shifter softplus loss, which modifies with a value of log(2) """ def __init__(self): super(Shifted_softplusNew, self).__init__() self.act = nn.Softplus() self.shift = nn.Parameter(torch.tensor([0.6931]), False) def forward(self, input_0): arg1_1 = self.shift arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
QMrpy/deepchem
Shifted_softplus
false
2,736
[ "MIT" ]
0
f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
https://github.com/QMrpy/deepchem/tree/f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
Downsample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_2, buf0, 16, 16, grid=grid(16, 16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 4, 4)) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 1, 1, 4), (4, 4, 4, 1), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class Downsample(nn.Module): """ Image to Patch Embedding, downsampling between stage1 and stage2 """ def __init__(self, in_embed_dim, out_embed_dim, patch_size): super().__init__() self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size= patch_size, stride=patch_size) def forward(self, x): x = x.permute(0, 3, 1, 2) x = self.proj(x) x = x.permute(0, 2, 3, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_embed_dim': 4, 'out_embed_dim': 4, 'patch_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 16)](primals_2, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 4, 4)) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 1, 1, 4), (4, 4, 4, 1), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0) class DownsampleNew(nn.Module): """ Image to Patch Embedding, downsampling between stage1 and stage2 """ def __init__(self, in_embed_dim, out_embed_dim, patch_size): super().__init__() self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size= patch_size, stride=patch_size) def forward(self, input_0): primals_1 = self.proj.weight primals_3 = self.proj.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
QLSong/cv-classify
Downsample
false
2,737
[ "Apache-2.0" ]
0
02f53d03868f299a08b5c97a266b50a7fdcd3f2b
https://github.com/QLSong/cv-classify/tree/02f53d03868f299a08b5c97a266b50a7fdcd3f2b
Custom_dropout
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/w3/cw37r57zplwba5pgsrchxcoapbb4gzt5meaqi2jt7d3cdzwgojtc.py # Topologically Sorted Source Nodes: [mask, mul], Original ATen: [aten.repeat, aten.mul] # Source node to ATen node mapping: # mask => repeat # mul => mul # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%view, [1, 4]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%repeat, %arg1_1), kwargs = {}) triton_poi_fused_mul_repeat_0 = async_compile.triton('triton_poi_fused_mul_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, ), (1, )) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mask, mul], Original ATen: [aten.repeat, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_repeat_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class Custom_dropout(nn.Module): """ An implementation for few , Given a task perform a rowise sum of 2-d matrix , you get a zero out the contribution of few of rows in the matrix Given, X a 2-d matrix consisting of row vectors (1-d) x1 , x2 ,..xn. Sum = x1 + 0.x2 + .. + 0.xi + .. +xn """ def __init__(self, dp_rate: 'float', n_permutation: 'int'): """ Parameters ---------- dp_rate: float p value of dropout. """ super(Custom_dropout, self).__init__() self.dropout = nn.Dropout(p=dp_rate) self.ones = nn.Parameter(torch.ones(n_permutation), requires_grad=False ) def forward(self, layer): """ Returns ------- node_feats: torch.Tensor Updated tensor. """ mask = self.dropout(self.ones).view(layer.shape[0], 1).repeat(1, layer.shape[1]) return mask * layer def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dp_rate': 0.5, 'n_permutation': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4,), (1,)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_repeat_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class Custom_dropoutNew(nn.Module): """ An implementation for few , Given a task perform a rowise sum of 2-d matrix , you get a zero out the contribution of few of rows in the matrix Given, X a 2-d matrix consisting of row vectors (1-d) x1 , x2 ,..xn. Sum = x1 + 0.x2 + .. + 0.xi + .. +xn """ def __init__(self, dp_rate: 'float', n_permutation: 'int'): """ Parameters ---------- dp_rate: float p value of dropout. """ super(Custom_dropoutNew, self).__init__() self.dropout = nn.Dropout(p=dp_rate) self.ones = nn.Parameter(torch.ones(n_permutation), requires_grad=False ) def forward(self, input_0): arg0_1 = self.ones arg1_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
QMrpy/deepchem
Custom_dropout
false
2,738
[ "MIT" ]
0
f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
https://github.com/QMrpy/deepchem/tree/f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
Atom_Wise_Convolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [node_feats_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # node_feats_1 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vn/cvnk354i6ugz6nckeqbdkwhdm372lrhj6gdqh2fio2ccs4vdjthr.py # Topologically Sorted Source Nodes: [node_feats_1, softplus, node_feats_2], Original ATen: [aten.native_layer_norm, aten.softplus, aten.sub] # Source node to ATen node mapping: # node_feats_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # node_feats_2 => sub_1 # softplus => div, exp, gt, log1p, mul_2, where # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_2,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_2, 20.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %div), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_softplus_sub_1 = async_compile.triton('triton_poi_fused_native_layer_norm_softplus_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_softplus_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_softplus_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr5 + (0)) tmp18 = tl.broadcast_to(tmp17, [XBLOCK]) tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = 20.0 tmp12 = tmp10 > tmp11 tmp13 = tl_math.exp(tmp10) tmp14 = libdevice.log1p(tmp13) tmp15 = tmp14 * tmp9 tmp16 = tl.where(tmp12, tmp8, tmp15) tmp19 = tmp16 - tmp18 tl.store(in_out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [node_feats], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [node_feats_1], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [node_feats_1, softplus, node_feats_2], Original ATen: [aten.native_layer_norm, aten.softplus, aten.sub] triton_poi_fused_native_layer_norm_softplus_sub_1.run(buf4, buf0, buf1, buf2, primals_4, primals_5, primals_6, 256, grid=grid(256), stream=stream0) del buf1 del buf2 del primals_6 return (buf4, primals_4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class Shifted_softplus(nn.Module): """ Performs a Shifter softplus loss, which modifies with a value of log(2) """ def __init__(self): super(Shifted_softplus, self).__init__() self.act = nn.Softplus() self.shift = nn.Parameter(torch.tensor([0.6931]), False) def forward(self, X): """ Applies the Activation function Parameters ---------- node_feats: torch.Tensor The node features. Returns ------- node_feats: torch.Tensor The updated node features. """ node_feats = self.act(X) - self.shift return node_feats class Atom_Wise_Convolution(nn.Module): """ Performs self convolution to each node """ def __init__(self, input_feature: 'int', output_feature: 'int', dropout: 'float'=0.2, UseBN: 'bool'=True): """ Parameters ---------- input_feature: int Size of input feature size output_feature: int Size of output feature size dropout: float, defult 0.2 p value for dropout between 0.0 to 1.0 UseBN: bool Setting it to True will perform Batch Normalisation """ super(Atom_Wise_Convolution, self).__init__() self.conv_weights = nn.Linear(input_feature, output_feature) self.batch_norm = nn.LayerNorm(output_feature) self.UseBN = UseBN self.activation = Shifted_softplus() self.dropout = nn.Dropout(p=dropout) def forward(self, node_feats): """ Update node representations. Parameters ---------- node_feats: torch.Tensor The node features. The shape is `(N, Node_feature_size)`. Returns ------- node_feats: torch.Tensor The updated node features. The shape is `(N, Node_feature_size)`. """ node_feats = self.conv_weights(node_feats) if self.UseBN: node_feats = self.batch_norm(node_feats) node_feats = self.activation(node_feats) node_feats = self.dropout(node_feats) return node_feats def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_feature': 4, 'output_feature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_softplus_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr5 + 0) tmp18 = tl.broadcast_to(tmp17, [XBLOCK]) tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = 20.0 tmp12 = tmp10 > tmp11 tmp13 = tl_math.exp(tmp10) tmp14 = libdevice.log1p(tmp13) tmp15 = tmp14 * tmp9 tmp16 = tl.where(tmp12, tmp8, tmp15) tmp19 = tmp16 - tmp18 tl.store(in_out_ptr0 + x2, tmp19, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3 del buf3 triton_poi_fused_native_layer_norm_softplus_sub_1[grid(256)](buf4, buf0, buf1, buf2, primals_4, primals_5, primals_6, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf1 del buf2 del primals_6 return buf4, primals_4, primals_5, reinterpret_tensor(primals_3, (64, 4 ), (4, 1), 0), buf0 class Shifted_softplus(nn.Module): """ Performs a Shifter softplus loss, which modifies with a value of log(2) """ def __init__(self): super(Shifted_softplus, self).__init__() self.act = nn.Softplus() self.shift = nn.Parameter(torch.tensor([0.6931]), False) def forward(self, X): """ Applies the Activation function Parameters ---------- node_feats: torch.Tensor The node features. Returns ------- node_feats: torch.Tensor The updated node features. """ node_feats = self.act(X) - self.shift return node_feats class Atom_Wise_ConvolutionNew(nn.Module): """ Performs self convolution to each node """ def __init__(self, input_feature: 'int', output_feature: 'int', dropout: 'float'=0.2, UseBN: 'bool'=True): """ Parameters ---------- input_feature: int Size of input feature size output_feature: int Size of output feature size dropout: float, defult 0.2 p value for dropout between 0.0 to 1.0 UseBN: bool Setting it to True will perform Batch Normalisation """ super(Atom_Wise_ConvolutionNew, self).__init__() self.conv_weights = nn.Linear(input_feature, output_feature) self.batch_norm = nn.LayerNorm(output_feature) self.UseBN = UseBN self.activation = Shifted_softplus() self.dropout = nn.Dropout(p=dropout) def forward(self, input_0): primals_1 = self.conv_weights.weight primals_2 = self.conv_weights.bias primals_4 = self.batch_norm.weight primals_5 = self.batch_norm.bias primals_6 = self.activation.shift primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
QMrpy/deepchem
Atom_Wise_Convolution
false
2,739
[ "MIT" ]
0
f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
https://github.com/QMrpy/deepchem/tree/f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
ScaleNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5i/c5iachkxsftg5m5zniolyz4aeojcm42muwsrb2a34ygecaxk5f47.py # Topologically Sorted Source Nodes: [norm, clamp, norm_1], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div] # Source node to ATen node mapping: # clamp => clamp_min # norm => pow_1, pow_2, sum_1 # norm_1 => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {}) triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = libdevice.sqrt(tmp12) tmp14 = 1e-05 tmp15 = triton_helpers.maximum(tmp13, tmp14) tmp16 = tmp1 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pq/cpqdtx3g3pyjzwakdnj54l47sm3lyvtzkr3iagg7am3bkbp6ommo.py # Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div, aten.mul] # Source node to ATen node mapping: # clamp => clamp_min # mul => mul # norm => pow_1, pow_2, sum_1 # norm_1 => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) triton_poi_fused_clamp_div_linalg_vector_norm_mul_1 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [norm, clamp, norm_1], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_linalg_vector_norm_0.run(primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div, aten.mul] triton_poi_fused_clamp_div_linalg_vector_norm_mul_1.run(primals_2, buf0, buf1, 256, grid=grid(256), stream=stream0) del buf0 return (buf1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.parallel class ScaleNorm(nn.Module): """Apply Scale Normalization to input. The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor. The norm value is calculated as `sqrt(scale) / matrix norm`. Finally, the result is returned as `input_tensor * norm value`. This layer can be used instead of LayerNorm when a scaled version of the norm is required. Instead of performing the scaling operation (`scale / norm`) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient. References ---------- .. [1] Lukasz Maziarka et al. "Molecule Attention Transformer" Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264 Examples -------- >>> from deepchem.models.torch_models.layers import ScaleNorm >>> scale = 0.35 >>> layer = ScaleNorm(scale) >>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]]) >>> output_tensor = layer(input_tensor) """ def __init__(self, scale: 'float', eps: 'float'=1e-05): """Initialize a ScaleNorm layer. Parameters ---------- scale: float Scale magnitude. eps: float Epsilon value. Default = 1e-5. """ super(ScaleNorm, self).__init__() self.scale = nn.Parameter(torch.tensor(math.sqrt(scale))) self.eps = eps def forward(self, x: 'torch.Tensor') ->torch.Tensor: norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min= self.eps) return x * norm def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = libdevice.sqrt(tmp12) tmp14 = 1e-05 tmp15 = triton_helpers.maximum(tmp13, tmp14) tmp16 = tmp1 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) @triton.jit def triton_poi_fused_clamp_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(64)](primals_1, primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clamp_div_linalg_vector_norm_mul_1[grid(256)]( primals_2, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 return buf1, primals_2 class ScaleNormNew(nn.Module): """Apply Scale Normalization to input. The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor. The norm value is calculated as `sqrt(scale) / matrix norm`. Finally, the result is returned as `input_tensor * norm value`. This layer can be used instead of LayerNorm when a scaled version of the norm is required. Instead of performing the scaling operation (`scale / norm`) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient. References ---------- .. [1] Lukasz Maziarka et al. "Molecule Attention Transformer" Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264 Examples -------- >>> from deepchem.models.torch_models.layers import ScaleNorm >>> scale = 0.35 >>> layer = ScaleNorm(scale) >>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]]) >>> output_tensor = layer(input_tensor) """ def __init__(self, scale: 'float', eps: 'float'=1e-05): """Initialize a ScaleNorm layer. Parameters ---------- scale: float Scale magnitude. eps: float Epsilon value. Default = 1e-5. """ super(ScaleNormNew, self).__init__() self.scale = nn.Parameter(torch.tensor(math.sqrt(scale))) self.eps = eps def forward(self, input_0): primals_1 = self.scale primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
QMrpy/deepchem
ScaleNorm
false
2,740
[ "MIT" ]
0
f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
https://github.com/QMrpy/deepchem/tree/f38a21c71e7bc4fd1fa59601be2b79ce7d744bd6
SqueezeExcitation
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [scale], Original ATen: [aten.mean] # Source node to ATen node mapping: # scale => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sh/cshbgrlhlsuuebcz7jbje66sr2nkeng6kilqpqluwrr5ru2afxle.py # Topologically Sorted Source Nodes: [scale_1, scale_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # scale_1 => convolution # scale_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py # Topologically Sorted Source Nodes: [scale_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # scale_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ut/cut3wldn42zewtwdtvhw65vnntg2jigl3im7qau2v3an7whhmutt.py # Topologically Sorted Source Nodes: [scale_4, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # scale_4 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (4, 8, 1, 1), (8, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [scale], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [scale_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 1, 1), (8, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [scale_1, scale_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 32, grid=grid(32), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [scale_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [scale_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [scale_4, mul], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_3.run(buf5, primals_1, buf6, 256, grid=grid(256), stream=stream0) return (buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel def _make_divisible(v: 'float', divisor: 'int', min_value: 'Optional[int]'=None ) ->int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class SqueezeExcitation(nn.Module): def __init__(self, input_channels: 'int', squeeze_factor: 'int'=4): super().__init__() squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8) self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1) def _scale(self, input: 'Tensor', inplace: 'bool') ->Tensor: scale = F.adaptive_avg_pool2d(input, 1) scale = self.fc1(scale) scale = self.relu(scale) scale = self.fc2(scale) return F.sigmoid(scale) def forward(self, input: 'Tensor') ->Tensor: scale = self._scale(input, True) return scale * input def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + x2, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (4, 8, 1, 1), (8, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 1, 1), (8, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(32)](buf3, primals_3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(16)](buf5, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_3[grid(256)](buf5, primals_1, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5 def _make_divisible(v: 'float', divisor: 'int', min_value: 'Optional[int]'=None ) ->int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class SqueezeExcitationNew(nn.Module): def __init__(self, input_channels: 'int', squeeze_factor: 'int'=4): super().__init__() squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8) self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1) def _scale(self, input: 'Tensor', inplace: 'bool') ->Tensor: scale = F.adaptive_avg_pool2d(input, 1) scale = self.fc1(scale) scale = self.relu(scale) scale = self.fc2(scale) return F.sigmoid(scale) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
QLSong/cv-classify
SqueezeExcitation
false
2,741
[ "Apache-2.0" ]
0
02f53d03868f299a08b5c97a266b50a7fdcd3f2b
https://github.com/QLSong/cv-classify/tree/02f53d03868f299a08b5c97a266b50a7fdcd3f2b
complex_relu_layer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4v/c4vvh3gdp7ao72pynrppqxrfxhxctxcdh4sebgh2gzu2qpcm53sb.py # Topologically Sorted Source Nodes: [ge, mask, real_1, img_1], Original ATen: [aten.ge, aten.mul] # Source node to ATen node mapping: # ge => ge # img_1 => mul_2 # mask => mul # real_1 => mul_1 # Graph fragment: # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%select_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%ge, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %select_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %select), kwargs = {}) triton_poi_fused_ge_mul_0 = async_compile.triton('triton_poi_fused_ge_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ge_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ge_mul_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp7 = tl.load(in_ptr0 + (64 + x0), xmask) tmp1 = 0.0 tmp2 = tmp0 >= tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 * tmp0 tmp8 = tmp5 * tmp7 tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ge, mask, real_1, img_1], Original ATen: [aten.ge, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_ge_mul_0.run(arg0_1, buf0, buf1, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class complex_relu_layer(nn.Module): def __init__(self): super(complex_relu_layer, self).__init__() def complex_relu(self, real, img): mask = 1.0 * (real >= 0) return mask * real, mask * img def forward(self, real, img=None): if img is None: img = real[1] real = real[0] real, img = self.complex_relu(real, img) return real, img def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_ge_mul_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp7 = tl.load(in_ptr0 + (64 + x0), xmask) tmp1 = 0.0 tmp2 = tmp0 >= tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 * tmp0 tmp8 = tmp5 * tmp7 tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_ge_mul_0[grid(64)](arg0_1, buf0, buf1, 64, XBLOCK= 64, num_warps=1, num_stages=1) del arg0_1 return buf0, buf1 class complex_relu_layerNew(nn.Module): def __init__(self): super(complex_relu_layerNew, self).__init__() def complex_relu(self, real, img): mask = 1.0 * (real >= 0) return mask * real, mask * img def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
RemyLau/SimpleMagNet
complex_relu_layer
false
2,742
[ "MIT" ]
0
ee3cc5fc9a7793d2e2cf5a4b635fb690bb5b988e
https://github.com/RemyLau/SimpleMagNet/tree/ee3cc5fc9a7793d2e2cf5a4b635fb690bb5b988e
UpSampleBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ff/cffhfyg22xbribwqqqct5kdcsfampxjsxm645cabtsik2vspgfca.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6 # Graph fragment: # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.5), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = x0 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 + tmp2 tmp16 = tmp15 * tmp2 tmp17 = tmp16 - tmp2 tmp18 = triton_helpers.maximum(tmp17, tmp6) tmp19 = tmp18.to(tl.int32) tmp20 = tmp19 + tmp9 tmp21 = triton_helpers.minimum(tmp20, tmp11) tmp22 = tl.load(in_ptr0 + (tmp21 + (4*tmp12) + (16*x2)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (tmp19 + (4*tmp12) + (16*x2)), xmask, eviction_policy='evict_last') tmp24 = tmp22 - tmp23 tmp25 = tmp19.to(tl.float32) tmp26 = tmp18 - tmp25 tmp27 = triton_helpers.maximum(tmp26, tmp6) tmp28 = 1.0 tmp29 = triton_helpers.minimum(tmp27, tmp28) tmp30 = tmp24 * tmp29 tmp31 = tmp23 + tmp30 tmp32 = tl.load(in_ptr0 + (tmp19 + (4*tmp8) + (16*x2)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp21 + (4*tmp8) + (16*x2)), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp29 tmp36 = tmp32 + tmp35 tmp37 = tmp31 - tmp36 tmp38 = tmp8.to(tl.float32) tmp39 = tmp7 - tmp38 tmp40 = triton_helpers.maximum(tmp39, tmp6) tmp41 = triton_helpers.minimum(tmp40, tmp28) tmp42 = tmp37 * tmp41 tmp43 = tmp36 + tmp42 tl.store(in_out_ptr0 + (x4), tmp43, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf2, arg0_1, 1024, grid=grid(1024), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class UpSampleBlock(nn.Module): def __init__(self, scale_factor=(2, 2), mode='bilinear', p=0.0): super(UpSampleBlock, self).__init__() self.upsample = nn.Upsample(scale_factor=scale_factor, mode=mode) if p: self.dropout = nn.Dropout(p) def forward(self, x): for module in self.children(): x = module(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0( in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = x0 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 + tmp2 tmp16 = tmp15 * tmp2 tmp17 = tmp16 - tmp2 tmp18 = triton_helpers.maximum(tmp17, tmp6) tmp19 = tmp18.to(tl.int32) tmp20 = tmp19 + tmp9 tmp21 = triton_helpers.minimum(tmp20, tmp11) tmp22 = tl.load(in_ptr0 + (tmp21 + 4 * tmp12 + 16 * x2), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (tmp19 + 4 * tmp12 + 16 * x2), xmask, eviction_policy='evict_last') tmp24 = tmp22 - tmp23 tmp25 = tmp19.to(tl.float32) tmp26 = tmp18 - tmp25 tmp27 = triton_helpers.maximum(tmp26, tmp6) tmp28 = 1.0 tmp29 = triton_helpers.minimum(tmp27, tmp28) tmp30 = tmp24 * tmp29 tmp31 = tmp23 + tmp30 tmp32 = tl.load(in_ptr0 + (tmp19 + 4 * tmp8 + 16 * x2), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp21 + 4 * tmp8 + 16 * x2), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp29 tmp36 = tmp32 + tmp35 tmp37 = tmp31 - tmp36 tmp38 = tmp8.to(tl.float32) tmp39 = tmp7 - tmp38 tmp40 = triton_helpers.maximum(tmp39, tmp6) tmp41 = triton_helpers.minimum(tmp40, tmp28) tmp42 = tmp37 * tmp41 tmp43 = tmp36 + tmp42 tl.store(in_out_ptr0 + x4, tmp43, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) buf1 = buf0 del buf0 buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (1024)](buf2, arg0_1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf2, class UpSampleBlockNew(nn.Module): def __init__(self, scale_factor=(2, 2), mode='bilinear', p=0.0): super(UpSampleBlockNew, self).__init__() self.upsample = nn.Upsample(scale_factor=scale_factor, mode=mode) if p: self.dropout = nn.Dropout(p) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Qinaty/input-aware-backdoor-attack-release
UpSampleBlock
false
2,743
[ "MIT" ]
0
ce897adf4a3ce0d2badbd2b53233561fee6c7db7
https://github.com/Qinaty/input-aware-backdoor-attack-release/tree/ce897adf4a3ce0d2badbd2b53233561fee6c7db7
GraphConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vg/cvgackp4gu33hqabol7ezxcsrxtvwoey7n7hsvngdnwtda7enfsr.py # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.zeros] # Source node to ATen node mapping: # y_1 => full # Graph fragment: # %full : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 16], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_0 = async_compile.triton('triton_poi_fused_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pu/cpuk3ivxfd5uot4vfqv32lo2lfmbbflxlacsfch7ifj6ctlef2mu.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone] # Source node to ATen node mapping: # y => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jr/cjrcgy5la2jymm74rbx27ki6wlwnimy73uum2qzun3l425xzayz4.py # Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.clone, aten._unsafe_view] # Source node to ATen node mapping: # y_3 => clone_1, view_2 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone_1, [16, 4]), kwargs = {}) triton_poi_fused__unsafe_view_clone_2 = async_compile.triton('triton_poi_fused__unsafe_view_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_view_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_view_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/p5/cp5gv3qbv2n7f2hbvpribl7y5hdydsezeejtan7a3jciesg75lhk.py # Topologically Sorted Source Nodes: [y_4], Original ATen: [aten.add] # Source node to ATen node mapping: # y_4 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_4), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.zeros] stream0 = get_raw_stream(0) triton_poi_fused_zeros_0.run(buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf1, 64, grid=grid(64), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten._sparse_addmm] buf2 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf0, (16, 4), (1, 16), 0), reinterpret_tensor(buf1, (16, 4), (1, 16), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), beta=0) del buf0 del primals_2 buf3 = buf2 del buf2 buf4 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.clone, aten._unsafe_view] triton_poi_fused__unsafe_view_clone_2.run(buf3, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.mm] extern_kernels.mm(buf4, primals_3, out=buf5) del primals_3 buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [y_4], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf6, primals_4, 64, grid=grid(64), stream=stream0) del primals_4 return (buf6, reinterpret_tensor(buf4, (4, 16), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class GraphConv(nn.Module): def __init__(self, input_dim, output_dim, add_self=False, normalize_embedding=False, dropout=0.0, bias=True): super(GraphConv, self).__init__() self.add_self = add_self self.dropout = dropout if dropout > 0.001: self.dropout_layer = nn.Dropout(p=dropout) self.normalize_embedding = normalize_embedding self.input_dim = input_dim self.output_dim = output_dim self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim)) if bias: self.bias = nn.Parameter(torch.FloatTensor(output_dim)) else: self.bias = None def forward(self, x, adj): if self.dropout > 0.001: x = self.dropout_layer(x) bsize, roinum, fnum = x.size() y = torch.transpose(x, 0, 1).reshape(roinum, -1) y = torch.sparse.mm(adj, y) y = torch.transpose(y.reshape(roinum, bsize, fnum), 0, 1) if self.add_self: y += x y = torch.matmul(y, self.weight) if self.bias is not None: y = y + self.bias if self.normalize_embedding: y = F.normalize(y, p=2, dim=2) return y def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused__unsafe_view_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32) get_raw_stream(0) triton_poi_fused_zeros_0[grid(64)](buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](primals_1, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf2 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf0, (16, 4), (1, 16), 0), reinterpret_tensor(buf1, (16, 4), (1, 16), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), beta=0) del buf0 del primals_2 buf3 = buf2 del buf2 buf4 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0) del buf1 triton_poi_fused__unsafe_view_clone_2[grid(16, 4)](buf3, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = buf3 del buf3 extern_kernels.mm(buf4, primals_3, out=buf5) del primals_3 buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0) del buf5 triton_poi_fused_add_3[grid(64)](buf6, primals_4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 return buf6, reinterpret_tensor(buf4, (4, 16), (1, 4), 0) class GraphConvNew(nn.Module): def __init__(self, input_dim, output_dim, add_self=False, normalize_embedding=False, dropout=0.0, bias=True): super(GraphConvNew, self).__init__() self.add_self = add_self self.dropout = dropout if dropout > 0.001: self.dropout_layer = nn.Dropout(p=dropout) self.normalize_embedding = normalize_embedding self.input_dim = input_dim self.output_dim = output_dim self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim)) if bias: self.bias = nn.Parameter(torch.FloatTensor(output_dim)) else: self.bias = None def forward(self, input_0, input_1): primals_2 = self.weight primals_4 = self.bias primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Qin-J/Multi-site-transfer-classification-of-major-depressive-disorder
GraphConv
false
2,744
[ "Apache-2.0" ]
0
f6af292388ec83a9851a2254f38e8d90adfe4e6c
https://github.com/Qin-J/Multi-site-transfer-classification-of-major-depressive-disorder/tree/f6af292388ec83a9851a2254f38e8d90adfe4e6c
ChanNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xc/cxccaea6m5natjlarhaiguykaufo3fs2d4lmmez7n342egyrrguk.py # Topologically Sorted Source Nodes: [var, mean, sub, add, sqrt, truediv, mul, add_1], Original ATen: [aten.var, aten.mean, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mul => mul # sqrt => sqrt # sub => sub # truediv => div # var => var # Graph fragment: # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp21 / tmp8 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp10 / tmp25 tmp28 = tmp26 * tmp27 tmp30 = tmp28 + tmp29 tl.store(out_ptr0 + (x3), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [var, mean, sub, add, sqrt, truediv, mul, add_1], Original ATen: [aten.var, aten.mean, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ChanNorm(nn.Module): def __init__(self, dim, eps=1e-05): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim=1, unbiased=False, keepdim=True) mean = torch.mean(x, dim=1, keepdim=True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp21 / tmp8 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp10 / tmp25 tmp28 = tmp26 * tmp27 tmp30 = tmp28 + tmp29 tl.store(out_ptr0 + x3, tmp30, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class ChanNormNew(nn.Module): def __init__(self, dim, eps=1e-05): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, input_0): primals_2 = self.g primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Rexiome/lightweight-gan
ChanNorm
false
2,745
[ "MIT" ]
0
4e5c18046fc105129c33995e0bffeb5f14963f4c
https://github.com/Rexiome/lightweight-gan/tree/4e5c18046fc105129c33995e0bffeb5f14963f4c
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vb/cvb6ty3ypvhvjbjz7tj6inshdyulmiwe543zdnbyccxcjglj4env.py # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add => add # x => gt, mul, where # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) triton_poi_fused_add_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_add_leaky_relu_0.run(buf1, primals_4, buf2, buf3, 16, grid=grid(16), stream=stream0) del primals_4 buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf3, primals_5, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.addmm(primals_6, primals_3, buf4, alpha=1, beta=1, out=buf5) del primals_6 buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf6, buf7, 16, grid=grid(16), stream=stream0) del buf6 return (buf7, buf2, buf7, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(buf3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.nn.modules.module import Module class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 This class is modified from https://github.com/tkipf/pygcn """ def __init__(self, in_features, out_features, bias=True, init='xavier'): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) if init == 'uniform': None self.reset_parameters_uniform() elif init == 'xavier': None self.reset_parameters_xavier() else: raise NotImplementedError def reset_parameters_uniform(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def reset_parameters_xavier(self): nn.init.xavier_normal_(self.weight.data, gain=0.02) if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCN(nn.Module): """ Graph Convolutional Network Class """ def __init__(self, n_feat, n_hid, n_class, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(n_feat, n_hid) self.gc2 = GraphConvolution(n_hid, n_class) self.dropout = dropout def forward(self, x, adj): x = F.leaky_relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_feat': 4, 'n_hid': 4, 'n_class': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import math import torch.nn as nn from torch.nn.parameter import Parameter from torch.nn.modules.module import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf3 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_leaky_relu_0[grid(16)](buf1, primals_4, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf4 = buf1 del buf1 extern_kernels.mm(buf3, primals_5, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_3, buf4, alpha=1, beta=1, out=buf5) del primals_6 buf6 = buf4 del buf4 triton_poi_fused__log_softmax_1[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__log_softmax_2[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf6 return buf7, buf2, buf7, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), reinterpret_tensor(buf3, (4, 4), (1, 4), 0), reinterpret_tensor( primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 This class is modified from https://github.com/tkipf/pygcn """ def __init__(self, in_features, out_features, bias=True, init='xavier'): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) if init == 'uniform': None self.reset_parameters_uniform() elif init == 'xavier': None self.reset_parameters_xavier() else: raise NotImplementedError def reset_parameters_uniform(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def reset_parameters_xavier(self): nn.init.xavier_normal_(self.weight.data, gain=0.02) if self.bias is not None: nn.init.constant_(self.bias.data, 0.0) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCNNew(nn.Module): """ Graph Convolutional Network Class """ def __init__(self, n_feat, n_hid, n_class, dropout): super(GCNNew, self).__init__() self.gc1 = GraphConvolution(n_feat, n_hid) self.gc2 = GraphConvolution(n_hid, n_class) self.dropout = dropout def forward(self, input_0, input_1): primals_1 = self.gc1.weight primals_4 = self.gc1.bias primals_2 = self.gc2.weight primals_6 = self.gc2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
QHwan/GCIceNet
GCN
false
2,746
[ "MIT" ]
0
5792f5fa7bd2989b54eddeae5c9f8fca3f004bb5
https://github.com/QHwan/GCIceNet/tree/5792f5fa7bd2989b54eddeae5c9f8fca3f004bb5
Noise
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zd/czd6aawbiozsgqkmo34wem4qctui4myzcthrzembv5p2bnbo25gz.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %randn), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [noise], Original ATen: [aten.randn] buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_1, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn def exists(val): return val is not None class Noise(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, x, noise=None): b, _, h, w, device = *x.shape, x.device if not exists(noise): noise = torch.randn(b, 1, h, w, device=device) return x + self.weight * noise def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], device=device( type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf2, buf1 def exists(val): return val is not None class NoiseNew(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Rexiome/lightweight-gan
Noise
false
2,747
[ "MIT" ]
0
4e5c18046fc105129c33995e0bffeb5f14963f4c
https://github.com/Rexiome/lightweight-gan/tree/4e5c18046fc105129c33995e0bffeb5f14963f4c
Decoder5
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5d/c5dw65h6nafj4s44sgiahjrq6lb3zgwonovnkpx75jkkuxpl34xg.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_1 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/js/cjsibzhf6ubyye7gfes254fjkkbrqi7tzoox57ltdxf6tnfl6hr4.py # Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d => convolution # pad_1 => _unsafe_index_3, _unsafe_index_4 # y => relu # y_1 => _unsafe_index_2 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 204800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 10) % 10 x0 = xindex % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 512 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/e2/ce2k4lym2nqhf3w5dsvz6zgxc3jsam7d572srar4v3rqbuyr34g6.py # Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_2 => _unsafe_index_5, _unsafe_index_6 # y_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 204800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 512 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7n/c7nyyvchtptp5rbqvks7cavg63gajcswx5tpkvypdmc7ocd2zaaz.py # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_6 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_12, mul_4, mul_5 # Graph fragment: # %iota_12 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_12, 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_4 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bs/cbspecvkmrhwtp6geje57vqvyhtdbzqxeh4bkirrauq3bdgepjtc.py # Topologically Sorted Source Nodes: [conv2d_4, y_5, y_6, pad_5], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # pad_5 => _unsafe_index_12, _unsafe_index_13 # y_5 => relu_4 # y_6 => _unsafe_index_11 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_11, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_13 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_12, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 18) % 18 x0 = xindex % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6j/c6jeyn2lxggjjpib4soswcyajwy6iz7gvwfskycudxoh6ks5elxb.py # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # pad_6 => _unsafe_index_14, _unsafe_index_15 # y_7 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uw/cuwhadke7ul24n6hzb5sal45fu4ro7spo5s7tl5x4bo5jl7gz66f.py # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_11 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_22, mul_8, mul_9 # Graph fragment: # %iota_22 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_22, 1), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h3/ch3jm3bt3vnato3q323q7wlnky2jb7vevymckrrxpv7cesdxjfra.py # Topologically Sorted Source Nodes: [conv2d_8, y_10, y_11, pad_9], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # pad_9 => _unsafe_index_21, _unsafe_index_22 # y_10 => relu_8 # y_11 => _unsafe_index_20 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %_unsafe_index_20 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_8, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) # %_unsafe_index_21 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_20, [None, None, %sub_37, None]), kwargs = {}) # %_unsafe_index_22 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_21, [None, None, None, %sub_37]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 34) % 34 x0 = xindex % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rh/crhey53viabe4hsp6ad6i2nee7q7zyv4njq6zse35tn7cpygnnbv.py # Topologically Sorted Source Nodes: [conv2d_9, y_12, pad_10], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # pad_10 => _unsafe_index_23, _unsafe_index_24 # y_12 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %_unsafe_index_23 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %sub_37, None]), kwargs = {}) # %_unsafe_index_24 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_23, [None, None, None, %sub_37]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_9 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bu/cbuvyw4fe3xbsdcjmotlovg3kxgvi3ofzc3qlcpjtkkuyytb22ws.py # Topologically Sorted Source Nodes: [y_14], Original ATen: [aten.arange] # Source node to ATen node mapping: # y_14 => iota_28 # Graph fragment: # %iota_28 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_10 = async_compile.triton('triton_poi_fused_arange_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_10(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fn/cfndjiv3tblgvnqtytlbgh4w5inf7gba2up5wfjsuaevqfszyxak.py # Topologically Sorted Source Nodes: [y_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # y_14 => add_12, add_13, convert_element_type_12, convert_element_type_13, mul_12, mul_13 # Graph fragment: # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_28, 1), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, 0), kwargs = {}) # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_12, torch.float32), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.0), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, 0.5), kwargs = {}) # %convert_element_type_13 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_13, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_11 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_11(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rm/crmkhdiqj6544wyexgor4rnkds7gglwjet2cygw3o64zawf6zh7h.py # Topologically Sorted Source Nodes: [conv2d_10, y_13, y_14, pad_11], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # pad_11 => _unsafe_index_26, _unsafe_index_27 # y_13 => relu_10 # y_14 => _unsafe_index_25 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_24, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) # %_unsafe_index_25 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_10, [None, None, %unsqueeze_3, %convert_element_type_13]), kwargs = {}) # %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_25, [None, None, %sub_45, None]), kwargs = {}) # %_unsafe_index_27 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, None, %sub_45]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 66) % 66 x0 = xindex % 66 x4 = (xindex // 4356) x2 = (xindex // 4356) % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (32*tmp4) + (1024*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3t/c3tabqt44sb4glrpzzppdivi6ri4ru3tms7yd2a263tjtky77sll.py # Topologically Sorted Source Nodes: [conv2d_11, y_15, pad_12], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # pad_12 => _unsafe_index_28, _unsafe_index_29 # y_15 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %_unsafe_index_28 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %sub_45, None]), kwargs = {}) # %_unsafe_index_29 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_28, [None, None, None, %sub_45]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_13 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x4 = (xindex // 4356) x2 = (xindex // 4356) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hj/chjcbonm35qr34aqr7sqin2sg4bqs4dgrohaygm5giempvas3jk6.py # Topologically Sorted Source Nodes: [conv2d_12, y_16], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # y_16 => relu_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_29, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_12,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_12, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cj/ccjccu7zc7ogdpljitls2hefhpl6qq2kpfnn26koefpxdfdv7teq.py # Topologically Sorted Source Nodes: [conv2d_11, y_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # y_15 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %le_19 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/at/catvmzd72emtja24agoetxsfbfoouankui4el2vao7ua26an3h5e.py # Topologically Sorted Source Nodes: [conv2d_10, y_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # y_13 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_24, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) # %le_38 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_10, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eu/ceu4vjwnu7t72daazfpt2wr6v3l3op2tzwyfbbm2wcynm5vjzmkk.py # Topologically Sorted Source Nodes: [conv2d_9, y_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # y_12 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %le_57 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g7/cg7u5oo3boouswvtbbyzyk3b6wbhd74gf7zcz66gyyh2akxdphhi.py # Topologically Sorted Source Nodes: [conv2d_8, y_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # y_10 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %le_76 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_8, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cl/ccl6rdg5ilfmge5dt7ngbjb3ox5h4bpvbi7ffnd7mckl4lruweqh.py # Topologically Sorted Source Nodes: [conv2d_7, y_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # y_9 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_95 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_19 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/m3/cm3chxnerwp2olw2trs5cfxyfg5jjej3imjwwln6dvqacawhinod.py # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # y_5 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_152 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_20 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ts/ctswyyscojlcdj3bvsxhx5ujnib7w6opid7m4lucqvluzcl3n5pv.py # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # y_4 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_8, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_171 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_21 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_21(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bb/cbbl3sfaozoe4jbyrqweizaizeix4urgms7ffifscr2veiod4gcu.py # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # y => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_228 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_22 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_7, (512, ), (1, )) assert_size_stride(primals_8, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (64, ), (1, )) assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_25, (64, ), (1, )) assert_size_stride(primals_26, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 73728, grid=grid(73728), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1)) buf2 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0) buf3 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 512, 8, 8), (32768, 64, 8, 1)) buf5 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 8, 8), (32768, 64, 8, 1)) buf7 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, y_3, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf6, primals_7, buf7, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 512, 8, 8), (32768, 64, 8, 1)) buf9 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, y_4, pad_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf8, primals_9, buf9, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1)) buf11 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_4.run(buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, y_5, y_6, pad_5], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5.run(buf11, buf10, primals_11, buf12, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 256, 16, 16), (65536, 256, 16, 1)) buf14 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf13, primals_13, buf14, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 256, 16, 16), (65536, 256, 16, 1)) buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, y_8, pad_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf15, primals_15, buf16, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 16, 16), (65536, 256, 16, 1)) buf18 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, y_9, pad_8], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf17, primals_17, buf18, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf20 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_7.run(buf20, 32, grid=grid(32), stream=stream0) buf21 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_8, y_10, y_11, pad_9], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8.run(buf20, buf19, primals_19, buf21, 591872, grid=grid(591872), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_9, y_12, pad_10], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_9.run(buf22, primals_21, buf23, 591872, grid=grid(591872), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf25 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_14], Original ATen: [aten.arange] triton_poi_fused_arange_10.run(buf25, 64, grid=grid(64), stream=stream0) buf26 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [y_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_11.run(buf26, 64, grid=grid(64), stream=stream0) buf27 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_10, y_13, y_14, pad_11], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12.run(buf26, buf24, primals_23, buf27, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf29 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_11, y_15, pad_12], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_13.run(buf28, primals_25, buf29, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf31 = buf30; del buf30 # reuse buf32 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_12, y_16], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_14.run(buf31, primals_27, buf32, 49152, grid=grid(49152), stream=stream0) del primals_27 buf33 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, y_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf28, primals_25, buf33, 1048576, grid=grid(1048576), stream=stream0) del buf28 del primals_25 buf34 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_10, y_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf24, primals_23, buf34, 262144, grid=grid(262144), stream=stream0) del buf24 del primals_23 buf35 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, y_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf22, primals_21, buf35, 524288, grid=grid(524288), stream=stream0) del buf22 del primals_21 buf36 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_8, y_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_18.run(buf19, primals_19, buf36, 131072, grid=grid(131072), stream=stream0) del buf19 del primals_19 buf37 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, y_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_19.run(buf17, primals_17, buf37, 262144, grid=grid(262144), stream=stream0) del buf17 del primals_17 buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_19.run(buf15, primals_15, buf38, 262144, grid=grid(262144), stream=stream0) del buf15 del primals_15 buf39 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, y_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_19.run(buf13, primals_13, buf39, 262144, grid=grid(262144), stream=stream0) del buf13 del primals_13 buf40 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_20.run(buf10, primals_11, buf40, 65536, grid=grid(65536), stream=stream0) del buf10 del primals_11 buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_21.run(buf8, primals_9, buf41, 131072, grid=grid(131072), stream=stream0) del buf8 del primals_9 buf42 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_21.run(buf6, primals_7, buf42, 131072, grid=grid(131072), stream=stream0) del buf6 del primals_7 buf43 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_21.run(buf4, primals_5, buf43, 131072, grid=grid(131072), stream=stream0) del buf4 del primals_5 buf44 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_22.run(buf1, primals_3, buf44, 32768, grid=grid(32768), stream=stream0) del buf1 del primals_3 return (buf31, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf18, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf32, buf33, buf34, buf35, buf36, buf37, buf38, buf39, buf40, buf41, buf42, buf43, buf44, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder5(nn.Module): def __init__(self, model=None, fixed=False): super(Decoder5, self).__init__() self.fixed = fixed self.conv51 = nn.Conv2d(512, 512, 3, 1, 0) self.conv44 = nn.Conv2d(512, 512, 3, 1, 0) self.conv43 = nn.Conv2d(512, 512, 3, 1, 0) self.conv42 = nn.Conv2d(512, 512, 3, 1, 0) self.conv41 = nn.Conv2d(512, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv31 = nn.Conv2d(256, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv21 = nn.Conv2d(128, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv11 = nn.Conv2d(64, 3, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: assert os.path.splitext(model)[1] in {'.t7', '.pth'} if model.endswith('.t7'): t7_model = load_lua(model) load_param(t7_model, 1, self.conv51) load_param(t7_model, 5, self.conv44) load_param(t7_model, 8, self.conv43) load_param(t7_model, 11, self.conv42) load_param(t7_model, 14, self.conv41) load_param(t7_model, 18, self.conv34) load_param(t7_model, 21, self.conv33) load_param(t7_model, 24, self.conv32) load_param(t7_model, 27, self.conv31) load_param(t7_model, 31, self.conv22) load_param(t7_model, 34, self.conv21) load_param(t7_model, 38, self.conv12) load_param(t7_model, 41, self.conv11) None torch.save(self.state_dict(), os.path.splitext(model)[0] + '.pth') None else: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input): y = self.relu(self.conv51(self.pad(input))) y = self.unpool(y) y = self.relu(self.conv44(self.pad(y))) y = self.relu(self.conv43(self.pad(y))) y = self.relu(self.conv42(self.pad(y))) y = self.relu(self.conv41(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv34(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.relu(self.conv11(self.pad(y))) return y def get_inputs(): return [torch.rand([4, 512, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 10 % 10 x0 = xindex % 10 x4 = xindex // 100 x2 = xindex // 100 % 512 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1 ))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0 ))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 512 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 18 % 18 x0 = xindex % 18 x4 = xindex // 324 x2 = xindex // 324 % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 34 % 34 x0 = xindex % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused_arange_10(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_11(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12(in_ptr0 , in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 66 % 66 x0 = xindex % 66 x4 = xindex // 4356 x2 = xindex // 4356 % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 32 * tmp4 + 1024 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x4 = xindex // 4356 x2 = xindex // 4356 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_21(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_7, (512,), (1,)) assert_size_stride(primals_8, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (64,), (1,)) assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_25, (64,), (1,)) assert_size_stride(primals_26, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch. float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(73728)](primals_1, buf0, 73728, XBLOCK=1024, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1)) buf2 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK =8, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid (204800)](buf2, buf1, primals_3, buf3, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 512, 8, 8), (32768, 64, 8, 1)) buf5 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf4 , primals_5, buf5, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 8, 8), (32768, 64, 8, 1)) buf7 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf6 , primals_7, buf7, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 512, 8, 8), (32768, 64, 8, 1)) buf9 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf8 , primals_9, buf9, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1)) buf11 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_4[grid(16)](buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5[grid (331776)](buf11, buf10, primals_11, buf12, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 256, 16, 16), (65536, 256, 16, 1)) buf14 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)]( buf13, primals_13, buf14, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 256, 16, 16), (65536, 256, 16, 1)) buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)]( buf15, primals_15, buf16, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 16, 16), (65536, 256, 16, 1)) buf18 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)]( buf17, primals_17, buf18, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf18, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf20 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_7[grid(32)](buf20, 32, XBLOCK=32, num_warps=1, num_stages=1) buf21 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8[grid (591872)](buf20, buf19, primals_19, buf21, 591872, XBLOCK=1024, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_9[grid(591872)]( buf22, primals_21, buf23, 591872, XBLOCK=512, num_warps=8, num_stages=1) buf24 = extern_kernels.convolution(buf23, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf25 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_arange_10[grid(64)](buf25, 64, XBLOCK=64, num_warps=1, num_stages=1) buf26 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_11[grid(64)](buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) buf27 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12[ grid(1115136)](buf26, buf24, primals_23, buf27, 1115136, XBLOCK =1024, num_warps=4, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf29 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_13[grid(1115136)]( buf28, primals_25, buf29, 1115136, XBLOCK=1024, num_warps=4, num_stages=1) buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf31 = buf30 del buf30 buf32 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_14[grid(49152)]( buf31, primals_27, buf32, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 buf33 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(1048576)]( buf28, primals_25, buf33, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf28 del primals_25 buf34 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(262144)]( buf24, primals_23, buf34, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf24 del primals_23 buf35 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(524288)]( buf22, primals_21, buf35, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf22 del primals_21 buf36 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_18[grid(131072)]( buf19, primals_19, buf36, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf19 del primals_19 buf37 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)]( buf17, primals_17, buf37, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf17 del primals_17 buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)]( buf15, primals_15, buf38, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf15 del primals_15 buf39 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)]( buf13, primals_13, buf39, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf13 del primals_13 buf40 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_20[grid(65536)]( buf10, primals_11, buf40, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf10 del primals_11 buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)]( buf8, primals_9, buf41, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf8 del primals_9 buf42 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)]( buf6, primals_7, buf42, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf6 del primals_7 buf43 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)]( buf4, primals_5, buf43, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf4 del primals_5 buf44 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_22[grid(32768)]( buf1, primals_3, buf44, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_3 return (buf31, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf18, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf32, buf33, buf34, buf35, buf36, buf37, buf38, buf39, buf40, buf41, buf42, buf43, buf44) class Decoder5New(nn.Module): def __init__(self, model=None, fixed=False): super(Decoder5New, self).__init__() self.fixed = fixed self.conv51 = nn.Conv2d(512, 512, 3, 1, 0) self.conv44 = nn.Conv2d(512, 512, 3, 1, 0) self.conv43 = nn.Conv2d(512, 512, 3, 1, 0) self.conv42 = nn.Conv2d(512, 512, 3, 1, 0) self.conv41 = nn.Conv2d(512, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv31 = nn.Conv2d(256, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv21 = nn.Conv2d(128, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv11 = nn.Conv2d(64, 3, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: assert os.path.splitext(model)[1] in {'.t7', '.pth'} if model.endswith('.t7'): t7_model = load_lua(model) load_param(t7_model, 1, self.conv51) load_param(t7_model, 5, self.conv44) load_param(t7_model, 8, self.conv43) load_param(t7_model, 11, self.conv42) load_param(t7_model, 14, self.conv41) load_param(t7_model, 18, self.conv34) load_param(t7_model, 21, self.conv33) load_param(t7_model, 24, self.conv32) load_param(t7_model, 27, self.conv31) load_param(t7_model, 31, self.conv22) load_param(t7_model, 34, self.conv21) load_param(t7_model, 38, self.conv12) load_param(t7_model, 41, self.conv11) None torch.save(self.state_dict(), os.path.splitext(model)[0] + '.pth') None else: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input_0): primals_2 = self.conv51.weight primals_3 = self.conv51.bias primals_4 = self.conv44.weight primals_5 = self.conv44.bias primals_6 = self.conv43.weight primals_7 = self.conv43.bias primals_8 = self.conv42.weight primals_9 = self.conv42.bias primals_10 = self.conv41.weight primals_11 = self.conv41.bias primals_12 = self.conv34.weight primals_13 = self.conv34.bias primals_14 = self.conv33.weight primals_15 = self.conv33.bias primals_16 = self.conv32.weight primals_17 = self.conv32.bias primals_18 = self.conv31.weight primals_19 = self.conv31.bias primals_20 = self.conv22.weight primals_21 = self.conv22.bias primals_22 = self.conv21.weight primals_23 = self.conv21.bias primals_24 = self.conv12.weight primals_25 = self.conv12.bias primals_26 = self.conv11.weight primals_27 = self.conv11.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
MingSun-Tse/pytorch-AdaIN
Decoder5
false
2,748
[ "MIT" ]
0
02ae320345232983c754ea233613aedc21e4d348
https://github.com/MingSun-Tse/pytorch-AdaIN/tree/02ae320345232983c754ea233613aedc21e4d348
PatchEmbed
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nl/cnlokrj2wjyrgg7wfimnkgyoc67ges2kinndxwhgqm3b33ayddof.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 24576 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (64*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (4096*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nq/cnqioqtc5smqmnt22pzdujcgch6iuo4ayzdajy2hr5awqxgsqhdm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l6/cl6ocqksyk3wleegoip6f6dl6yzvtddsatt22zjqsevei4dpu6kx.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [8, 8], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1536 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 384 y1 = (yindex // 384) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (384*x2) + (24576*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (64*y3)), tmp2, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (384, 64, 8, 8), (4096, 64, 8, 1)) assert_size_stride(primals_2, (384, ), (1, )) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((384, 64, 8, 8), (4096, 1, 512, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 24576, 64, grid=grid(24576, 64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 256, 4096, grid=grid(256, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, buf0, stride=(8, 8), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 384, 8, 8), (24576, 1, 3072, 384)) buf3 = empty_strided_cuda((4, 384, 8, 8), (24576, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf2, primals_2, buf3, 1536, 64, grid=grid(1536, 64), stream=stream0) del buf2 del primals_2 return (buf3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((384, 64, 8, 8), (4096, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class PatchEmbed(nn.Module): """ Image to Patch Embedding. Different with ViT use 1 conv layer, we use 4 conv layers to do patch embedding """ def __init__(self, img_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384): super().__init__() assert patch_size in [4, 8, 16] self.stem_conv = stem_conv if stem_conv: self.conv = nn.Sequential(nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn. Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU (inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), nn. BatchNorm2d(hidden_dim), nn.ReLU(inplace=True)) self.proj = nn.Conv2d(hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride) self.num_patches = img_size // patch_size * (img_size // patch_size) def forward(self, x): if self.stem_conv: x = self.conv(x) x = self.proj(x) return x def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 64 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 4096 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 1536 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 384 y1 = yindex // 384 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 384 * x2 + 24576 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 64 * y3), tmp2, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (384, 64, 8, 8), (4096, 64, 8, 1)) assert_size_stride(primals_2, (384,), (1,)) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((384, 64, 8, 8), (4096, 1, 512, 64), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(24576, 64)](primals_1, buf0, 24576, 64, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused_1[grid(256, 4096)](primals_3, buf1, 256, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, buf0, stride=(8, 8), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 384, 8, 8), (24576, 1, 3072, 384)) buf3 = empty_strided_cuda((4, 384, 8, 8), (24576, 64, 8, 1), torch. float32) triton_poi_fused_convolution_2[grid(1536, 64)](buf2, primals_2, buf3, 1536, 64, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del buf2 del primals_2 return buf3, buf0, buf1 class PatchEmbedNew(nn.Module): """ Image to Patch Embedding. Different with ViT use 1 conv layer, we use 4 conv layers to do patch embedding """ def __init__(self, img_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384): super().__init__() assert patch_size in [4, 8, 16] self.stem_conv = stem_conv if stem_conv: self.conv = nn.Sequential(nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn. Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU (inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), nn. BatchNorm2d(hidden_dim), nn.ReLU(inplace=True)) self.proj = nn.Conv2d(hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride) self.num_patches = img_size // patch_size * (img_size // patch_size) def forward(self, input_0): primals_1 = self.proj.weight primals_2 = self.proj.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
QLSong/cv-classify
PatchEmbed
false
2,749
[ "Apache-2.0" ]
0
02f53d03868f299a08b5c97a266b50a7fdcd3f2b
https://github.com/QLSong/cv-classify/tree/02f53d03868f299a08b5c97a266b50a7fdcd3f2b
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cg/ccgtkhvdp3a6glg6b5mu3lxdeneo4kivmkphkbwhh3vjc2sj55z6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1616 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 404 x1 = (xindex // 404) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 400, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((400*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 404, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-400) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h6/ch6kkdnmda5jlqknka6bgvagc6blocikw7guocvqctfwov7ziyw7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 300 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mb/cmbi6bksf7zib3bnzcishhfmrsdkxmfjipgzj6yptuux5vnh4rnq.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # xs => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (300, 404), (404, 1)) assert_size_stride(primals_6, (300, ), (1, )) assert_size_stride(primals_7, (1, 300), (300, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 404), (404, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 1616, grid=grid(1616), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (404, 300), (1, 404), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_6, 1200, grid=grid(1200), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 400), (400, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf6, 1600, grid=grid(1600), stream=stream0) del buf0 del primals_2 return (buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, 404), (404, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=400, fc2_units=300): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1616 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 404 x1 = xindex // 404 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 400, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (400 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 404, tl.int64) tmp15 = tl.load(in_ptr2 + (4 * x1 + (-400 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 300 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (300, 404), (404, 1)) assert_size_stride(primals_6, (300,), (1,)) assert_size_stride(primals_7, (1, 300), (300, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 404), (404, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1616)](buf0, primals_2, primals_4, buf1, 1616, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 300), (300, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (404, 300), ( 1, 404), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(1200)](buf3, primals_6, 1200, XBLOCK= 128, num_warps=4, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 400), (400, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(1600)](buf0, primals_2, buf6, 1600, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=400, fc2_units=300): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(CriticNew, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fcs1.weight primals_2 = self.fcs1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Odiurd/deep-reinforcement-learning-continuous-control
Critic
false
2,750
[ "MIT" ]
0
b1fb17ceab8cf23200dbdada21ba2ab0e33aa1a2
https://github.com/Odiurd/deep-reinforcement-learning-continuous-control/tree/b1fb17ceab8cf23200dbdada21ba2ab0e33aa1a2
ClassBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nd/cnduix6bb25yait76qubu4kscpuuqgdjho4akakbftxdxfjk22sq.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul_2 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 1.0), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pv/cpv6g6dt6f7msvucmcrc26zgrlaxjgt5zc6kwpr5mihfw74rzgie.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nf/cnfvgv7fl5fxfux2fx6tk4wyhotz7e4dwak6fiftx64krem2ghzu.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_8, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_8, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v4/cv4e3wcdbq2lwkae5nllm22yhwu47csha53tvsopwfe4ocz7y7za.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/r7/cr7ty4tjerjmt2jzzds3zygahuuyu7pruvrdf3l24r7in4q3onb6.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_6 = async_compile.triton('triton_poi_fused_clone_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6e/c6ekwe5icna2tsnomgs5rfhu2sx7na25yiqu7ax5nqigfofjj7bo.py # Topologically Sorted Source Nodes: [cls_embed_4, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # cls_embed_4 => add_2 # layer_norm_1 => var_mean_1 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %view_14), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jj/cjjjfeb5wt3mjvuwegwatszf5en2i3usszbc7g43ldz6t3e3i4tr.py # Topologically Sorted Source Nodes: [cls_embed_4, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # cls_embed_4 => add_2 # layer_norm_1 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %view_14), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_8 = async_compile.triton('triton_poi_fused_add_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dp/cdplbbjhtn7wjfs5zbdr7dqzrhv6sxravwmmbhqyrtfejnoccqhe.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu] # Source node to ATen node mapping: # x_1 => add_5, erf, mul_5, mul_6, mul_7 # Graph fragment: # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_16, 0.5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_16, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_6,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %add_5), kwargs = {}) triton_poi_fused_gelu_9 = async_compile.triton('triton_poi_fused_gelu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ab/cabfotqxy4plf3cupvtnhdgyc2uvlfuld237hf2rmjcct4dzpbxx.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_6, %slice_7], 1), kwargs = {}) triton_poi_fused_cat_10 = async_compile.triton('triton_poi_fused_cat_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 4, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr0 + (4 + x0 + (4*((-1) + x1)) + (16*x2)), tmp14 & xmask, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (16, 4), (4, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, grid=grid(64), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (4, 4), (16, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf5, 16, grid=grid(16), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf3, buf6, 16, 4, grid=grid(16, 4), stream=stream0) buf7 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 1), (1, 0, 0), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_6.run(buf3, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del buf3 buf11 = reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cls_embed_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf14 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [cls_embed_4, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0) buf15 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cls_embed_4, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_8.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf15, (4, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf16) del primals_11 buf17 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu] triton_poi_fused_gelu_9.run(buf16, buf17, 64, grid=grid(64), stream=stream0) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf17, (4, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf18) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_10.run(primals_1, buf12, buf18, primals_13, buf19, 64, grid=grid(64), stream=stream0) del buf18 del primals_13 return (buf19, primals_1, primals_8, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (16, 1), 0), buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, reinterpret_tensor(buf15, (4, 4), (4, 1), 0), buf16, reinterpret_tensor(buf17, (4, 16), (16, 1), 0), primals_12, primals_10, primals_6, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 4), 0), primals_5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class Mlp(nn.Module): """Implementation of MLP""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ClassAttention(nn.Module): """ Class attention layer from CaiT, see details in CaiT Class attention is the post stage in our VOLO, which is optional. """ def __init__(self, dim, num_heads=8, head_dim=None, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads if head_dim is not None: self.head_dim = head_dim else: head_dim = dim // num_heads self.head_dim = head_dim self.scale = qk_scale or head_dim ** -0.5 self.kv = nn.Linear(dim, self.head_dim * self.num_heads * 2, bias= qkv_bias) self.q = nn.Linear(dim, self.head_dim * self.num_heads, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(self.head_dim * self.num_heads, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, _C = x.shape kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim ).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) attn = q * self.scale @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, self.head_dim * self.num_heads) cls_embed = self.proj(cls_embed) cls_embed = self.proj_drop(cls_embed) return cls_embed class ClassBlock(nn.Module): """ Class attention block from CaiT, see details in CaiT We use two-layers class attention in our VOLO, which is optional. """ def __init__(self, dim, num_heads, head_dim=None, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path= 0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = ClassAttention(dim, num_heads=num_heads, head_dim= head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop= attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): cls_embed = x[:, :1] cls_embed = cls_embed + self.drop_path(self.attn(self.norm1(x))) cls_embed = cls_embed + self.drop_path(self.mlp(self.norm2(cls_embed))) return torch.cat([cls_embed, x[:, 1:]], dim=1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_cat_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp17 = tl.load(in_ptr0 + (4 + x0 + 4 * (-1 + x1) + 16 * x2), tmp14 & xmask, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (16, 4), (4, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0) del buf1 extern_kernels.mm(reinterpret_tensor(buf2, (4, 4), (16, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf4 triton_poi_fused_mul_2[grid(16)](buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf3, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 1), (1, 0, 0), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) triton_poi_fused__softmax_4[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf7 triton_poi_fused__softmax_5[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_6[grid(16, 4)](buf3, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf3 buf11 = reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0) del buf0 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf14 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(4)](primals_1, buf12, buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_8[grid(16)](primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf15, (4, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf16) del primals_11 buf17 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) triton_poi_fused_gelu_9[grid(64)](buf16, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf17, (4, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf18) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_10[grid(64)](primals_1, buf12, buf18, primals_13, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf18 del primals_13 return buf19, primals_1, primals_8, reinterpret_tensor(buf2, (16, 4), ( 4, 1), 0), reinterpret_tensor(buf2, (4, 4), (16, 1), 0 ), buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0 ), buf12, reinterpret_tensor(buf15, (4, 4), (4, 1), 0 ), buf16, reinterpret_tensor(buf17, (4, 16), (16, 1), 0 ), primals_12, primals_10, primals_6, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 1), (1, 1, 1), 0 ), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 4), 0 ), primals_5, primals_4 class Mlp(nn.Module): """Implementation of MLP""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ClassAttention(nn.Module): """ Class attention layer from CaiT, see details in CaiT Class attention is the post stage in our VOLO, which is optional. """ def __init__(self, dim, num_heads=8, head_dim=None, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads if head_dim is not None: self.head_dim = head_dim else: head_dim = dim // num_heads self.head_dim = head_dim self.scale = qk_scale or head_dim ** -0.5 self.kv = nn.Linear(dim, self.head_dim * self.num_heads * 2, bias= qkv_bias) self.q = nn.Linear(dim, self.head_dim * self.num_heads, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(self.head_dim * self.num_heads, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, _C = x.shape kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim ).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) attn = q * self.scale @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, self.head_dim * self.num_heads) cls_embed = self.proj(cls_embed) cls_embed = self.proj_drop(cls_embed) return cls_embed class ClassBlockNew(nn.Module): """ Class attention block from CaiT, see details in CaiT We use two-layers class attention in our VOLO, which is optional. """ def __init__(self, dim, num_heads, head_dim=None, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path= 0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = ClassAttention(dim, num_heads=num_heads, head_dim= head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop= attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, input_0): primals_2 = self.norm1.weight primals_3 = self.norm1.bias primals_4 = self.attn.kv.weight primals_5 = self.attn.q.weight primals_6 = self.attn.proj.weight primals_7 = self.attn.proj.bias primals_8 = self.norm2.weight primals_9 = self.norm2.bias primals_10 = self.mlp.fc1.weight primals_11 = self.mlp.fc1.bias primals_12 = self.mlp.fc2.weight primals_13 = self.mlp.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
QLSong/cv-classify
ClassBlock
false
2,751
[ "Apache-2.0" ]
0
02f53d03868f299a08b5c97a266b50a7fdcd3f2b
https://github.com/QLSong/cv-classify/tree/02f53d03868f299a08b5c97a266b50a7fdcd3f2b
CrossModalAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cm/ccmcgo4hhocf76otuns232vkfdobmiyhbrbzce7zxp7kc5eree6u.py # Topologically Sorted Source Nodes: [sa_value], Original ATen: [aten.repeat] # Source node to ATen node mapping: # sa_value => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bz/cbzczc7237umhp36tstb4xevhvblb6tslkks57rru4omk3gytbze.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x2 % 4), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lc/clc6qc6q57vscjt6xptfqnhjvnfsnxc5d6kouoflkvjdpfd7zuu3.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sa_value], Original ATen: [aten.repeat] stream0 = get_raw_stream(0) triton_poi_fused_repeat_0.run(primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_2 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf3) buf4 = reinterpret_tensor(buf0, (16, 4, 1), (1, 16, 64), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf5) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf8, buf9, 4, 16, grid=grid(4, 16), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_7 return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf4, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class CrossModalAttention(nn.Module): def __init__(self, emb_dim, num_heads, num_latents): super().__init__() self.value = nn.Parameter(torch.randn(num_latents, emb_dim)) self.attention = nn.MultiheadAttention(emb_dim, num_heads) def forward(self, key, query): batch_size = key.shape[0] sa_value = self.value.unsqueeze(0).repeat(batch_size, 1, 1) attn_output, _attn_output_weights = self.attention(query, key, sa_value ) return attn_output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'emb_dim': 4, 'num_heads': 4, 'num_latents': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2 % 4, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_repeat_0[grid(64)](primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf3) buf4 = reinterpret_tensor(buf0, (16, 4, 1), (1, 16, 64), 0) del buf0 triton_poi_fused_mul_1[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf5) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf7, reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(4, 16)](buf8, buf9, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_7 return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf2, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0 ), primals_6, reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf4, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0 ), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32) class CrossModalAttentionNew(nn.Module): def __init__(self, emb_dim, num_heads, num_latents): super().__init__() self.value = nn.Parameter(torch.randn(num_latents, emb_dim)) self.attention = nn.MultiheadAttention(emb_dim, num_heads) def forward(self, input_0, input_1): primals_2 = self.value primals_4 = self.attention.in_proj_weight primals_5 = self.attention.in_proj_bias primals_6 = self.attention.out_proj.weight primals_7 = self.attention.out_proj.bias primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
QuintinPope/FASTA_Perceiver
CrossModalAttention
false
2,752
[ "Apache-2.0" ]
0
ad3a8e2333a1dec9b34ae024cb2faf38c6ea284a
https://github.com/QuintinPope/FASTA_Perceiver/tree/ad3a8e2333a1dec9b34ae024cb2faf38c6ea284a
Skew
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6a/c6a7ou3ldhyerawwqehjcplmhorakdbwudhevqghjxk4dg3biakj.py # Topologically Sorted Source Nodes: [A, sub], Original ATen: [aten.triu, aten.sub] # Source node to ATen node mapping: # A => full_default, ge, sub, where # sub => sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sub, 1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge, %arg0_1, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_sub_triu_0 = async_compile.triton('triton_poi_fused_sub_triu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_triu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = (yindex // 4) tmp3 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + ((-1)*y0) tmp1 = tl.full([1, 1], 1, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + ((-1)*x2) tmp7 = tmp6 >= tmp1 tmp9 = tl.where(tmp7, tmp8, tmp4) tmp10 = tmp5 - tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [A, sub], Original ATen: [aten.triu, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_triu_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class Skew(nn.Module): def forward(self, X): A = X.triu(1) return A - A.transpose(-1, -2) def right_inverse(self, A): return A.triu(1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], 1, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tmp6 >= tmp1 tmp9 = tl.where(tmp7, tmp8, tmp4) tmp10 = tmp5 - tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_triu_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class SkewNew(nn.Module): def right_inverse(self, A): return A.triu(1) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
MartinRenaudin/tutorials
Skew
false
2,753
[ "BSD-3-Clause" ]
0
035d6827d77c52fed2a927f105e39fd73516f093
https://github.com/MartinRenaudin/tutorials/tree/035d6827d77c52fed2a927f105e39fd73516f093
TokenEmbedding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/wi/cwibqvrnbfx7xhnfzzckhfwxbmmaeepyx4l2irzdxw23feqjr3lp.py # Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # long => convert_element_type # Graph fragment: # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%primals_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.int64) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ia/ciafxdq32uqzkpbws275y3bp3mee3juggqv7sqnd2mxb3zrxr2oq.py # Topologically Sorted Source Nodes: [embedding, mul], Original ATen: [aten.embedding, aten.mul] # Source node to ATen node mapping: # embedding => embedding # mul => mul # Graph fragment: # %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %convert_element_type), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%embedding, 2.0), kwargs = {}) triton_poi_fused_embedding_mul_1 = async_compile.triton('triton_poi_fused_embedding_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_embedding_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tmp7 = 2.0 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [embedding, mul], Original ATen: [aten.embedding, aten.mul] triton_poi_fused_embedding_mul_1.run(buf0, primals_2, buf1, 1024, grid=grid(1024), stream=stream0) del primals_2 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class TokenEmbedding(nn.Module): def __init__(self, vocab_size: 'int', emb_size): super(TokenEmbedding, self).__init__() self.embedding = nn.Embedding(vocab_size, emb_size) self.emb_size = emb_size def forward(self, tokens: 'Tensor'): return self.embedding(tokens.long()) * math.sqrt(self.emb_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'vocab_size': 4, 'emb_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.int64) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_embedding_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tmp7 = 2.0 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused__to_copy_0[grid(256)](primals_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_embedding_mul_1[grid(1024)](buf0, primals_2, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, buf0 class TokenEmbeddingNew(nn.Module): def __init__(self, vocab_size: 'int', emb_size): super(TokenEmbeddingNew, self).__init__() self.embedding = nn.Embedding(vocab_size, emb_size) self.emb_size = emb_size def forward(self, input_0): primals_2 = self.embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
MartinRenaudin/tutorials
TokenEmbedding
false
2,754
[ "BSD-3-Clause" ]
0
035d6827d77c52fed2a927f105e39fd73516f093
https://github.com/MartinRenaudin/tutorials/tree/035d6827d77c52fed2a927f105e39fd73516f093
TracedModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yx/cyxpk7a4eq5vq4bzeif2nk6cwpcgf7ixzqxdcgvbuuwnhguxpc26.py # Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor] # Source node to ATen node mapping: # floor => floor # sqrt => sqrt # truediv => div # Graph fragment: # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sqrt, 5.0), kwargs = {}) # %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%div,), kwargs = {}) triton_poi_fused_div_floor_sqrt_0 = async_compile.triton('triton_poi_fused_div_floor_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_floor_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.sqrt(tmp0) tmp2 = 0.2 tmp3 = tmp1 * tmp2 tmp4 = libdevice.floor(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor] stream0 = get_raw_stream(0) triton_poi_fused_div_floor_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class TracedModule(torch.nn.Module): def forward(self, x): x = x.type(torch.float32) return torch.floor(torch.sqrt(x) / 5.0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.sqrt(tmp0) tmp2 = 0.2 tmp3 = tmp1 * tmp2 tmp4 = libdevice.floor(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_floor_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class TracedModuleNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
MartinRenaudin/tutorials
TracedModule
false
2,755
[ "BSD-3-Clause" ]
0
035d6827d77c52fed2a927f105e39fd73516f093
https://github.com/MartinRenaudin/tutorials/tree/035d6827d77c52fed2a927f105e39fd73516f093
Scale
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/s3/cs3xfcsbv3q363t3gue76e5b2o6wfhbslxcdj5vsrheb24anhw4c.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn class Scale(nn.Module): def __init__(self, init_value=1.0): super(Scale, self).__init__() self.scale = nn.Parameter(torch.FloatTensor([init_value])) def forward(self, input): return input * self.scale def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class ScaleNew(nn.Module): def __init__(self, init_value=1.0): super(ScaleNew, self).__init__() self.scale = nn.Parameter(torch.FloatTensor([init_value])) def forward(self, input_0): primals_1 = self.scale primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Rick-960123/centermask-mdf-master
Scale
false
2,756
[ "BSD-2-Clause" ]
0
49388b03b9ffb06577cd28b9ddaa68cadb82e926
https://github.com/Rick-960123/centermask-mdf-master/tree/49388b03b9ffb06577cd28b9ddaa68cadb82e926
PairwiseDistance
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/uk/cukenemhjxrz2i4scoc3xf2ykqykfab5s6n7v4slrzuiwm3565og.py # Topologically Sorted Source Nodes: [sub, abs_1, pow_1], Original ATen: [aten.sub, aten.abs, aten.pow] # Source node to ATen node mapping: # abs_1 => abs_1 # pow_1 => pow_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %permute), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) triton_poi_fused_abs_pow_sub_0 = async_compile.triton('triton_poi_fused_abs_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_pow_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = (xindex // 4) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, abs_1, pow_1], Original ATen: [aten.sub, aten.abs, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_abs_pow_sub_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class PairwiseDistance(torch.nn.Module): def __init__(self, p=2): super().__init__() self.p = p def forward(self, x, y): x_ = x.repeat([1] + list(y.shape[1:])).reshape(*y.shape, -1) y_ = y.repeat([1] + list(x.shape[1:])).reshape(*x.shape, -1).transpose( -1, -2) return x_.sub(y_).abs().pow(self.p) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_pow_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex // 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_pow_sub_0[grid(64)](arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf0, class PairwiseDistanceNew(torch.nn.Module): def __init__(self, p=2): super().__init__() self.p = p def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Rikorose/pytorch-ddtw
PairwiseDistance
false
2,757
[ "Apache-2.0" ]
0
131d533349042a6cbcfe8b22596e12926ac7fddb
https://github.com/Rikorose/pytorch-ddtw/tree/131d533349042a6cbcfe8b22596e12926ac7fddb
Encoder5
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/kn/cknyjwkwufnzzf4ya3scui55ownkmt5cdh3hggzwsfe3ch5fshzm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5t/c5ta5b5nw4dp65565mg3k6wfbphtogtvx5v75up5yeibgiwkacek.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xq/cxq75w43anllid5ys7ss3yyizuoeph3vvaqlvm5lo434hrywtyle.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/32/c32xiwptfqtyhbnde262mvq5tzywzo6zquurttkv7sztqnze6yni.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tg/ctgdsxjd3rciejxtjvi3y2w5fmmggh5lm3mivuygvkdzeb3zulmc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/e7/ce7jqsdrj5poslb2hpufqd2wdux5xiab5n2auqal3ztzvkzrmnzl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ks/ckso6iiq5yfqfxmx7ilr6ufrmz6mlkiy75pexzhyf3ierq4pu3zl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pz/cpzxc3jk23k7dl4rrbktjqciw5tnvqqly4dpnrzskpqvbfhil5sb.py # Topologically Sorted Source Nodes: [y, pad], Original ATen: [aten.convolution, aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # y => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_9 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 52272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) % 66 x2 = (xindex // 198) % 66 x3 = (xindex // 13068) x4 = xindex tmp0 = tl.load(in_ptr0 + (12285 + x0 + ((-192)*(tl_math.abs((-63) + (tl_math.abs((-1) + x2))))) + ((-3)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (12288*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dc/cdcynomebjr6qjh2qdxli4gyfxj54b5dlulufqj72ty33eap2yqn.py # Topologically Sorted Source Nodes: [conv2d_1, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_1 => _unsafe_index_2, _unsafe_index_3 # y_1 => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_10 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 66 x2 = (xindex // 4224) % 66 x3 = (xindex // 278784) x4 = xindex tmp0 = tl.load(in_ptr0 + (262080 + x0 + ((-4096)*(tl_math.abs((-63) + (tl_math.abs((-1) + x2))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (262144*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xv/cxvmc6dgdko25zjlsdevpkztvqsl24y4qk4tdw4a3n6ktcrtx525.py # Topologically Sorted Source Nodes: [conv2d_2, y_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # y_2 => relu_1 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5n/c5nx4sp6w4vxzmupxncp3jvevimgleyozz7ylkkjj5wsofhhloqz.py # Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # y_3 => getitem_1 # Graph fragment: # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp12 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2c/c2cjv6admkoxnhdbktltihra747cobxkbpbyl5r2xaijea6hbyqs.py # Topologically Sorted Source Nodes: [y_3, pad_2], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_2 => _unsafe_index_4, _unsafe_index_5 # y_3 => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 34 x2 = (xindex // 2176) % 34 x3 = (xindex // 73984) x4 = xindex tmp0 = tl.load(in_ptr0 + (257920 + x0 + ((-8192)*(tl_math.abs((-31) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (262144*x3)), xmask) tmp1 = tl.load(in_ptr0 + (257984 + x0 + ((-8192)*(tl_math.abs((-31) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (262144*x3)), xmask) tmp3 = tl.load(in_ptr0 + (262016 + x0 + ((-8192)*(tl_math.abs((-31) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (262144*x3)), xmask) tmp5 = tl.load(in_ptr0 + (262080 + x0 + ((-8192)*(tl_math.abs((-31) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (262144*x3)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7z/c7znnr7bc4n52nyd7calrbaeussjb7nwl5jlnwdljlkeswkfrytx.py # Topologically Sorted Source Nodes: [conv2d_3, y_4, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # pad_3 => _unsafe_index_6, _unsafe_index_7 # y_4 => relu_2 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_14 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 34 x2 = (xindex // 4352) % 34 x3 = (xindex // 147968) x4 = xindex tmp0 = tl.load(in_ptr0 + (130944 + x0 + ((-4096)*(tl_math.abs((-31) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (131072*x3)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ar/carxya23pat5aykqgm2vvmqcmkshyn7dmwgvto5mwkuzawltn7fi.py # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # y_5 => relu_3 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_15 = async_compile.triton('triton_poi_fused_convolution_relu_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oa/coaeymvzbrf3p343svqc3dewlrqba3t22eu4vzmz7fgs6dpssxc3.py # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # y_6 => getitem_3 # Graph fragment: # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_16 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_16(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 16 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (8192*x2)), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (8192*x2)), None) tmp12 = tl.load(in_ptr0 + (4224 + x0 + (256*x1) + (8192*x2)), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7w/c7w7lrtpw76ng2ivlzbcbnxtlzipsepyc6rghoyvfnswl3voehtk.py # Topologically Sorted Source Nodes: [y_6, pad_4], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_4 => _unsafe_index_8, _unsafe_index_9 # y_6 => _low_memory_max_pool2d_with_offsets_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_2, [None, None, %sub_17, None]), kwargs = {}) # %_unsafe_index_9 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_17]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 18 x2 = (xindex // 2304) % 18 x3 = (xindex // 41472) x4 = xindex tmp0 = tl.load(in_ptr0 + (126720 + x0 + ((-8192)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-256)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (131072*x3)), None) tmp1 = tl.load(in_ptr0 + (126848 + x0 + ((-8192)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-256)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (131072*x3)), None) tmp3 = tl.load(in_ptr0 + (130816 + x0 + ((-8192)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-256)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (131072*x3)), None) tmp5 = tl.load(in_ptr0 + (130944 + x0 + ((-8192)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-256)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (131072*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x4), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/r4/cr4lbsq45uwrcwedymtyqrjjuypdygn6qn3tdhhef2lwkxajqgnc.py # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_5], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # pad_5 => _unsafe_index_10, _unsafe_index_11 # y_7 => relu_4 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_10 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %sub_17, None]), kwargs = {}) # %_unsafe_index_11 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_10, [None, None, None, %sub_17]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_18 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 18 x2 = (xindex // 4608) % 18 x3 = (xindex // 82944) x4 = xindex tmp0 = tl.load(in_ptr0 + (65280 + x0 + ((-4096)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-256)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kn/ckn3f77doapyh3yagwmehjyhlh55rzrsszozssbsnfdedar7rzed.py # Topologically Sorted Source Nodes: [conv2d_8, y_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # y_10 => relu_7 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) triton_poi_fused_convolution_relu_19 = async_compile.triton('triton_poi_fused_convolution_relu_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_19', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gl/cgl2tgggcr4lqf5dkzckzedcbyuwnux5kjbltb3vsdomcpsllzdx.py # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # y_11 => getitem_5 # Graph fragment: # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_20 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_20(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 8 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x2)), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x2)), None) tmp12 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x2)), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vg/cvgm6t2pfjlticvf7njf3ocp7mzagj4rbfyvylgcywz2pjyc4ug7.py # Topologically Sorted Source Nodes: [y_11, pad_8], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_8 => _unsafe_index_16, _unsafe_index_17 # y_11 => _low_memory_max_pool2d_with_offsets_2 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_7, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index_16 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_4, [None, None, %sub_33, None]), kwargs = {}) # %_unsafe_index_17 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_16, [None, None, None, %sub_33]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 102400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 10 x2 = (xindex // 2560) % 10 x3 = (xindex // 25600) x4 = xindex tmp0 = tl.load(in_ptr0 + (60928 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp1 = tl.load(in_ptr0 + (61184 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp3 = tl.load(in_ptr0 + (65024 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp5 = tl.load(in_ptr0 + (65280 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x4), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dp/cdpe5woulja7wyvw2obyq7j3vzscxtmtjarjtutpsxilduzdkm4a.py # Topologically Sorted Source Nodes: [conv2d_9, y_12, pad_9], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # pad_9 => _unsafe_index_18, _unsafe_index_19 # y_12 => relu_8 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %_unsafe_index_18 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_8, [None, None, %sub_33, None]), kwargs = {}) # %_unsafe_index_19 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_18, [None, None, None, %sub_33]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_22 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 204800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) % 10 x2 = (xindex // 5120) % 10 x3 = (xindex // 51200) x4 = xindex tmp0 = tl.load(in_ptr0 + (32256 + x0 + ((-4096)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (32768*x3)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oi/coirmseu4zbt7eyk2hofbpovvbnnd7l5njblomemxlefybbj6jtn.py # Topologically Sorted Source Nodes: [conv2d_12, y_15], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # y_15 => relu_11 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_23, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_12,), kwargs = {}) triton_poi_fused_convolution_relu_23 = async_compile.triton('triton_poi_fused_convolution_relu_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_23', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_23(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bl/cblpokunwl3xpjs7sujrsucu2exkz4qsyxaftnngkj222pfyhqt7.py # Topologically Sorted Source Nodes: [y_16], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # y_16 => getitem_7 # Graph fragment: # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_24 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_24(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) % 4 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (1024*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + (1024*x1) + (8192*x2)), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + (1024*x1) + (8192*x2)), None) tmp12 = tl.load(in_ptr0 + (4608 + x0 + (1024*x1) + (8192*x2)), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7y/c7ymhbo2exw457jy74qg5qyp374ojlbavaqfbks5oqiaku5te7lp.py # Topologically Sorted Source Nodes: [y_16, pad_12], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_12 => _unsafe_index_24, _unsafe_index_25 # y_16 => _low_memory_max_pool2d_with_offsets_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_11, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index_24 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_6, [None, None, %sub_49, None]), kwargs = {}) # %_unsafe_index_25 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_24, [None, None, None, %sub_49]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) % 6 x2 = (xindex // 3072) % 6 x3 = (xindex // 18432) x4 = xindex tmp0 = tl.load(in_ptr0 + (27648 + x0 + ((-8192)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-1024)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (32768*x3)), None) tmp1 = tl.load(in_ptr0 + (28160 + x0 + ((-8192)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-1024)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (32768*x3)), None) tmp3 = tl.load(in_ptr0 + (31744 + x0 + ((-8192)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-1024)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (32768*x3)), None) tmp5 = tl.load(in_ptr0 + (32256 + x0 + ((-8192)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-1024)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (32768*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x4), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/35/c35gz6l7ddqoafd5mon6zn6yhmpflp3klznaapx2hwg4mtm5k2iz.py # Topologically Sorted Source Nodes: [conv2d_13, y_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # y_17 => relu_12 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_25, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_12, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_26 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_26(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = (yindex // 512) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (8192*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (512*x2) + (8192*y1)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uk/cukd7fqde3kno7agvfpg7hbs27m57npm23uisoipmyk6v4m4oolv.py # Topologically Sorted Source Nodes: [conv2d_11, y_14], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # y_14 => relu_10 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_21, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %le_38 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_10, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_27 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_27', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_27(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gz/cgzpkmzxtkeezgs5iwujwk3d3vhi7x4ids7ozeqk5wsw2wkunzur.py # Topologically Sorted Source Nodes: [conv2d_7, y_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # y_9 => relu_6 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_114 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_28 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xw/cxwjhwi2byryzzx6ze27lt4afirxq54bmwa6ey6dioeidhn4vygp.py # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # y_4 => relu_2 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_190 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_29 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_29(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/te/cteoo5psz5gudnbzn7kn6tbtffnianf4cnrw2uweaeueftjfkxl6.py # Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # y_1 => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_228 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_30 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_30', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_30', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_30(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29 = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (256, ), (1, )) assert_size_stride(primals_20, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) assert_size_stride(primals_28, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (512, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf1 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_4, buf1, 192, 9, grid=grid(192, 9), stream=stream0) del primals_4 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_6 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_8, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_8 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_10, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_10 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_12, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_12 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_14, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_14 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_16, buf7, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_16 buf8 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_18, buf8, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_18 buf9 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_7.run(primals_20, buf9, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_20 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_22, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_22 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_24, buf11, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_24 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_26, buf12, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_26 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_28, buf13, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_28 # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 3, 64, 64), (12288, 1, 192, 3)) buf15 = empty_strided_cuda((4, 3, 66, 66), (13068, 1, 198, 3), torch.float32) # Topologically Sorted Source Nodes: [y, pad], Original ATen: [aten.convolution, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_9.run(buf14, primals_2, buf15, 52272, grid=grid(52272), stream=stream0) del buf14 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf17 = empty_strided_cuda((4, 64, 66, 66), (278784, 1, 4224, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_10.run(buf16, primals_5, buf17, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [conv2d_2, y_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf19, primals_7, 1048576, grid=grid(1048576), stream=stream0) del primals_7 buf20 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf19, buf20, 262144, grid=grid(262144), stream=stream0) buf21 = empty_strided_cuda((4, 64, 34, 34), (73984, 1, 2176, 64), torch.float32) # Topologically Sorted Source Nodes: [y_3, pad_2], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13.run(buf19, buf21, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1, 4352, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, y_4, pad_3], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_14.run(buf22, primals_9, buf23, 591872, grid=grid(591872), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv2d_4, y_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf25, primals_11, 524288, grid=grid(524288), stream=stream0) del primals_11 buf26 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) # Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_16.run(buf25, buf26, 131072, grid=grid(131072), stream=stream0) buf27 = empty_strided_cuda((4, 128, 18, 18), (41472, 1, 2304, 128), torch.float32) # Topologically Sorted Source Nodes: [y_6, pad_4], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17.run(buf25, buf27, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf29 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, y_7, pad_5], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_18.run(buf28, primals_13, buf29, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf31 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, y_8, pad_6], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_18.run(buf30, primals_15, buf31, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf32 = extern_kernels.convolution(buf31, buf7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf33 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, y_9, pad_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_18.run(buf32, primals_17, buf33, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf33, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [conv2d_8, y_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_19.run(buf35, primals_19, 262144, grid=grid(262144), stream=stream0) del primals_19 buf36 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_20.run(buf35, buf36, 65536, grid=grid(65536), stream=stream0) buf37 = empty_strided_cuda((4, 256, 10, 10), (25600, 1, 2560, 256), torch.float32) # Topologically Sorted Source Nodes: [y_11, pad_8], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21.run(buf35, buf37, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, buf9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf39 = empty_strided_cuda((4, 512, 10, 10), (51200, 1, 5120, 512), torch.float32) # Topologically Sorted Source Nodes: [conv2d_9, y_12, pad_9], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_22.run(buf38, primals_21, buf39, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf40 = extern_kernels.convolution(buf39, buf10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf41 = empty_strided_cuda((4, 512, 10, 10), (51200, 1, 5120, 512), torch.float32) # Topologically Sorted Source Nodes: [conv2d_10, y_13, pad_10], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_22.run(buf40, primals_23, buf41, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf42 = extern_kernels.convolution(buf41, buf11, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf43 = empty_strided_cuda((4, 512, 10, 10), (51200, 1, 5120, 512), torch.float32) # Topologically Sorted Source Nodes: [conv2d_11, y_14, pad_11], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_22.run(buf42, primals_25, buf43, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf44 = extern_kernels.convolution(buf43, buf12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf45 = buf44; del buf44 # reuse # Topologically Sorted Source Nodes: [conv2d_12, y_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_23.run(buf45, primals_27, 131072, grid=grid(131072), stream=stream0) del primals_27 buf46 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [y_16], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_24.run(buf45, buf46, 32768, grid=grid(32768), stream=stream0) buf47 = empty_strided_cuda((4, 512, 6, 6), (18432, 1, 3072, 512), torch.float32) # Topologically Sorted Source Nodes: [y_16, pad_12], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25.run(buf45, buf47, 73728, grid=grid(73728), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf48 = extern_kernels.convolution(buf47, buf13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf49 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32) buf50 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.bool) # Topologically Sorted Source Nodes: [conv2d_13, y_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_26.run(buf48, primals_29, buf49, buf50, 2048, 16, grid=grid(2048, 16), stream=stream0) del buf48 del primals_29 buf51 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, y_14], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_27.run(buf42, primals_25, buf51, 131072, grid=grid(131072), stream=stream0) del buf42 del primals_25 buf52 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) # Topologically Sorted Source Nodes: [conv2d_10, y_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_27.run(buf40, primals_23, buf52, 131072, grid=grid(131072), stream=stream0) del buf40 del primals_23 buf53 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, y_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_27.run(buf38, primals_21, buf53, 131072, grid=grid(131072), stream=stream0) del buf38 del primals_21 buf54 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, y_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_28.run(buf32, primals_17, buf54, 262144, grid=grid(262144), stream=stream0) del buf32 del primals_17 buf55 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, y_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_28.run(buf30, primals_15, buf55, 262144, grid=grid(262144), stream=stream0) del buf30 del primals_15 buf56 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, y_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_28.run(buf28, primals_13, buf56, 262144, grid=grid(262144), stream=stream0) del buf28 del primals_13 buf57 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_29.run(buf22, primals_9, buf57, 524288, grid=grid(524288), stream=stream0) del buf22 del primals_9 buf58 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_30.run(buf16, primals_5, buf58, 1048576, grid=grid(1048576), stream=stream0) del buf16 del primals_5 return (buf49, primals_1, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf31, buf33, buf35, buf36, buf37, buf39, buf41, buf43, buf45, buf46, buf47, buf50, buf51, buf52, buf53, buf54, buf55, buf56, buf57, buf58, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class Encoder5(nn.Module): def __init__(self, model=None, fixed=False): super(Encoder5, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3, 3, 1, 1, 0) self.conv0.weight = nn.Parameter(torch.from_numpy(np.array([[[[0]], [[0]], [[255]]], [[[0]], [[255]], [[0]]], [[[255]], [[0]], [[0] ]]])).float()) self.conv0.bias = nn.Parameter(torch.from_numpy(np.array([-103.939, -116.779, -123.68])).float()) self.conv11 = nn.Conv2d(3, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv21 = nn.Conv2d(64, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv31 = nn.Conv2d(128, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv41 = nn.Conv2d(256, 512, 3, 1, 0) self.conv42 = nn.Conv2d(512, 512, 3, 1, 0) self.conv43 = nn.Conv2d(512, 512, 3, 1, 0) self.conv44 = nn.Conv2d(512, 512, 3, 1, 0) self.conv51 = nn.Conv2d(512, 512, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: assert os.path.splitext(model)[1] in {'.t7', '.pth'} if model.endswith('.t7'): t7_model = load_lua(model) load_param(t7_model, 0, self.conv0) load_param(t7_model, 2, self.conv11) load_param(t7_model, 5, self.conv12) load_param(t7_model, 9, self.conv21) load_param(t7_model, 12, self.conv22) load_param(t7_model, 16, self.conv31) load_param(t7_model, 19, self.conv32) load_param(t7_model, 22, self.conv33) load_param(t7_model, 25, self.conv34) load_param(t7_model, 29, self.conv41) load_param(t7_model, 32, self.conv42) load_param(t7_model, 35, self.conv43) load_param(t7_model, 38, self.conv44) load_param(t7_model, 42, self.conv51) else: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input): y = self.conv0(input) y = self.relu(self.conv11(self.pad(y))) y = self.relu(self.conv12(self.pad(y))) y = self.pool(y) y = self.relu(self.conv21(self.pad(y))) y = self.relu(self.conv22(self.pad(y))) y = self.pool(y) y = self.relu(self.conv31(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv34(self.pad(y))) y = self.pool(y) y = self.relu(self.conv41(self.pad(y))) y = self.relu(self.conv42(self.pad(y))) y = self.relu(self.conv43(self.pad(y))) y = self.relu(self.conv44(self.pad(y))) y = self.pool(y) y = self.relu(self.conv51(self.pad(y))) return y def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 52272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 % 66 x2 = xindex // 198 % 66 x3 = xindex // 13068 x4 = xindex tmp0 = tl.load(in_ptr0 + (12285 + x0 + -192 * tl_math.abs(-63 + tl_math .abs(-1 + x2)) + -3 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 12288 * x3), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 66 x2 = xindex // 4224 % 66 x3 = xindex // 278784 x4 = xindex tmp0 = tl.load(in_ptr0 + (262080 + x0 + -4096 * tl_math.abs(-63 + tl_math.abs(-1 + x2)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1 )) + 262144 * x3), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp12 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 34 x2 = xindex // 2176 % 34 x3 = xindex // 73984 x4 = xindex tmp0 = tl.load(in_ptr0 + (257920 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp1 = tl.load(in_ptr0 + (257984 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp3 = tl.load(in_ptr0 + (262016 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp5 = tl.load(in_ptr0 + (262080 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 34 x2 = xindex // 4352 % 34 x3 = xindex // 147968 x4 = xindex tmp0 = tl.load(in_ptr0 + (130944 + x0 + -4096 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 131072 * x3), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_16(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 16 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x2), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x2), None) tmp12 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x2), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 18 x2 = xindex // 2304 % 18 x3 = xindex // 41472 x4 = xindex tmp0 = tl.load(in_ptr0 + (126720 + x0 + -8192 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 131072 * x3), None) tmp1 = tl.load(in_ptr0 + (126848 + x0 + -8192 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 131072 * x3), None) tmp3 = tl.load(in_ptr0 + (130816 + x0 + -8192 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 131072 * x3), None) tmp5 = tl.load(in_ptr0 + (130944 + x0 + -8192 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 131072 * x3), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 18 x2 = xindex // 4608 % 18 x3 = xindex // 82944 x4 = xindex tmp0 = tl.load(in_ptr0 + (65280 + x0 + -4096 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_20(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 8 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x2), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x2), None) tmp12 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x2), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 10 x2 = xindex // 2560 % 10 x3 = xindex // 25600 x4 = xindex tmp0 = tl.load(in_ptr0 + (60928 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp1 = tl.load(in_ptr0 + (61184 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp3 = tl.load(in_ptr0 + (65024 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp5 = tl.load(in_ptr0 + (65280 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 % 10 x2 = xindex // 5120 % 10 x3 = xindex // 51200 x4 = xindex tmp0 = tl.load(in_ptr0 + (32256 + x0 + -4096 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 32768 * x3), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_23(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_24(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 % 4 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + 1024 * x1 + 8192 * x2), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 1024 * x1 + 8192 * x2), None) tmp12 = tl.load(in_ptr0 + (4608 + x0 + 1024 * x1 + 8192 * x2), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 % 6 x2 = xindex // 3072 % 6 x3 = xindex // 18432 x4 = xindex tmp0 = tl.load(in_ptr0 + (27648 + x0 + -8192 * tl_math.abs(-3 + tl_math .abs(-1 + x2)) + -1024 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 32768 * x3), None) tmp1 = tl.load(in_ptr0 + (28160 + x0 + -8192 * tl_math.abs(-3 + tl_math .abs(-1 + x2)) + -1024 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 32768 * x3), None) tmp3 = tl.load(in_ptr0 + (31744 + x0 + -8192 * tl_math.abs(-3 + tl_math .abs(-1 + x2)) + -1024 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 32768 * x3), None) tmp5 = tl.load(in_ptr0 + (32256 + x0 + -8192 * tl_math.abs(-3 + tl_math .abs(-1 + x2)) + -1024 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 32768 * x3), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_26(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = yindex // 512 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 8192 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 512 * x2 + 8192 * y1), tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_27(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_29(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_30(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29) = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (256,), (1,)) assert_size_stride(primals_20, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) assert_size_stride(primals_28, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(12, 4096)](primals_3, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) triton_poi_fused_1[grid(192, 9)](primals_4, buf1, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(4096, 9)](primals_6, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_8, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_4[grid(16384, 9)](primals_10, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_5[grid(32768, 9)](primals_12, buf5, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_14, buf6, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_16, buf7, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf8 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_18, buf8, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_18 buf9 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_7[grid(131072, 9)](primals_20, buf9, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_20 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_22, buf10, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_22 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_24, buf11, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_24 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_26, buf12, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_26 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_28, buf13, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_28 buf14 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 3, 64, 64), (12288, 1, 192, 3)) buf15 = empty_strided_cuda((4, 3, 66, 66), (13068, 1, 198, 3), torch.float32) triton_poi_fused_convolution_reflection_pad2d_9[grid(52272)](buf14, primals_2, buf15, 52272, XBLOCK=512, num_warps=4, num_stages=1) del buf14 del primals_2 buf16 = extern_kernels.convolution(buf15, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf17 = empty_strided_cuda((4, 64, 66, 66), (278784, 1, 4224, 64), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_10[grid(1115136)]( buf16, primals_5, buf17, 1115136, XBLOCK=1024, num_warps=4, num_stages=1) buf18 = extern_kernels.convolution(buf17, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_11[grid(1048576)](buf19, primals_7, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf20 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_12[grid(262144)](buf19, buf20, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf21 = empty_strided_cuda((4, 64, 34, 34), (73984, 1, 2176, 64), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_13[grid( 295936)](buf19, buf21, 295936, XBLOCK=1024, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf21, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1, 4352, 128), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_14[grid(591872)]( buf22, primals_9, buf23, 591872, XBLOCK=512, num_warps=8, num_stages=1) buf24 = extern_kernels.convolution(buf23, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_15[grid(524288)](buf25, primals_11, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf26 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_16[grid(131072)](buf25, buf26, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf27 = empty_strided_cuda((4, 128, 18, 18), (41472, 1, 2304, 128), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_17[grid( 165888)](buf25, buf27, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf28 = extern_kernels.convolution(buf27, buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf29 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_18[grid(331776)]( buf28, primals_13, buf29, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf30 = extern_kernels.convolution(buf29, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf31 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_18[grid(331776)]( buf30, primals_15, buf31, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf32 = extern_kernels.convolution(buf31, buf7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf33 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_18[grid(331776)]( buf32, primals_17, buf33, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf34 = extern_kernels.convolution(buf33, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf35 = buf34 del buf34 triton_poi_fused_convolution_relu_19[grid(262144)](buf35, primals_19, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf36 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_20[grid(65536)](buf35, buf36, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf37 = empty_strided_cuda((4, 256, 10, 10), (25600, 1, 2560, 256), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_21[grid( 102400)](buf35, buf37, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf38 = extern_kernels.convolution(buf37, buf9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf39 = empty_strided_cuda((4, 512, 10, 10), (51200, 1, 5120, 512), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_22[grid(204800)]( buf38, primals_21, buf39, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf40 = extern_kernels.convolution(buf39, buf10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf41 = empty_strided_cuda((4, 512, 10, 10), (51200, 1, 5120, 512), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_22[grid(204800)]( buf40, primals_23, buf41, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf42 = extern_kernels.convolution(buf41, buf11, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf43 = empty_strided_cuda((4, 512, 10, 10), (51200, 1, 5120, 512), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_22[grid(204800)]( buf42, primals_25, buf43, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf44 = extern_kernels.convolution(buf43, buf12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf45 = buf44 del buf44 triton_poi_fused_convolution_relu_23[grid(131072)](buf45, primals_27, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_27 buf46 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_24[grid(32768)](buf45, buf46, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf47 = empty_strided_cuda((4, 512, 6, 6), (18432, 1, 3072, 512), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_25[grid( 73728)](buf45, buf47, 73728, XBLOCK=512, num_warps=8, num_stages=1) buf48 = extern_kernels.convolution(buf47, buf13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf49 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch. float32) buf50 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_26[grid(2048, 16) ](buf48, primals_29, buf49, buf50, 2048, 16, XBLOCK=16, YBLOCK= 16, num_warps=4, num_stages=1) del buf48 del primals_29 buf51 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_27[grid(131072)]( buf42, primals_25, buf51, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del buf42 del primals_25 buf52 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_27[grid(131072)]( buf40, primals_23, buf52, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del buf40 del primals_23 buf53 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_27[grid(131072)]( buf38, primals_21, buf53, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del buf38 del primals_21 buf54 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_28[grid(262144)]( buf32, primals_17, buf54, 262144, XBLOCK=512, num_warps=8, num_stages=1) del buf32 del primals_17 buf55 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_28[grid(262144)]( buf30, primals_15, buf55, 262144, XBLOCK=512, num_warps=8, num_stages=1) del buf30 del primals_15 buf56 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_28[grid(262144)]( buf28, primals_13, buf56, 262144, XBLOCK=512, num_warps=8, num_stages=1) del buf28 del primals_13 buf57 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_29[grid(524288)]( buf22, primals_9, buf57, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf22 del primals_9 buf58 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_30[grid(1048576)]( buf16, primals_5, buf58, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf16 del primals_5 return (buf49, primals_1, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf31, buf33, buf35, buf36, buf37, buf39, buf41, buf43, buf45, buf46, buf47, buf50, buf51, buf52, buf53, buf54, buf55, buf56, buf57, buf58) class Encoder5New(nn.Module): def __init__(self, model=None, fixed=False): super(Encoder5New, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3, 3, 1, 1, 0) self.conv0.weight = nn.Parameter(torch.from_numpy(np.array([[[[0]], [[0]], [[255]]], [[[0]], [[255]], [[0]]], [[[255]], [[0]], [[0] ]]])).float()) self.conv0.bias = nn.Parameter(torch.from_numpy(np.array([-103.939, -116.779, -123.68])).float()) self.conv11 = nn.Conv2d(3, 64, 3, 1, 0) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0) self.conv21 = nn.Conv2d(64, 128, 3, 1, 0) self.conv22 = nn.Conv2d(128, 128, 3, 1, 0) self.conv31 = nn.Conv2d(128, 256, 3, 1, 0) self.conv32 = nn.Conv2d(256, 256, 3, 1, 0) self.conv33 = nn.Conv2d(256, 256, 3, 1, 0) self.conv34 = nn.Conv2d(256, 256, 3, 1, 0) self.conv41 = nn.Conv2d(256, 512, 3, 1, 0) self.conv42 = nn.Conv2d(512, 512, 3, 1, 0) self.conv43 = nn.Conv2d(512, 512, 3, 1, 0) self.conv44 = nn.Conv2d(512, 512, 3, 1, 0) self.conv51 = nn.Conv2d(512, 512, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: assert os.path.splitext(model)[1] in {'.t7', '.pth'} if model.endswith('.t7'): t7_model = load_lua(model) load_param(t7_model, 0, self.conv0) load_param(t7_model, 2, self.conv11) load_param(t7_model, 5, self.conv12) load_param(t7_model, 9, self.conv21) load_param(t7_model, 12, self.conv22) load_param(t7_model, 16, self.conv31) load_param(t7_model, 19, self.conv32) load_param(t7_model, 22, self.conv33) load_param(t7_model, 25, self.conv34) load_param(t7_model, 29, self.conv41) load_param(t7_model, 32, self.conv42) load_param(t7_model, 35, self.conv43) load_param(t7_model, 38, self.conv44) load_param(t7_model, 42, self.conv51) else: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input_0): primals_1 = self.conv0.weight primals_2 = self.conv0.bias primals_4 = self.conv11.weight primals_5 = self.conv11.bias primals_6 = self.conv12.weight primals_7 = self.conv12.bias primals_8 = self.conv21.weight primals_9 = self.conv21.bias primals_10 = self.conv22.weight primals_11 = self.conv22.bias primals_12 = self.conv31.weight primals_13 = self.conv31.bias primals_14 = self.conv32.weight primals_15 = self.conv32.bias primals_16 = self.conv33.weight primals_17 = self.conv33.bias primals_18 = self.conv34.weight primals_19 = self.conv34.bias primals_20 = self.conv41.weight primals_21 = self.conv41.bias primals_22 = self.conv42.weight primals_23 = self.conv42.bias primals_24 = self.conv43.weight primals_25 = self.conv43.bias primals_26 = self.conv44.weight primals_27 = self.conv44.bias primals_28 = self.conv51.weight primals_29 = self.conv51.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29]) return output[0]
MingSun-Tse/pytorch-AdaIN
Encoder5
false
2,758
[ "MIT" ]
0
02ae320345232983c754ea233613aedc21e4d348
https://github.com/MingSun-Tse/pytorch-AdaIN/tree/02ae320345232983c754ea233613aedc21e4d348
SpatialAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/46/c46mg7rvdztu6n5oosf5c4if7ziag6obrxhwbn43lcdfibfuom7w.py # Topologically Sorted Source Nodes: [scale], Original ATen: [aten.cat] # Source node to ATen node mapping: # scale => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + (x3), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6q/c6qyrmvchep2lyeodxjgze7brt2fv4khvsx2os2smplvfajckxaz.py # Topologically Sorted Source Nodes: [sigmoid, out], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # out => mul # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [scale], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [scale_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, out], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn class SpatialAttention(nn.Module): def __init__(self, kernel_size=3): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): try: avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) scale = torch.cat([avg_out, max_out], dim=1) scale = self.conv(scale) out = x * self.sigmoid(scale) except Exception: None out = x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](primals_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class SpatialAttentionNew(nn.Module): def __init__(self, kernel_size=3): super(SpatialAttentionNew, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Rick-960123/centermask-mdf-master
SpatialAttention
false
2,759
[ "BSD-2-Clause" ]
0
49388b03b9ffb06577cd28b9ddaa68cadb82e926
https://github.com/Rick-960123/centermask-mdf-master/tree/49388b03b9ffb06577cd28b9ddaa68cadb82e926
SEModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] # Source node to ATen node mapping: # x => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hc/chcuw27vv75itefu6xswbdhopf2pq6oaj4bww4whelczhqtkghqr.py # Topologically Sorted Source Nodes: [x_3, add, relu6, x_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # x_3 => convolution_1 # x_4 => div # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {}) triton_poi_fused_add_convolution_div_hardtanh_mul_2 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rh/crhdgkbcu2rbqzaxws3536qfrpjhmp6d6zhyebzqejxvceodywdi.py # Topologically Sorted Source Nodes: [x_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] # Source node to ATen node mapping: # add => add # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_add_convolution_hardtanh_backward_3 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, add, relu6, x_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] triton_poi_fused_add_convolution_div_hardtanh_mul_2.run(primals_1, buf4, primals_5, buf5, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] triton_poi_fused_add_convolution_hardtanh_backward_3.run(buf4, primals_5, buf6, 16, grid=grid(16), stream=stream0) del buf4 del primals_5 return (buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class SEModule(nn.Module): def __init__(self, channel, reduction=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channel, channel // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channel // reduction, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, x): input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.hsigmoid(x) return input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_div_hardtanh_mul_2[grid(256)]( primals_1, buf4, primals_5, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_hardtanh_backward_3[grid(16)](buf4, primals_5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 del primals_5 return buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6 class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class SEModuleNew(nn.Module): def __init__(self, channel, reduction=4): super(SEModuleNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channel, channel // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channel // reduction, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Rick-960123/centermask-mdf-master
SEModule
false
2,760
[ "BSD-2-Clause" ]
0
49388b03b9ffb06577cd28b9ddaa68cadb82e926
https://github.com/Rick-960123/centermask-mdf-master/tree/49388b03b9ffb06577cd28b9ddaa68cadb82e926
eSEModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] # Source node to ATen node mapping: # x => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/co/ccowauib7vy5gm7p4vj4ao45thoxwz7gg4fphlxqgn5idb7igf7i.py # Topologically Sorted Source Nodes: [x_1, add, relu6, x_2, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # x_1 => convolution # x_2 => div # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {}) triton_poi_fused_add_convolution_div_hardtanh_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jf/cjfxg4qmkc47we3c3cd47pg6lk6t4idzjkbdf3zyoyk4nr3a7ktb.py # Topologically Sorted Source Nodes: [x_1, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] # Source node to ATen node mapping: # add => add # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, 3.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_add_convolution_hardtanh_backward_2 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, add, relu6, x_2, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] triton_poi_fused_add_convolution_div_hardtanh_mul_1.run(primals_1, buf2, primals_3, buf3, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] triton_poi_fused_add_convolution_hardtanh_backward_2.run(buf2, primals_3, buf4, 16, grid=grid(16), stream=stream0) del buf2 del primals_3 return (buf3, primals_1, primals_2, buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class eSEModule(nn.Module): def __init__(self, channel, reduction=4): super(eSEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, x): input = x x = self.avg_pool(x) x = self.fc(x) x = self.hsigmoid(x) return input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_div_hardtanh_mul_1[grid(256)]( primals_1, buf2, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_hardtanh_backward_2[grid(16)](buf2, primals_3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 del primals_3 return buf3, primals_1, primals_2, buf1, buf4 class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class eSEModuleNew(nn.Module): def __init__(self, channel, reduction=4): super(eSEModuleNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Rick-960123/centermask-mdf-master
eSEModule
false
2,761
[ "BSD-2-Clause" ]
0
49388b03b9ffb06577cd28b9ddaa68cadb82e926
https://github.com/Rick-960123/centermask-mdf-master/tree/49388b03b9ffb06577cd28b9ddaa68cadb82e926
Symmetric
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4f/c4fekrlplou6jqs7d22hwo63cvbbodj3arj7a5rnr62q3dnsdcpp.py # Topologically Sorted Source Nodes: [triu, add], Original ATen: [aten.triu, aten.add] # Source node to ATen node mapping: # add => add # triu => full_default, ge, sub, where # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sub, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %arg0_1, %full_default), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_add_triu_0 = async_compile.triton('triton_poi_fused_add_triu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_triu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = (yindex // 4) tmp3 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + ((-1)*y0) tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + ((-1)*x2) tmp7 = tl.full([1, 1], 1, tl.int64) tmp8 = tmp6 >= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + (4*y3)), tmp11, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [triu, add], Original ATen: [aten.triu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_triu_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class Symmetric(nn.Module): def forward(self, X): return X.triu() + X.triu(1).transpose(-1, -2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tl.full([1, 1], 1, tl.int64) tmp8 = tmp6 >= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + 4 * y3), tmp11, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_triu_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class SymmetricNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
MartinRenaudin/tutorials
Symmetric
false
2,762
[ "BSD-3-Clause" ]
0
035d6827d77c52fed2a927f105e39fd73516f093
https://github.com/MartinRenaudin/tutorials/tree/035d6827d77c52fed2a927f105e39fd73516f093
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/i4/ci4j7o62hjlvxysby5leuec4f5mnobz3p5wi5zmgnb6pfgczycms.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_2, %repeat_1], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*((((4*x1) + x0) // 16) % 4)) + (16*((((4*x1) + (64*x2) + x0) // 64) % 4)) + ((((4*x1) + x0) % 16) % 4)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*(x1 % 4)) + (16*x2) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fy/cfyhpfvlh7v2kamyddf44ycfki2eygiwxnllf3xlbccy7vzxtcnc.py # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # e => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/c3/cc3jesmqsfkxzdmzwd3u5t52xvkpzl4rtjwuve7z2oe4uqfzknpd.py # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] # Source node to ATen node mapping: # gt => gt_1 # Graph fragment: # %gt_1 : [num_users=5] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_4, 0), kwargs = {}) triton_poi_fused_gt_2 = async_compile.triton('triton_poi_fused_gt_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/f5/cf5atbk7j66ttv4hfabzy4hlvzlgp4cmnvsrrdv7lu2mgbytrlxj.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => amax, exp, sub, sum_1 # attention_10 => amax_3, exp_3, sub_3, sum_4 # attention_3 => where_4 # attention_4 => amax_1, exp_1, sub_1, sum_2 # attention_6 => where_7 # attention_7 => amax_2, exp_2, sub_2, sum_3 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_4, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_10, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 36, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask).to(tl.int1) tmp9 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (16 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask).to(tl.int1) tmp16 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (32 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask).to(tl.int1) tmp23 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (48 + x0), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp41 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp46 = tl.load(in_ptr4 + (16 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp52 = tl.load(in_ptr4 + (32 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp58 = tl.load(in_ptr4 + (48 + x0), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp75 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp80 = tl.load(in_ptr6 + (16 + x0), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp86 = tl.load(in_ptr6 + (32 + x0), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp92 = tl.load(in_ptr6 + (48 + x0), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp109 = tl.load(in_ptr8 + (x0), xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (16 + x0), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (32 + x0), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + (x2), tmp28, xmask) tl.store(out_ptr1 + (x2), tmp39, xmask) tl.store(out_ptr2 + (x2), tmp62, xmask) tl.store(out_ptr3 + (x2), tmp73, xmask) tl.store(out_ptr4 + (x2), tmp96, xmask) tl.store(out_ptr5 + (x2), tmp107, xmask) tl.store(out_ptr6 + (x2), tmp130, xmask) tl.store(out_ptr7 + (x2), tmp141, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lu/cludl62f6qo4f34m7ejzpxdcunrj3shfeb7xo4jvuj3n5a4sh6a6.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => div, exp, sub # attention_10 => div_3, exp_3, sub_3 # attention_3 => where_4 # attention_4 => div_1, exp_1, sub_1 # attention_6 => where_7 # attention_7 => div_2, exp_2, sub_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_4), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_4 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i1', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*i1', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr5 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp14 = tl.load(in_ptr6 + (x4), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr7 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr8 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr9 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr10 + (x4), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr11 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr12 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr13 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp34 = tl.load(in_ptr14 + (x4), xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr15 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr16 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(out_ptr0 + (x3), tmp12, xmask) tl.store(out_ptr1 + (x3), tmp22, xmask) tl.store(out_ptr2 + (x3), tmp32, xmask) tl.store(out_ptr3 + (x3), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mu/cmu4dmnjb3m2bpsy345zghpbe6uqogqd4h7akjugnavnr5t7dfhe.py # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.clone] # Source node to ATen node mapping: # h_prime => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/p6/cp6dbvqyf5xgpxxdiwciohgb2ayhhg4kfwvauizjk22u4hoilsvn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat_4 # Graph fragment: # %cat_4 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%where_2, %where_5, %where_8, %where_11], 1), kwargs = {}) triton_poi_fused_cat_6 = async_compile.triton('triton_poi_fused_cat_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 16 x0 = xindex % 16 x2 = (xindex // 256) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp18 & xmask, other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (x0 + (16*((-8) + x1)) + (64*x2)), tmp30 & xmask, other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tmp40 = tl.full([1], 16, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr3 + (x0 + (16*((-12) + x1)) + (64*x2)), tmp39 & xmask, other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + (x3), tmp52, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, 512, grid=grid(512), stream=stream0) buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_gt_2.run(primals_4, buf4, 256, grid=grid(256), stream=stream0) del primals_4 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf10, buf11, 512, grid=grid(512), stream=stream0) buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf11, (64, 8), (8, 1), 0), primals_6, out=buf12) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_7, out=buf19) del primals_7 buf20 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf19, buf20, 512, grid=grid(512), stream=stream0) buf21 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_7], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf20, (64, 8), (8, 1), 0), primals_8, out=buf21) buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf21, buf22, 64, grid=grid(64), stream=stream0) buf28 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_9, out=buf28) del primals_9 buf29 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf28, buf29, 512, grid=grid(512), stream=stream0) buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_10], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf29, (64, 8), (8, 1), 0), primals_10, out=buf30) buf31 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf30, buf31, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf32 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_3.run(buf4, buf3, buf2, buf13, buf12, buf22, buf21, buf31, buf30, buf5, buf6, buf14, buf15, buf23, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf34 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_4.run(buf4, buf3, buf2, buf5, buf6, buf13, buf12, buf14, buf15, buf22, buf21, buf23, buf24, buf31, buf30, buf32, buf33, buf7, buf16, buf25, buf34, 256, grid=grid(256), stream=stream0) del buf12 del buf14 del buf15 del buf2 del buf21 del buf23 del buf24 del buf30 del buf32 del buf33 del buf5 del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf0, buf8, 256, grid=grid(256), stream=stream0) del buf0 buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf10, buf17, 256, grid=grid(256), stream=stream0) del buf10 buf18 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0), out=buf18) buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf19, buf26, 256, grid=grid(256), stream=stream0) del buf19 buf27 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf25, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 4, 1), 0), out=buf27) buf35 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf28, buf35, 256, grid=grid(256), stream=stream0) del buf28 buf36 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf34, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf35, (16, 4, 4), (16, 4, 1), 0), out=buf36) buf37 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_6.run(buf9, buf18, buf27, buf36, buf37, 1024, grid=grid(1024), stream=stream0) return (buf37, buf3, buf4, buf7, buf9, buf13, buf16, buf18, buf22, buf25, buf27, buf31, buf34, buf36, reinterpret_tensor(buf35, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf29, (8, 64), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf20, (8, 64), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf11, (8, 64), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (8, 64), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.matmul(input, self.W) N = h.size()[1] batch_size = h.size(0) a_input = torch.cat([h.repeat(1, 1, N).view(batch_size, N * N, -1), h.repeat(1, N, 1)], dim=2).view(batch_size, N, -1, 2 * self. out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GAT(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super(GAT, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 16 x2 = xindex // 128 x3 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * ((4 * x1 + x0) // 16 % 4) + 16 * ((4 * x1 + 64 * x2 + x0) // 64 % 4) + (4 * x1 + x0) % 16 % 4), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * (x1 % 4) + 16 * x2 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_gt_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask).to(tl.int1) tmp9 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (16 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask).to(tl.int1) tmp16 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (32 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask).to(tl.int1) tmp23 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (48 + x0), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp41 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp46 = tl.load(in_ptr4 + (16 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp52 = tl.load(in_ptr4 + (32 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp58 = tl.load(in_ptr4 + (48 + x0), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp75 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp80 = tl.load(in_ptr6 + (16 + x0), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp86 = tl.load(in_ptr6 + (32 + x0), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp92 = tl.load(in_ptr6 + (48 + x0), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp109 = tl.load(in_ptr8 + x0, xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp114 = tl.load(in_ptr8 + (16 + x0), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp120 = tl.load(in_ptr8 + (32 + x0), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp126 = tl.load(in_ptr8 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + x2, tmp28, xmask) tl.store(out_ptr1 + x2, tmp39, xmask) tl.store(out_ptr2 + x2, tmp62, xmask) tl.store(out_ptr3 + x2, tmp73, xmask) tl.store(out_ptr4 + x2, tmp96, xmask) tl.store(out_ptr5 + x2, tmp107, xmask) tl.store(out_ptr6 + x2, tmp130, xmask) tl.store(out_ptr7 + x2, tmp141, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr4 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr5 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp14 = tl.load(in_ptr6 + x4, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr7 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr8 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr9 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp24 = tl.load(in_ptr10 + x4, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr11 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr12 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr13 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp34 = tl.load(in_ptr14 + x4, xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr15 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp41 = tl.load(in_ptr16 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(out_ptr0 + x3, tmp12, xmask) tl.store(out_ptr1 + x3, tmp22, xmask) tl.store(out_ptr2 + x3, tmp32, xmask) tl.store(out_ptr3 + x3, tmp42, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 16 x0 = xindex % 16 x2 = xindex // 256 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp18 & xmask, other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (x0 + 16 * (-8 + x1) + 64 * x2), tmp30 & xmask, other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tl.full([1], 16, tl.int64) tmp42 = tl.load(in_ptr3 + (x0 + 16 * (-12 + x1) + 64 * x2), tmp39 & xmask, other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + x3, tmp52, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](buf0, buf1, 512, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_gt_2[grid(256)](primals_4, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) triton_poi_fused_cat_0[grid(512)](buf10, buf11, 512, XBLOCK=128, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (64, 8), (8, 1), 0), primals_6, out=buf12) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_7, out=buf19) del primals_7 buf20 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) triton_poi_fused_cat_0[grid(512)](buf19, buf20, 512, XBLOCK=128, num_warps=4, num_stages=1) buf21 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf20, (64, 8), (8, 1), 0), primals_8, out=buf21) buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf21, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_9, out=buf28) del primals_9 buf29 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) triton_poi_fused_cat_0[grid(512)](buf28, buf29, 512, XBLOCK=128, num_warps=4, num_stages=1) buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf29, (64, 8), (8, 1), 0), primals_10, out=buf30) buf31 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf30, buf31, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf32 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_3[grid(64)](buf4, buf3, buf2, buf13, buf12, buf22, buf21, buf31, buf30, buf5, buf6, buf14, buf15, buf23, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf34 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_4[grid(256)](buf4, buf3, buf2, buf5, buf6, buf13, buf12, buf14, buf15, buf22, buf21, buf23, buf24, buf31, buf30, buf32, buf33, buf7, buf16, buf25, buf34, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf12 del buf14 del buf15 del buf2 del buf21 del buf23 del buf24 del buf30 del buf32 del buf33 del buf5 del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf0, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf10, buf17, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf10 buf18 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0), out=buf18 ) buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf19, buf26, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf19 buf27 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf25, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 4, 1), 0), out=buf27 ) buf35 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf28, buf35, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf28 buf36 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf34, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf35, (16, 4, 4), (16, 4, 1), 0), out=buf36 ) buf37 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch. float32) triton_poi_fused_cat_6[grid(1024)](buf9, buf18, buf27, buf36, buf37, 1024, XBLOCK=128, num_warps=4, num_stages=1) return (buf37, buf3, buf4, buf7, buf9, buf13, buf16, buf18, buf22, buf25, buf27, buf31, buf34, buf36, reinterpret_tensor(buf35, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf29, (8, 64), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf20, (8, 64), (1, 8), 0), reinterpret_tensor( primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf11, (8, 64), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (8, 64), (1, 8), 0), reinterpret_tensor( primals_3, (1, 8), (1, 1), 0)) class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.matmul(input, self.W) N = h.size()[1] batch_size = h.size(0) a_input = torch.cat([h.repeat(1, 1, N).view(batch_size, N * N, -1), h.repeat(1, N, 1)], dim=2).view(batch_size, N, -1, 2 * self. out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super(GATNew, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, input_0, input_1): primals_2 = self.attention_0.W primals_3 = self.attention_0.a primals_5 = self.attention_1.W primals_6 = self.attention_1.a primals_7 = self.attention_2.W primals_8 = self.attention_2.a primals_9 = self.attention_3.W primals_10 = self.attention_3.a primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
Prasath2001/commonsense-rl
GAT
false
2,763
[ "Apache-2.0" ]
0
ef3e83270d34cf211b2d2086120cccae0621477b
https://github.com/Prasath2001/commonsense-rl/tree/ef3e83270d34cf211b2d2086120cccae0621477b