input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.backbones import RegNet regnet_test_data = [ ('regnetx_400mf', dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), [32, 64, 160, 384]), ('regnetx_800mf', dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), [64, 128, 288, 672]), ('regnetx_1.6gf', dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), [72, 168, 408, 912]), ('regnetx_3.2gf', dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), [96, 192, 432, 1008]), ('regnetx_4.0gf', dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), [80, 240, 560, 1360]), ('regnetx_6.4gf', dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), [168, 392, 784, 1624]), ('regnetx_8.0gf', dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), [80, 240, 720, 1920]), ('regnetx_12gf', dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), [224, 448, 896, 2240]), ] @pytest.mark.parametrize('arch_name,arch,out_channels', regnet_test_data) def test_regnet_backbone(arch_name, arch, out_channels): with pytest.raises(AssertionError): # ResNeXt depth should be in [50, 101, 152] RegNet(arch_name + '233') # Test RegNet with arch_name model = RegNet(arch_name) model.train() imgs = torch.randn(1, 3, 32, 32) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, out_channels[0], 8, 8]) assert feat[1].shape == torch.Size([1, out_channels[1], 4, 4]) assert feat[2].shape == torch.Size([1, out_channels[2], 2, 2]) assert feat[3].shape == torch.Size([1, out_channels[3], 1, 1]) # Test RegNet with arch model = RegNet(arch) assert feat[0].shape == torch.Size([1, out_channels[0], 8, 8]) assert feat[1].shape == torch.Size([1, out_channels[1], 4, 4]) assert feat[2].shape == torch.Size([1, out_channels[2], 2, 2]) assert feat[3].shape == torch.Size([1, out_channels[3], 1, 1])
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.backbones import RegNet regnet_test_data = [ ('regnetx_400mf', dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), [32, 64, 160, 384]), ('regnetx_800mf', dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), [64, 128, 288, 672]), ('regnetx_1.6gf', dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), [72, 168, 408, 912]), ('regnetx_3.2gf', dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), [96, 192, 432, 1008]), ('regnetx_4.0gf', dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), [80, 240, 560, 1360]), ('regnetx_6.4gf', dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), [168, 392, 784, 1624]), ('regnetx_8.0gf', dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), [80, 240, 720, 1920]), ('regnetx_12gf', dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), [224, 448, 896, 2240]), ] @pytest.mark.parametrize('arch_name,arch,out_channels', regnet_test_data) def test_regnet_backbone(arch_name, arch, out_channels): with pytest.raises(AssertionError): # ResNeXt depth should be in [50, 101, 152] RegNet(arch_name + '233') # Test RegNet with arch_name model = RegNet(arch_name) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, out_channels[0], 56, 56]) assert feat[1].shape == torch.Size([1, out_channels[1], 28, 28]) assert feat[2].shape == torch.Size([1, out_channels[2], 14, 14]) assert feat[3].shape == torch.Size([1, out_channels[3], 7, 7]) # Test RegNet with arch model = RegNet(arch) assert feat[0].shape == torch.Size([1, out_channels[0], 56, 56]) assert feat[1].shape == torch.Size([1, out_channels[1], 28, 28]) assert feat[2].shape == torch.Size([1, out_channels[2], 14, 14]) assert feat[3].shape == torch.Size([1, out_channels[3], 7, 7])
import pytest from hubble.executor.hubio import HubIO from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_pod_parser @pytest.mark.skip('jinahub not available') @pytest.mark.parametrize('uses', ['jinaai+docker://jina-ai/DummyExecutor']) def test_container_pod(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_pull(self): return 'docker://jinahub/dummy_executor' monkeypatch.setattr(HubIO, 'pull', _mock_pull) args = set_pod_parser().parse_args(['--uses', uses]) pod = PodFactory.build_pod(args) assert pod.args.uses == 'docker://jinahub/dummy_executor' assert pod.name == 'ContainerPod'
import pytest from hubble.executor.hubio import HubIO from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_pod_parser @pytest.mark.parametrize('uses', ['jinaai+docker://jina-ai/DummyExecutor']) def test_container_pod(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_pull(self): return 'docker://jinahub/dummy_executor' monkeypatch.setattr(HubIO, 'pull', _mock_pull) args = set_pod_parser().parse_args(['--uses', uses]) pod = PodFactory.build_pod(args) assert pod.args.uses == 'docker://jinahub/dummy_executor' assert pod.name == 'ContainerPod'
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestGLIP(TestCase): def setUp(self): register_all_modules() @parameterized.expand( ['glip/glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.registry import MODELS detector = MODELS.build(model) self.assertTrue(detector.backbone) self.assertTrue(detector.language_model) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) @parameterized.expand([ ('glip/glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py', ('cpu', 'cuda')) ]) def test_glip_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() # test custom_entities is True packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], texts=['a', 'b'], custom_entities=True) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample) # test custom_entities is False # packed_inputs = demo_mm_inputs( # 2, [[3, 128, 128], [3, 125, 130]], # texts=['a', 'b'], # custom_entities=False) # data = detector.data_preprocessor(packed_inputs, False) # # Test forward test # detector.eval() # with torch.no_grad(): # batch_results = detector.forward(**data, mode='predict') # self.assertEqual(len(batch_results), 2) # self.assertIsInstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestGLIP(TestCase): def setUp(self): register_all_modules() @parameterized.expand( ['glip/glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.registry import MODELS detector = MODELS.build(model) self.assertTrue(detector.backbone) self.assertTrue(detector.language_model) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) @parameterized.expand([ ('glip/glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py', ('cpu', 'cuda')) ]) def test_glip_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() # test custom_entities is True packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], texts=['a', 'b'], custom_entities=True) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample) # test custom_entities is False packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], texts=['a', 'b'], custom_entities=False) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
from typing import List from pydantic import BaseModel from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class ContentRetrievalSettings(BaseModel): text: dict = SchemaField( description="Text content settings", default={"maxCharacters": 1000, "includeHtmlTags": False}, advanced=True, ) highlights: dict = SchemaField( description="Highlight settings", default={ "numSentences": 3, "highlightsPerUrl": 3, "query": "", }, advanced=True, ) summary: dict = SchemaField( description="Summary settings", default={"query": ""}, advanced=True, ) class ExaContentsBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() ids: List[str] = SchemaField( description="Array of document IDs obtained from searches", ) contents: ContentRetrievalSettings = SchemaField( description="Content retrieval settings", default=ContentRetrievalSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of document contents", default_factory=list, ) error: str = SchemaField(description="Error message if the request failed") def __init__(self): super().__init__( id="c52be83f-f8cd-4180-b243-af35f986b461", description="Retrieves document contents using Exa's contents API", categories={BlockCategory.SEARCH}, input_schema=ExaContentsBlock.Input, output_schema=ExaContentsBlock.Output, ) async def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/contents" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "ids": input_data.ids, "text": input_data.contents.text, "highlights": input_data.contents.highlights, "summary": input_data.contents.summary, } try: response = await Requests().post(url, headers=headers, json=payload) data = response.json() yield "results", data.get("results", []) except Exception as e: yield "error", str(e)
from typing import List from pydantic import BaseModel from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class ContentRetrievalSettings(BaseModel): text: dict = SchemaField( description="Text content settings", default={"maxCharacters": 1000, "includeHtmlTags": False}, advanced=True, ) highlights: dict = SchemaField( description="Highlight settings", default={ "numSentences": 3, "highlightsPerUrl": 3, "query": "", }, advanced=True, ) summary: dict = SchemaField( description="Summary settings", default={"query": ""}, advanced=True, ) class ExaContentsBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() ids: List[str] = SchemaField( description="Array of document IDs obtained from searches", ) contents: ContentRetrievalSettings = SchemaField( description="Content retrieval settings", default=ContentRetrievalSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of document contents", default_factory=list, ) error: str = SchemaField(description="Error message if the request failed") def __init__(self): super().__init__( id="c52be83f-f8cd-4180-b243-af35f986b461", description="Retrieves document contents using Exa's contents API", categories={BlockCategory.SEARCH}, input_schema=ExaContentsBlock.Input, output_schema=ExaContentsBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/contents" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "ids": input_data.ids, "text": input_data.contents.text, "highlights": input_data.contents.highlights, "summary": input_data.contents.summary, } try: response = Requests().post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() yield "results", data.get("results", []) except Exception as e: yield "error", str(e)
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import interpolate_as, sigmoid_geometric_mean from .normed_predictor import NormedConv2d, NormedLinear from .panoptic_gt_processing import preprocess_panoptic_gt from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import DyReLU, SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', 'preprocess_panoptic_gt', 'DyReLU' ]
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import interpolate_as, sigmoid_geometric_mean from .normed_predictor import NormedConv2d, NormedLinear from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean' ]
import numpy as np import pytest from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class CanaryLayer(layers.Layer): def __init__(self): super().__init__() self.training = None self.received_mask = False def call(self, x, training=False, mask=None): self.training = training if mask is not None: self.received_mask = True return x def compute_mask(self, x, mask=None): return x def compute_output_shape(self, input_shape): return input_shape class PipelineTest(testing.TestCase): def test_basics(self): run_training_check = False if backend.backend() == "numpy" else True self.run_layer_test( layers.Pipeline, init_kwargs={ "layers": [layers.AutoContrast(), layers.RandomBrightness(0.1)], }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), run_mixed_precision_check=False, run_training_check=run_training_check, ) @pytest.mark.skipif( backend.backend() == "numpy", reason="masking not working in numpy" ) def test_correctness(self): pipeline = layers.Pipeline([CanaryLayer(), CanaryLayer()]) x = np.array([0]) mask = np.array([0]) pipeline(x, training=True, mask=mask) self.assertTrue(pipeline.layers[0].training) self.assertTrue(pipeline.layers[0].received_mask) self.assertTrue(pipeline.layers[1].training) self.assertTrue(pipeline.layers[1].received_mask) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (2, 10, 12, 3) output_shape = (2, 8, 9, 3) else: input_shape = (2, 3, 10, 12) output_shape = (2, 3, 8, 9) layer = layers.Pipeline( [ layers.AutoContrast(), layers.CenterCrop(8, 9), ] ) input_data = np.random.random(input_shape) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output = output.numpy() self.assertEqual(tuple(output.shape), output_shape) def test_from_config(self): pipeline = layers.Pipeline( [ layers.AutoContrast(), layers.CenterCrop(8, 9), ] ) x = np.ones((2, 10, 12, 3)) output = pipeline(x) restored = layers.Pipeline.from_config(pipeline.get_config()) restored_output = restored(x) self.assertEqual(tuple(output.shape), (2, 8, 9, 3)) self.assertAllClose(output, restored_output)
import numpy as np import pytest from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class CanaryLayer(layers.Layer): def __init__(self): super().__init__() self.training = None self.received_mask = False def call(self, x, training=False, mask=None): self.training = training if mask is not None: self.received_mask = True return x def compute_mask(self, x, mask=None): return x def compute_output_shape(self, input_shape): return input_shape class PipelineTest(testing.TestCase): def test_basics(self): run_training_check = False if backend.backend() == "numpy" else True self.run_layer_test( layers.Pipeline, init_kwargs={ "layers": [layers.AutoContrast(), layers.RandomBrightness(0.1)], }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), run_mixed_precision_check=False, run_training_check=run_training_check, ) @pytest.mark.skipif( backend.backend() == "numpy", reason="masking not working in numpy" ) def test_correctness(self): pipeline = layers.Pipeline([CanaryLayer(), CanaryLayer()]) x = np.array([0]) mask = np.array([0]) pipeline(x, training=True, mask=mask) self.assertTrue(pipeline.layers[0].training) self.assertTrue(pipeline.layers[0].received_mask) self.assertTrue(pipeline.layers[1].training) self.assertTrue(pipeline.layers[1].received_mask) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (2, 10, 12, 3) output_shape = (2, 8, 9, 3) else: input_shape = (2, 3, 10, 12) output_shape = (2, 3, 8, 9) layer = layers.Pipeline( [ layers.AutoContrast(), layers.CenterCrop(8, 9), ] ) input_data = np.random.random(input_shape) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output = output.numpy() self.assertEqual(tuple(output.shape), output_shape)
""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ import gzip import json import os from sentence_transformers import SentenceTransformer, util # Load the model we trained in 2_programming_train_bi-encoder.py model = SentenceTransformer("output/programming-model") # Load the corpus docs = [] corpus_filepath = "wiki-programmming-20210101.jsonl.gz" if not os.path.exists(corpus_filepath): util.http_get("https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz", corpus_filepath) with gzip.open(corpus_filepath, "rt") as fIn: for line in fIn: data = json.loads(line.strip()) title = data["title"] for p in data["paragraphs"]: if len(p) > 100: # Only take paragraphs with at least 100 chars docs.append((title, p)) paragraph_emb = model.encode([d[1] for d in docs], convert_to_tensor=True) print("Available Wikipedia Articles:") print(", ".join(sorted(list(set([d[0] for d in docs]))))) # Example for semantic search while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, paragraph_emb, top_k=3)[0] for hit in hits: doc = docs[hit["corpus_id"]] print("{:.2f}\t{}\t\t{}".format(hit["score"], doc[0], doc[1])) print("\n=================\n")
""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ from sentence_transformers import SentenceTransformer, util import gzip import json import os # Load the model we trained in 2_programming_train_bi-encoder.py model = SentenceTransformer("output/programming-model") # Load the corpus docs = [] corpus_filepath = "wiki-programmming-20210101.jsonl.gz" if not os.path.exists(corpus_filepath): util.http_get("https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz", corpus_filepath) with gzip.open(corpus_filepath, "rt") as fIn: for line in fIn: data = json.loads(line.strip()) title = data["title"] for p in data["paragraphs"]: if len(p) > 100: # Only take paragraphs with at least 100 chars docs.append((title, p)) paragraph_emb = model.encode([d[1] for d in docs], convert_to_tensor=True) print("Available Wikipedia Articles:") print(", ".join(sorted(list(set([d[0] for d in docs]))))) # Example for semantic search while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, paragraph_emb, top_k=3)[0] for hit in hits: doc = docs[hit["corpus_id"]] print("{:.2f}\t{}\t\t{}".format(hit["score"], doc[0], doc[1])) print("\n=================\n")
"""Test Fireworks API wrapper. In order to run this test, you need to have an Fireworks api key. You can get it by registering for free at https://api.fireworks.ai/. A test key can be found at https://api.fireworks.ai/settings/api-keys You'll then need to set FIREWORKS_API_KEY environment variable to your api key. """ import pytest as pytest from langchain_fireworks import Fireworks _MODEL = "accounts/fireworks/models/llama-v3p1-8b-instruct" def test_fireworks_call() -> None: """Test simple call to fireworks.""" llm = Fireworks( model=_MODEL, temperature=0.2, max_tokens=250, ) output = llm.invoke("Say foo:") assert llm._llm_type == "fireworks" assert isinstance(output, str) assert len(output) > 0 async def test_fireworks_acall() -> None: """Test simple call to fireworks.""" llm = Fireworks( model=_MODEL, temperature=0.2, max_tokens=250, ) output = await llm.agenerate(["Say foo:"], stop=["bar"]) assert llm._llm_type == "fireworks" output_text = output.generations[0][0].text assert isinstance(output_text, str) assert output_text.count("bar") <= 1 def test_stream() -> None: """Test streaming tokens from OpenAI.""" llm = Fireworks(model=_MODEL) for token in llm.stream("I'm Pickle Rick"): assert isinstance(token, str) async def test_astream() -> None: """Test streaming tokens from OpenAI.""" llm = Fireworks(model=_MODEL) async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token, str) async def test_abatch() -> None: """Test streaming tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_abatch_tags() -> None: """Test batch tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token, str) def test_batch() -> None: """Test batch tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_ainvoke() -> None: """Test invoke tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result, str) def test_invoke() -> None: """Test invoke tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = llm.invoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result, str)
"""Test Fireworks API wrapper. In order to run this test, you need to have an Fireworks api key. You can get it by registering for free at https://api.fireworks.ai/. A test key can be found at https://api.fireworks.ai/settings/api-keys You'll then need to set FIREWORKS_API_KEY environment variable to your api key. """ import pytest as pytest from langchain_fireworks import Fireworks _MODEL = "accounts/fireworks/models/llama-v3p1-8b-instruct" def test_fireworks_call() -> None: """Test simple call to fireworks.""" llm = Fireworks( model=_MODEL, temperature=0.2, max_tokens=250, ) output = llm.invoke("Say foo:") assert llm._llm_type == "fireworks" assert isinstance(output, str) assert len(output) > 0 async def test_fireworks_acall() -> None: """Test simple call to fireworks.""" llm = Fireworks( model=_MODEL, temperature=0.2, max_tokens=250, ) output = await llm.agenerate(["Say foo:"], stop=["bar"]) assert llm._llm_type == "fireworks" output_text = output.generations[0][0].text assert isinstance(output_text, str) assert output_text.count("bar") <= 1 def test_stream() -> None: """Test streaming tokens from OpenAI.""" llm = Fireworks(model=_MODEL) for token in llm.stream("I'm Pickle Rick"): assert isinstance(token, str) async def test_astream() -> None: """Test streaming tokens from OpenAI.""" llm = Fireworks(model=_MODEL) async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token, str) async def test_abatch() -> None: """Test streaming tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_abatch_tags() -> None: """Test batch tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token, str) def test_batch() -> None: """Test batch tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_ainvoke() -> None: """Test invoke tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result, str) def test_invoke() -> None: """Test invoke tokens from Fireworks.""" llm = Fireworks(model=_MODEL) result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result, str)
from typing import Any # noqa: F401 from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.torch_tensor import TorchTensor torch_base = type(TorchTensor) # type: Any embedding_base = type(EmbeddingMixin) # type: Any class metaTorchAndEmbedding(torch_base, embedding_base): pass @_register_proto(proto_type_name='torch_embedding') class TorchEmbedding(TorchTensor, EmbeddingMixin, metaclass=metaTorchAndEmbedding): alternative_type = TorchTensor def new_empty(self, *args, **kwargs): """ This method enables the deepcopy of TorchEmbedding by returning another instance of this subclass. If this function is not implemented, the deepcopy will throw an RuntimeError from Torch. """ return self.__class__(TorchTensor.new_empty(self, *args, **kwargs))
from typing import Any # noqa: F401 from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.torch_tensor import TorchTensor torch_base = type(TorchTensor) # type: Any embedding_base = type(EmbeddingMixin) # type: Any class metaTorchAndEmbedding(torch_base, embedding_base): pass @_register_proto(proto_type_name='torch_embedding') class TorchEmbedding(TorchTensor, EmbeddingMixin, metaclass=metaTorchAndEmbedding): alternative_type = TorchTensor
from typing import TYPE_CHECKING, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic.networks import Parts from docarray.proto import NodeProto T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, AbstractType): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(any_url=str(self)) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path. """ scheme = parts['scheme'] if scheme is None: pass # allow missing scheme, unlike pydantic elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
from typing import TYPE_CHECKING, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.proto import NodeProto from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic.networks import Parts T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, AbstractType): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(any_url=str(self)) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path. """ scheme = parts['scheme'] if scheme is None: pass # allow missing scheme, unlike pydantic elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
from llama_index.core.base.llms.base import BaseLLM from llama_index.llms.huggingface import HuggingFaceLLM def test_embedding_class(): names_of_base_classes = [b.__name__ for b in HuggingFaceLLM.__mro__] assert BaseLLM.__name__ in names_of_base_classes
from llama_index.core.base.llms.base import BaseLLM from llama_index.llms.huggingface import HuggingFaceInferenceAPI, HuggingFaceLLM def test_embedding_class(): names_of_base_classes = [b.__name__ for b in HuggingFaceInferenceAPI.__mro__] assert BaseLLM.__name__ in names_of_base_classes names_of_base_classes = [b.__name__ for b in HuggingFaceLLM.__mro__] assert BaseLLM.__name__ in names_of_base_classes
import numpy as np from docarray import Image from docarray.typing import Tensor def test_image(): image = Image(uri='http://jina.ai') image.tensor = image.uri.load() assert isinstance(image.tensor, np.ndarray)
from docarray import Image from docarray.typing import Tensor def test_image(): image = Image(uri='http://jina.ai') image.tensor = image.uri.load() assert isinstance(image.tensor, Tensor)
from llama_index_instrumentation.span_handlers.base import BaseSpanHandler, T # noqa
import inspect import threading from abc import abstractmethod from typing import Any, Dict, List, Generic, Optional, TypeVar from llama_index.core.bridge.pydantic import BaseModel, Field, PrivateAttr, ConfigDict from llama_index.core.instrumentation.span.base import BaseSpan T = TypeVar("T", bound=BaseSpan) class BaseSpanHandler(BaseModel, Generic[T]): model_config = ConfigDict(arbitrary_types_allowed=True) open_spans: Dict[str, T] = Field( default_factory=dict, description="Dictionary of open spans." ) completed_spans: List[T] = Field( default_factory=list, description="List of completed spans." ) dropped_spans: List[T] = Field( default_factory=list, description="List of completed spans." ) current_span_ids: Dict[Any, Optional[str]] = Field( default={}, description="Id of current spans in a given thread." ) _lock: Optional[threading.Lock] = PrivateAttr() def __init__( self, open_spans: Dict[str, T] = {}, completed_spans: List[T] = [], dropped_spans: List[T] = [], current_span_ids: Dict[Any, str] = {}, ): super().__init__( open_spans=open_spans, completed_spans=completed_spans, dropped_spans=dropped_spans, current_span_ids=current_span_ids, ) self._lock = None def class_name(cls) -> str: """Class name.""" return "BaseSpanHandler" @property def lock(self) -> threading.Lock: if self._lock is None: self._lock = threading.Lock() return self._lock def span_enter( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, parent_id: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Logic for entering a span.""" if id_ in self.open_spans: pass # should probably raise an error here else: span = self.new_span( id_=id_, bound_args=bound_args, instance=instance, parent_span_id=parent_id, tags=tags, ) if span: with self.lock: self.open_spans[id_] = span def span_exit( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, result: Optional[Any] = None, **kwargs: Any, ) -> None: """Logic for exiting a span.""" span = self.prepare_to_exit_span( id_=id_, bound_args=bound_args, instance=instance, result=result ) if span: with self.lock: del self.open_spans[id_] def span_drop( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, err: Optional[BaseException] = None, **kwargs: Any, ) -> None: """Logic for dropping a span i.e. early exit.""" span = self.prepare_to_drop_span( id_=id_, bound_args=bound_args, instance=instance, err=err ) if span: with self.lock: del self.open_spans[id_] @abstractmethod def new_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, parent_span_id: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Optional[T]: """ Create a span. Subclasses of BaseSpanHandler should create the respective span type T and return it. Only NullSpanHandler should return a None here. """ ... @abstractmethod def prepare_to_exit_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, result: Optional[Any] = None, **kwargs: Any, ) -> Optional[T]: """ Logic for preparing to exit a span. Subclasses of BaseSpanHandler should return back the specific span T that is to be exited. If None is returned, then the span won't actually be exited. """ ... @abstractmethod def prepare_to_drop_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, err: Optional[BaseException] = None, **kwargs: Any, ) -> Optional[T]: """ Logic for preparing to drop a span. Subclasses of BaseSpanHandler should return back the specific span T that is to be dropped. If None is returned, then the span won't actually be dropped. """ ...
from typing import Union, TextIO, BinaryIO, TYPE_CHECKING, Type if TYPE_CHECKING: from docarray.typing import T class CommonIOMixin: """The common IO helper function for arrays.""" def save( self, file: Union[str, TextIO, BinaryIO], file_format: str = 'binary', encoding: str = 'utf-8', ) -> None: """Save array elements into a JSON, a binary file or a CSV file. :param file: File or filename to which the data is saved. :param file_format: `json` or `binary` or `csv`. JSON and CSV files are human-readable, but binary format gives much smaller size and faster save/load speed. Note that, CSV file has very limited compatability, complex DocumentArray with nested structure can not be restored from a CSV file. :param encoding: encoding used to save data into a file (it only applies to `JSON` and `CSV` format). By default, ``utf-8`` is used. """ if file_format == 'json': self.save_json(file, encoding=encoding) elif file_format == 'binary': self.save_binary(file) elif file_format == 'csv': self.save_csv(file, encoding=encoding) else: raise ValueError('`format` must be one of [`json`, `binary`, `csv`]') @classmethod def load( cls: Type['T'], file: Union[str, TextIO, BinaryIO], file_format: str = 'binary', encoding: str = 'utf-8', **kwargs ) -> 'T': """Load array elements from a JSON or a binary file, or a CSV file. :param file: File or filename to which the data is saved. :param file_format: `json` or `binary` or `csv`. JSON and CSV files are human-readable, but binary format gives much smaller size and faster save/load speed. CSV file has very limited compatability, complex DocumentArray with nested structure can not be restored from a CSV file. :param encoding: encoding used to load data from a file (it only applies to `JSON` and `CSV` format). By default, ``utf-8`` is used. :return: the loaded DocumentArray object """ if file_format == 'json': return cls.load_json(file, encoding=encoding, **kwargs) elif file_format == 'binary': return cls.load_binary(file) elif file_format == 'csv': return cls.load_csv(file, encoding=encoding) else: raise ValueError('`format` must be one of [`json`, `binary`, `csv`]')
from typing import Union, TextIO, BinaryIO, TYPE_CHECKING, Type if TYPE_CHECKING: from ....typing import T class CommonIOMixin: """The common IO helper function for arrays.""" def save( self, file: Union[str, TextIO, BinaryIO], file_format: str = 'binary', encoding: str = 'utf-8', ) -> None: """Save array elements into a JSON, a binary file or a CSV file. :param file: File or filename to which the data is saved. :param file_format: `json` or `binary` or `csv`. JSON and CSV files are human-readable, but binary format gives much smaller size and faster save/load speed. Note that, CSV file has very limited compatability, complex DocumentArray with nested structure can not be restored from a CSV file. :param encoding: encoding used to save data into a file (it only applies to `JSON` and `CSV` format). By default, ``utf-8`` is used. """ if file_format == 'json': self.save_json(file, encoding=encoding) elif file_format == 'binary': self.save_binary(file) elif file_format == 'csv': self.save_csv(file, encoding=encoding) else: raise ValueError('`format` must be one of [`json`, `binary`, `csv`]') @classmethod def load( cls: Type['T'], file: Union[str, TextIO, BinaryIO], file_format: str = 'binary', encoding: str = 'utf-8', **kwargs ) -> 'T': """Load array elements from a JSON or a binary file, or a CSV file. :param file: File or filename to which the data is saved. :param file_format: `json` or `binary` or `csv`. JSON and CSV files are human-readable, but binary format gives much smaller size and faster save/load speed. CSV file has very limited compatability, complex DocumentArray with nested structure can not be restored from a CSV file. :param encoding: encoding used to load data from a file (it only applies to `JSON` and `CSV` format). By default, ``utf-8`` is used. :return: the loaded DocumentArray object """ if file_format == 'json': return cls.load_json(file, encoding=encoding, **kwargs) elif file_format == 'binary': return cls.load_binary(file) elif file_format == 'csv': return cls.load_csv(file, encoding=encoding) else: raise ValueError('`format` must be one of [`json`, `binary`, `csv`]')
""" This example computes the score between a query and all possible sentences in a corpus using a Cross-Encoder for semantic textual similarity (STS). It output then the most similar sentences for the given query. """ import numpy as np from sentence_transformers.cross_encoder import CrossEncoder # Pre-trained cross encoder model = CrossEncoder("cross-encoder/stsb-distilroberta-base") # We want to compute the similarity between the query sentence query = "A man is eating pasta." # With all sentences in the corpus corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # 1. We rank all sentences in the corpus for the query ranks = model.rank(query, corpus) # Print the scores print("Query:", query) for rank in ranks: print(f"{rank['score']:.2f}\t{corpus[rank['corpus_id']]}") # 2. Alternatively, you can also manually compute the score between two sentences sentence_combinations = [[query, sentence] for sentence in corpus] scores = model.predict(sentence_combinations) # Sort the scores in decreasing order to get the corpus indices ranked_indices = np.argsort(scores)[::-1] print("scores:", scores) print("indices:", ranked_indices)
""" This example computes the score between a query and all possible sentences in a corpus using a Cross-Encoder for semantic textual similarity (STS). It output then the most similar sentences for the given query. """ from sentence_transformers.cross_encoder import CrossEncoder import numpy as np # Pre-trained cross encoder model = CrossEncoder("cross-encoder/stsb-distilroberta-base") # We want to compute the similarity between the query sentence query = "A man is eating pasta." # With all sentences in the corpus corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # 1. We rank all sentences in the corpus for the query ranks = model.rank(query, corpus) # Print the scores print("Query:", query) for rank in ranks: print(f"{rank['score']:.2f}\t{corpus[rank['corpus_id']]}") # 2. Alternatively, you can also manually compute the score between two sentences sentence_combinations = [[query, sentence] for sentence in corpus] scores = model.predict(sentence_combinations) # Sort the scores in decreasing order to get the corpus indices ranked_indices = np.argsort(scores)[::-1] print("scores:", scores) print("indices:", ranked_indices)
"""Tests related to the `DataIter` interface.""" from typing import Callable, Optional import numpy as np from xgboost import testing as tm from ..compat import import_cupy from ..core import DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): cp = import_cupy() X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, cache=None, on_host=False) Xy_0 = QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1) def check_invalid_cat_batches(device: str) -> None: """Check error message for inconsistent feature types.""" class _InvalidCatIter(DataIter): def __init__(self) -> None: super().__init__(cache_prefix=None) self._it = 0 def next(self, input_data: Callable) -> bool: if self._it == 2: return False X, y = tm.make_categorical( 64, 12, 4, onehot=False, sparsity=0.5, cat_ratio=1.0 if self._it == 0 else 0.5, ) if device == "cuda": import cudf import cupy X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0 it = _InvalidCatIter() import pytest with pytest.raises(ValueError, match="Inconsistent number of categories between"): ExtMemQuantileDMatrix(it, enable_categorical=True) with pytest.raises(ValueError, match="Inconsistent number of categories between"): QuantileDMatrix(it, enable_categorical=True) with pytest.raises(ValueError, match="Inconsistent feature types"): DMatrix(it, enable_categorical=True) def check_uneven_sizes(device: str) -> None: """Tests for having irregular data shapes.""" batches = [ tm.make_regression(n_samples, 16, use_cupy=device == "cuda") for n_samples in [512, 256, 1024] ] unzip = list(zip(*batches)) it = tm.IteratorForTest(unzip[0], unzip[1], None, cache="cache", on_host=True) Xy = DMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) Xy = ExtMemQuantileDMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) class CatIter(DataIter): # pylint: disable=too-many-instance-attributes """An iterator for testing categorical features.""" def __init__( # pylint: disable=too-many-arguments,too-many-locals self, n_samples_per_batch: int, n_features: int, *, n_batches: int, n_cats: int, sparsity: float, cat_ratio: float, onehot: bool, device: str, cache: Optional[str], ) -> None: super().__init__(cache_prefix=cache) self.n_batches = n_batches self.device = device n_samples = n_samples_per_batch * n_batches cat, y = tm.make_categorical( n_samples, n_features, n_categories=n_cats, onehot=onehot, cat_ratio=cat_ratio, sparsity=sparsity, ) xs, ys = [], [] prev = 0 for _ in range(n_batches): n = min(n_samples_per_batch, n_samples - prev) X = cat.iloc[prev : prev + n, :] xs.append(X) ys.append(y[prev : prev + n]) prev += n_samples_per_batch self.xs = xs self.ys = ys self.x = cat self.y = y self._it = 0 def xy(self) -> tuple: """Return the concatenated data.""" return self.x, self.y def next(self, input_data: Callable) -> bool: if self._it == self.n_batches: return False X, y = self.xs[self._it], self.ys[self._it] if self.device == "cuda": import cudf import cupy X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0
"""Tests related to the `DataIter` interface.""" from typing import Callable, Optional import numpy as np from xgboost import testing as tm from ..compat import import_cupy from ..core import DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): cp = import_cupy() X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, cache=None, on_host=False) Xy_0 = QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1) def check_invalid_cat_batches(device: str) -> None: """Check error message for inconsistent feature types.""" class _InvalidCatIter(DataIter): def __init__(self) -> None: super().__init__(cache_prefix=None) self._it = 0 def next(self, input_data: Callable) -> bool: if self._it == 2: return False X, y = tm.make_categorical( 64, 12, 4, onehot=False, sparsity=0.5, cat_ratio=1.0 if self._it == 0 else 0.5, ) if device == "cuda": import cudf import cupy X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0 it = _InvalidCatIter() import pytest with pytest.raises(ValueError, match="Inconsistent feature types between batches"): ExtMemQuantileDMatrix(it, enable_categorical=True) def check_uneven_sizes(device: str) -> None: """Tests for having irregular data shapes.""" batches = [ tm.make_regression(n_samples, 16, use_cupy=device == "cuda") for n_samples in [512, 256, 1024] ] unzip = list(zip(*batches)) it = tm.IteratorForTest(unzip[0], unzip[1], None, cache="cache", on_host=True) Xy = DMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) Xy = ExtMemQuantileDMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) class CatIter(DataIter): # pylint: disable=too-many-instance-attributes """An iterator for testing categorical features.""" def __init__( # pylint: disable=too-many-arguments,too-many-locals self, n_samples_per_batch: int, n_features: int, *, n_batches: int, n_cats: int, sparsity: float, cat_ratio: float, onehot: bool, device: str, cache: Optional[str], ) -> None: super().__init__(cache_prefix=cache) self.n_batches = n_batches self.device = device n_samples = n_samples_per_batch * n_batches cat, y = tm.make_categorical( n_samples, n_features, n_categories=n_cats, onehot=onehot, cat_ratio=cat_ratio, sparsity=sparsity, ) xs, ys = [], [] prev = 0 for _ in range(n_batches): n = min(n_samples_per_batch, n_samples - prev) X = cat.iloc[prev : prev + n, :] xs.append(X) ys.append(y[prev : prev + n]) prev += n_samples_per_batch self.xs = xs self.ys = ys self.x = cat self.y = y self._it = 0 def xy(self) -> tuple: """Return the concatenated data.""" return self.x, self.y def next(self, input_data: Callable) -> bool: if self._it == self.n_batches: return False X, y = self.xs[self._it], self.ys[self._it] if self.device == "cuda": import cudf import cupy X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0
from keras.src import ops from keras.src.api_export import keras_export from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.layers.layer import Layer from keras.src.ops import operation_utils @keras_export("keras.layers.Reshape") class Reshape(Layer): """Layer that reshapes inputs into the given shape. Args: target_shape: Target shape. Tuple of integers, does not include the samples dimension (batch size). Input shape: Arbitrary, although all dimensions in the input shape must be known/fixed. Use the keyword argument `input_shape` (tuple of integers, does not include the samples/batch size axis) when using this layer as the first layer in a model. Output shape: `(batch_size, *target_shape)` Example: >>> x = keras.Input(shape=(12,)) >>> y = keras.layers.Reshape((3, 4))(x) >>> y.shape (None, 3, 4) >>> # also supports shape inference using `-1` as dimension >>> y = keras.layers.Reshape((-1, 2, 2))(x) >>> y.shape (None, 3, 2, 2) """ def __init__(self, target_shape, **kwargs): super().__init__(**kwargs) self.target_shape = tuple(target_shape) def compute_output_shape(self, input_shape): return ( input_shape[0], *operation_utils.compute_reshape_output_shape( input_shape[1:], self.target_shape, "target_shape" ), ) def compute_output_spec(self, inputs): output_shape = self.compute_output_shape(inputs.shape) return KerasTensor( shape=output_shape, dtype=inputs.dtype, sparse=inputs.sparse ) def build(self, input_shape): sample_output_shape = operation_utils.compute_reshape_output_shape( input_shape[1:], self.target_shape, "target_shape" ) self._resolved_target_shape = tuple( -1 if d is None else d for d in sample_output_shape ) def call(self, inputs): return ops.reshape( inputs, (ops.shape(inputs)[0],) + self._resolved_target_shape ) def get_config(self): config = {"target_shape": self.target_shape} base_config = super().get_config() return {**base_config, **config}
from keras.src import ops from keras.src.api_export import keras_export from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.layers.layer import Layer from keras.src.ops import operation_utils @keras_export("keras.layers.Reshape") class Reshape(Layer): """Layer that reshapes inputs into the given shape. Args: target_shape: Target shape. Tuple of integers, does not include the samples dimension (batch size). Input shape: Arbitrary, although all dimensions in the input shape must be known/fixed. Use the keyword argument `input_shape` (tuple of integers, does not include the samples/batch size axis) when using this layer as the first layer in a model. Output shape: `(batch_size, *target_shape)` Example: >>> x = keras.Input(shape=(12,)) >>> y = keras.layers.Reshape((3, 4))(x) >>> y.shape (None, 3, 4) >>> # also supports shape inference using `-1` as dimension >>> y = keras.layers.Reshape((-1, 2, 2))(x) >>> y.shape (None, 3, 2, 2) """ def __init__(self, target_shape, **kwargs): super().__init__(**kwargs) self.target_shape = tuple(target_shape) def compute_output_shape(self, input_shape): return ( input_shape[0], *operation_utils.compute_reshape_output_shape( input_shape[1:], self.target_shape, "target_shape" ), ) def compute_output_spec(self, inputs): output_shape = self.compute_output_shape(inputs.shape) return KerasTensor( shape=output_shape, dtype=inputs.dtype, sparse=inputs.sparse ) def build(self, input_shape): sample_output_shape = operation_utils.compute_reshape_output_shape( input_shape[1:], self.target_shape, "target_shape" ) self._resolved_target_shape = tuple( -1 if d is None else d for d in sample_output_shape ) self.built = True def call(self, inputs): return ops.reshape( inputs, (ops.shape(inputs)[0],) + self._resolved_target_shape ) def get_config(self): config = {"target_shape": self.target_shape} base_config = super().get_config() return {**base_config, **config}
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.data_elements import SampleList from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType from ..utils.misc import unpack_gt_instances from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ outputs = unpack_gt_instances(batch_data_samples) batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = outputs # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.loss(x, label_assignment_results, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) return losses
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.core import ConfigType, OptConfigType, SampleList from mmdet.registry import MODELS from ..utils.misc import unpack_gt_instances from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ outputs = unpack_gt_instances(batch_data_samples) batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = outputs # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.loss(x, label_assignment_results, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) return losses
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.models import conv_tasnet_base, hdemucs_high @dataclass class SourceSeparationBundle: """torchaudio.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained Source Separation pipeline with *ConvTasNet* [:footcite:`Luo_2019`] trained on *Libri2Mix dataset* [:footcite:`cosentino2020librimix`]. The source separation model is constructed by :py:func:`torchaudio.models.conv_tasnet_base` and is trained using the training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB_PLUS = SourceSeparationBundle( _model_path="models/hdemucs_high_trained.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB_PLUS.__doc__ = """Pre-trained *Hybrid Demucs* [:footcite:`defossez2021hybrid`] pipeline for music source separation trained on MUSDB-HQ [:footcite:`MUSDB18HQ`] and additional internal training data. The model is constructed by :py:func:`torchaudio.prototype.models.hdemucs_high`. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB = SourceSeparationBundle( _model_path="models/hdemucs_high_musdbhq_only.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB.__doc__ = """Pre-trained *Hybrid Demucs* [:footcite:`defossez2021hybrid`] pipeline for music source separation trained on MUSDB-HQ [:footcite:`MUSDB18HQ`]. The model is constructed by :py:func:`torchaudio.prototype.models.hdemucs_high`. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.models import conv_tasnet_base @dataclass class SourceSeparationBundle: """torchaudio.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained Source Separation pipeline with *ConvTasNet* [:footcite:`Luo_2019`] trained on *Libri2Mix dataset* [:footcite:`cosentino2020librimix`]. The source separation model is constructed by :py:func:`torchaudio.models.conv_tasnet_base` and is trained using the training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.msword import MsWordParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MsWordParser": "langchain_community.document_loaders.parsers.msword", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MsWordParser", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.msword import MsWordParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MsWordParser": "langchain_community.document_loaders.parsers.msword" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MsWordParser", ]
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) image_size = (640, 640) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments), backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, norm_cfg=norm_cfg, num_outs=5), roi_head=dict( bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # learning policy max_epochs = 50 train_cfg = dict(max_epochs=max_epochs, val_interval=2) param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[30, 40], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True), clip_grad=None) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) model = dict( backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, norm_cfg=norm_cfg, num_outs=5), roi_head=dict( bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=(640, 640), ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(640, 640)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # learning policy optimizer = dict( type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[30, 40]) # runtime settings runner = dict(max_epochs=50) evaluation = dict(interval=2) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import json import re from re import Pattern from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" class ChatOutputParser(AgentOutputParser): """Output parser for the chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"^.*?`{3}(?:json)?\n(.*?)`{3}.*?$", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse the output from the agent into an AgentAction or AgentFinish object. Args: text: The text to parse. Returns: An AgentAction or AgentFinish object. Raises: OutputParserException: If the output could not be parsed. ValueError: If the action could not be found. """ includes_answer = FINAL_ANSWER_ACTION in text try: found = self.pattern.search(text) if not found: # Fast fail to parse Final Answer. raise ValueError("action not found") action = found.group(1) response = json.loads(action.strip()) includes_action = "action" in response if includes_answer and includes_action: raise OutputParserException( "Parsing LLM output produced a final answer " f"and a parse-able action: {text}" ) return AgentAction( response["action"], response.get("action_input", {}), text ) except Exception as exc: if not includes_answer: raise OutputParserException( f"Could not parse LLM output: {text}" ) from exc output = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish({"output": output}, text) @property def _type(self) -> str: return "chat"
import json import re from typing import Pattern, Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" class ChatOutputParser(AgentOutputParser): """Output parser for the chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"^.*?`{3}(?:json)?\n(.*?)`{3}.*?$", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse the output from the agent into an AgentAction or AgentFinish object. Args: text: The text to parse. Returns: An AgentAction or AgentFinish object. Raises: OutputParserException: If the output could not be parsed. ValueError: If the action could not be found. """ includes_answer = FINAL_ANSWER_ACTION in text try: found = self.pattern.search(text) if not found: # Fast fail to parse Final Answer. raise ValueError("action not found") action = found.group(1) response = json.loads(action.strip()) includes_action = "action" in response if includes_answer and includes_action: raise OutputParserException( "Parsing LLM output produced a final answer " f"and a parse-able action: {text}" ) return AgentAction( response["action"], response.get("action_input", {}), text ) except Exception as exc: if not includes_answer: raise OutputParserException( f"Could not parse LLM output: {text}" ) from exc output = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish({"output": output}, text) @property def _type(self) -> str: return "chat"
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseAnglELoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseDistillKLDivLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, ) from sentence_transformers.sparse_encoder.models import ( CSRSparsity, MLMTransformer, SpladePooling, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Add the equivalent of the quantization file for the sparse encoder
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseAnglELoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, ) from sentence_transformers.sparse_encoder.models import ( CSRSparsity, MLMTransformer, SpladePooling, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Ask Update to TOM on loss to implement # TODO : Add the equivalent of the quantization file for the sparse encoder
"""Gemini embeddings file.""" import deprecated from typing import Any, List, Optional from llama_index.core.base.embeddings.base import ( DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding, ) from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.callbacks.base import CallbackManager import google.generativeai as gemini @deprecated.deprecated( reason=( "Should use `llama-index-embeddings-google-genai` instead, using Google's latest unified SDK. " "See: https://docs.llamaindex.ai/en/stable/examples/embeddings/google_genai/" ) ) class GeminiEmbedding(BaseEmbedding): """Google Gemini embeddings. Args: model_name (str): Model for embedding. Defaults to "models/embedding-001". api_key (Optional[str]): API key to access the model. Defaults to None. """ _model: Any = PrivateAttr() title: Optional[str] = Field( default="", description="Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.", ) task_type: Optional[str] = Field( default="retrieval_document", description="The task for embedding model.", ) def __init__( self, model_name: str = "models/embedding-001", task_type: Optional[str] = "retrieval_document", api_key: Optional[str] = None, title: Optional[str] = None, embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ): super().__init__( model_name=model_name, embed_batch_size=embed_batch_size, callback_manager=callback_manager, title=title, task_type=task_type, **kwargs, ) gemini.configure(api_key=api_key) self._model = gemini @classmethod def class_name(cls) -> str: return "GeminiEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._model.embed_content( model=self.model_name, content=query, title=self.title, task_type=self.task_type, )["embedding"] def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._model.embed_content( model=self.model_name, content=text, title=self.title, task_type=self.task_type, )["embedding"] def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" return [ self._model.embed_content( model=self.model_name, content=text, title=self.title, task_type=self.task_type, )["embedding"] for text in texts ] ### Async methods ### # need to wait async calls from Gemini side to be implemented. # Issue: https://github.com/google/generative-ai-python/issues/125 async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return self._get_query_embedding(query) async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" return self._get_text_embedding(text) async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" return self._get_text_embeddings(texts)
"""Gemini embeddings file.""" from typing import Any, List, Optional from llama_index.core.base.embeddings.base import ( DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding, ) from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.callbacks.base import CallbackManager import google.generativeai as gemini class GeminiEmbedding(BaseEmbedding): """Google Gemini embeddings. Args: model_name (str): Model for embedding. Defaults to "models/embedding-001". api_key (Optional[str]): API key to access the model. Defaults to None. """ _model: Any = PrivateAttr() title: Optional[str] = Field( default="", description="Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.", ) task_type: Optional[str] = Field( default="retrieval_document", description="The task for embedding model.", ) def __init__( self, model_name: str = "models/embedding-001", task_type: Optional[str] = "retrieval_document", api_key: Optional[str] = None, title: Optional[str] = None, embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ): super().__init__( model_name=model_name, embed_batch_size=embed_batch_size, callback_manager=callback_manager, title=title, task_type=task_type, **kwargs, ) gemini.configure(api_key=api_key) self._model = gemini @classmethod def class_name(cls) -> str: return "GeminiEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._model.embed_content( model=self.model_name, content=query, title=self.title, task_type=self.task_type, )["embedding"] def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._model.embed_content( model=self.model_name, content=text, title=self.title, task_type=self.task_type, )["embedding"] def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" return [ self._model.embed_content( model=self.model_name, content=text, title=self.title, task_type=self.task_type, )["embedding"] for text in texts ] ### Async methods ### # need to wait async calls from Gemini side to be implemented. # Issue: https://github.com/google/generative-ai-python/issues/125 async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return self._get_query_embedding(query) async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" return self._get_text_embedding(text) async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" return self._get_text_embeddings(texts)
import gzip from os import PathLike from pathlib import Path from typing import Union import pytest import yaml from vcr import VCR from vcr.persisters.filesystem import CassetteNotFoundError from vcr.request import Request class CustomSerializer: """Custom serializer for VCR cassettes using YAML and gzip. We're using a custom serializer to avoid the default yaml serializer used by VCR, which is not designed to be safe for untrusted input. This step is an extra precaution necessary because the cassette files are in compressed YAML format, which makes it more difficult to inspect their contents during development or debugging. """ @staticmethod def serialize(cassette_dict: dict) -> bytes: """Convert cassette to YAML and compress it.""" cassette_dict["requests"] = [ request._to_dict() for request in cassette_dict["requests"] ] yml = yaml.safe_dump(cassette_dict) return gzip.compress(yml.encode("utf-8")) @staticmethod def deserialize(data: bytes) -> dict: """Decompress data and convert it from YAML.""" text = gzip.decompress(data).decode("utf-8") cassette = yaml.safe_load(text) cassette["requests"] = [ Request._from_dict(request) for request in cassette["requests"] ] return cassette class CustomPersister: """A custom persister for VCR that uses the CustomSerializer.""" @classmethod def load_cassette( cls, cassette_path: Union[str, PathLike[str]], serializer: CustomSerializer ) -> tuple[dict, dict]: """Load a cassette from a file.""" # If cassette path is already Path this is a no-op cassette_path = Path(cassette_path) if not cassette_path.is_file(): raise CassetteNotFoundError( f"Cassette file {cassette_path} does not exist." ) with cassette_path.open(mode="rb") as f: data = f.read() deser = serializer.deserialize(data) return deser["requests"], deser["responses"] @staticmethod def save_cassette( cassette_path: Union[str, PathLike[str]], cassette_dict: dict, serializer: CustomSerializer, ) -> None: """Save a cassette to a file.""" data = serializer.serialize(cassette_dict) # if cassette path is already Path this is no operation cassette_path = Path(cassette_path) cassette_folder = cassette_path.parent if not cassette_folder.exists(): cassette_folder.mkdir(parents=True) with cassette_path.open("wb") as f: f.write(data) # A list of headers that should be filtered out of the cassettes. # These are typically associated with sensitive information and should # not be stored in cassettes. _BASE_FILTER_HEADERS = [ ("authorization", "PLACEHOLDER"), ("x-api-key", "PLACEHOLDER"), ("api-key", "PLACEHOLDER"), ] @pytest.fixture(scope="session") def _base_vcr_config() -> dict: """Configuration that every cassette will receive. (Anything permitted by vcr.VCR(**kwargs) can be put here.) """ return { "record_mode": "once", "filter_headers": _BASE_FILTER_HEADERS.copy(), "match_on": ["method", "uri", "body"], "allow_playback_repeats": True, "decode_compressed_response": True, "cassette_library_dir": "tests/cassettes", "path_transformer": VCR.ensure_suffix(".yaml"), } @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: return _base_vcr_config
import base64 import gzip import pytest from vcr import VCR # type: ignore[import-untyped] from vcr.serializers import yamlserializer # type: ignore[import-untyped] class YamlGzipSerializer: @staticmethod def serialize(cassette_dict: dict) -> str: raw = yamlserializer.serialize(cassette_dict).encode("utf-8") compressed = gzip.compress(raw) return base64.b64encode(compressed).decode("ascii") @staticmethod def deserialize(data: str) -> dict: compressed = base64.b64decode(data.encode("ascii")) text = gzip.decompress(compressed).decode("utf-8") return yamlserializer.deserialize(text) _BASE_FILTER_HEADERS = [ ("authorization", "PLACEHOLDER"), ("x-api-key", "PLACEHOLDER"), ("api-key", "PLACEHOLDER"), ] @pytest.fixture(scope="session") def _base_vcr_config() -> dict: """ Configuration that every cassette will receive. (Anything permitted by vcr.VCR(**kwargs) can be put here.) """ return { "record_mode": "once", "filter_headers": _BASE_FILTER_HEADERS.copy(), "match_on": ["method", "scheme", "host", "port", "path", "query"], "decode_compressed_response": True, "cassette_library_dir": "tests/cassettes", "path_transformer": VCR.ensure_suffix(".yaml"), } @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: return _base_vcr_config
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_addoption(parser): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from diffusers.utils.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_addoption(parser): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from diffusers.utils.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports)
from __future__ import annotations from .PhraseTokenizer import PhraseTokenizer from .WhitespaceTokenizer import WhitespaceTokenizer from .WordTokenizer import ENGLISH_STOP_WORDS, TransformersTokenizerWrapper, WordTokenizer __all__ = [ "WordTokenizer", "WhitespaceTokenizer", "PhraseTokenizer", "ENGLISH_STOP_WORDS", "TransformersTokenizerWrapper", ]
from __future__ import annotations from .PhraseTokenizer import PhraseTokenizer from .WhitespaceTokenizer import WhitespaceTokenizer from .WordTokenizer import ENGLISH_STOP_WORDS, WordTokenizer __all__ = ["WordTokenizer", "WhitespaceTokenizer", "PhraseTokenizer", "ENGLISH_STOP_WORDS"]
from collections import OrderedDict from typing import Any, Dict, Optional, Type, cast import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.response_synthesizers import Refine from llama_index.core.response_synthesizers.refine import StructuredRefineResponse from llama_index.core.types import BasePydanticProgram class MockRefineProgram(BasePydanticProgram): """ Runs the query on the LLM as normal and always returns the answer with query_satisfied=True. In effect, doesn't do any answer filtering. """ def __init__(self, input_to_query_satisfied: Dict[str, bool]): self._input_to_query_satisfied = input_to_query_satisfied @property def output_cls(self) -> Type[BaseModel]: return StructuredRefineResponse def __call__( self, *args: Any, context_str: Optional[str] = None, context_msg: Optional[str] = None, **kwargs: Any, ) -> StructuredRefineResponse: input_str = context_str or context_msg input_str = cast(str, input_str) query_satisfied = self._input_to_query_satisfied[input_str] return StructuredRefineResponse( answer=input_str, query_satisfied=query_satisfied ) async def acall( self, *args: Any, context_str: Optional[str] = None, context_msg: Optional[str] = None, **kwargs: Any, ) -> StructuredRefineResponse: input_str = context_str or context_msg input_str = cast(str, input_str) query_satisfied = self._input_to_query_satisfied[input_str] return StructuredRefineResponse( answer=input_str, query_satisfied=query_satisfied ) @pytest.fixture() def refine_instance() -> Refine: return Refine( streaming=False, verbose=True, structured_answer_filtering=True, ) def test_constructor_args() -> None: with pytest.raises(ValueError): # can't construct refine with both streaming and answer filtering Refine( streaming=True, structured_answer_filtering=True, ) with pytest.raises(ValueError): # can't construct refine with a program factory but not answer filtering Refine( program_factory=lambda _: MockRefineProgram({}), structured_answer_filtering=False, ) @pytest.mark.asyncio async def test_answer_filtering_one_answer() -> None: input_to_query_satisfied = OrderedDict( [ ("input1", False), ("input2", True), ("input3", False), ] ) def program_factory(*args: Any, **kwargs: Any) -> MockRefineProgram: return MockRefineProgram(input_to_query_satisfied) refine_instance = Refine( structured_answer_filtering=True, program_factory=program_factory, ) res = await refine_instance.aget_response( "question", list(input_to_query_satisfied.keys()) ) assert res == "input2" @pytest.mark.asyncio async def test_answer_filtering_no_answers() -> None: input_to_query_satisfied = OrderedDict( [ ("input1", False), ("input2", False), ("input3", False), ] ) def program_factory(*args: Any, **kwargs: Any) -> MockRefineProgram: return MockRefineProgram(input_to_query_satisfied) refine_instance = Refine( structured_answer_filtering=True, program_factory=program_factory, ) res = await refine_instance.aget_response( "question", list(input_to_query_satisfied.keys()) ) assert res == "Empty Response"
from collections import OrderedDict from typing import Any, Dict, Optional, Type, cast import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.response_synthesizers import Refine from llama_index.core.response_synthesizers.refine import StructuredRefineResponse from llama_index.core.types import BasePydanticProgram class MockRefineProgram(BasePydanticProgram): """ Runs the query on the LLM as normal and always returns the answer with query_satisfied=True. In effect, doesn't do any answer filtering. """ def __init__(self, input_to_query_satisfied: Dict[str, bool]): self._input_to_query_satisfied = input_to_query_satisfied @property def output_cls(self) -> Type[BaseModel]: return StructuredRefineResponse def __call__( self, *args: Any, context_str: Optional[str] = None, context_msg: Optional[str] = None, **kwargs: Any, ) -> StructuredRefineResponse: input_str = context_str or context_msg input_str = cast(str, input_str) query_satisfied = self._input_to_query_satisfied[input_str] return StructuredRefineResponse( answer=input_str, query_satisfied=query_satisfied ) async def acall( self, *args: Any, context_str: Optional[str] = None, context_msg: Optional[str] = None, **kwargs: Any, ) -> StructuredRefineResponse: input_str = context_str or context_msg input_str = cast(str, input_str) query_satisfied = self._input_to_query_satisfied[input_str] return StructuredRefineResponse( answer=input_str, query_satisfied=query_satisfied ) @pytest.fixture() def refine_instance() -> Refine: return Refine( streaming=False, verbose=True, structured_answer_filtering=True, ) def test_constructor_args() -> None: with pytest.raises(ValueError): # can't construct refine with both streaming and answer filtering Refine( streaming=True, structured_answer_filtering=True, ) with pytest.raises(ValueError): # can't construct refine with a program factory but not answer filtering Refine( program_factory=lambda _: MockRefineProgram({}), structured_answer_filtering=False, ) @pytest.mark.asyncio() async def test_answer_filtering_one_answer() -> None: input_to_query_satisfied = OrderedDict( [ ("input1", False), ("input2", True), ("input3", False), ] ) def program_factory(*args: Any, **kwargs: Any) -> MockRefineProgram: return MockRefineProgram(input_to_query_satisfied) refine_instance = Refine( structured_answer_filtering=True, program_factory=program_factory, ) res = await refine_instance.aget_response( "question", list(input_to_query_satisfied.keys()) ) assert res == "input2" @pytest.mark.asyncio() async def test_answer_filtering_no_answers() -> None: input_to_query_satisfied = OrderedDict( [ ("input1", False), ("input2", False), ("input3", False), ] ) def program_factory(*args: Any, **kwargs: Any) -> MockRefineProgram: return MockRefineProgram(input_to_query_satisfied) refine_instance = Refine( structured_answer_filtering=True, program_factory=program_factory, ) res = await refine_instance.aget_response( "question", list(input_to_query_satisfied.keys()) ) assert res == "Empty Response"
from typing import Any, Dict, Optional, Sequence from llama_index.core.base.base_selector import ( BaseSelector, SelectorResult, SingleSelection, ) from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.indices.query.embedding_utils import get_top_k_embeddings from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.schema import QueryBundle from llama_index.core.settings import Settings from llama_index.core.tools.types import ToolMetadata class EmbeddingSingleSelector(BaseSelector): """ Embedding selector. Embedding selector that chooses one out of many options. Args: embed_model (BaseEmbedding): An embedding model. """ def __init__( self, embed_model: BaseEmbedding, ) -> None: self._embed_model = embed_model @classmethod def from_defaults( cls, embed_model: Optional[BaseEmbedding] = None, ) -> "EmbeddingSingleSelector": # optionally initialize defaults embed_model = embed_model or Settings.embed_model # construct prompt return cls(embed_model) def _get_prompts(self) -> Dict[str, Any]: """Get prompts.""" return {} def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" def _select( self, choices: Sequence[ToolMetadata], query: QueryBundle ) -> SelectorResult: query_embedding = self._embed_model.get_query_embedding(query.query_str) text_embeddings = [ self._embed_model.get_text_embedding(choice.description) for choice in choices ] top_similarities, top_ids = get_top_k_embeddings( query_embedding, text_embeddings, similarity_top_k=1, embedding_ids=list(range(len(choices))), ) # get top choice top_selection_reason = f"Top similarity match: {top_similarities[0]:.2f}, {choices[top_ids[0]].name}" top_selection = SingleSelection(index=top_ids[0], reason=top_selection_reason) # parse output return SelectorResult(selections=[top_selection]) async def _aselect( self, choices: Sequence[ToolMetadata], query: QueryBundle ) -> SelectorResult: query_embedding = await self._embed_model.aget_query_embedding(query.query_str) text_embeddings = [ await self._embed_model.aget_text_embedding(choice.description) for choice in choices ] top_similarities, top_ids = get_top_k_embeddings( query_embedding, text_embeddings, similarity_top_k=1, embedding_ids=list(range(len(choices))), ) # get top choice top_selection_reason = f"Top similarity match: {top_similarities[0]:.2f}, {choices[top_ids[0]].name}" top_selection = SingleSelection(index=top_ids[0], reason=top_selection_reason) # parse output return SelectorResult(selections=[top_selection])
from typing import Any, Dict, Optional, Sequence from llama_index.core.base.base_selector import ( BaseSelector, SelectorResult, SingleSelection, ) from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.indices.query.embedding_utils import get_top_k_embeddings from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.schema import QueryBundle from llama_index.core.settings import Settings from llama_index.core.tools.types import ToolMetadata class EmbeddingSingleSelector(BaseSelector): """Embedding selector. Embedding selector that chooses one out of many options. Args: embed_model (BaseEmbedding): An embedding model. """ def __init__( self, embed_model: BaseEmbedding, ) -> None: self._embed_model = embed_model @classmethod def from_defaults( cls, embed_model: Optional[BaseEmbedding] = None, ) -> "EmbeddingSingleSelector": # optionally initialize defaults embed_model = embed_model or Settings.embed_model # construct prompt return cls(embed_model) def _get_prompts(self) -> Dict[str, Any]: """Get prompts.""" return {} def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" def _select( self, choices: Sequence[ToolMetadata], query: QueryBundle ) -> SelectorResult: query_embedding = self._embed_model.get_query_embedding(query.query_str) text_embeddings = [ self._embed_model.get_text_embedding(choice.description) for choice in choices ] top_similarities, top_ids = get_top_k_embeddings( query_embedding, text_embeddings, similarity_top_k=1, embedding_ids=list(range(len(choices))), ) # get top choice top_selection_reason = f"Top similarity match: {top_similarities[0]:.2f}, {choices[top_ids[0]].name}" top_selection = SingleSelection(index=top_ids[0], reason=top_selection_reason) # parse output return SelectorResult(selections=[top_selection]) async def _aselect( self, choices: Sequence[ToolMetadata], query: QueryBundle ) -> SelectorResult: query_embedding = await self._embed_model.aget_query_embedding(query.query_str) text_embeddings = [ await self._embed_model.aget_text_embedding(choice.description) for choice in choices ] top_similarities, top_ids = get_top_k_embeddings( query_embedding, text_embeddings, similarity_top_k=1, embedding_ids=list(range(len(choices))), ) # get top choice top_selection_reason = f"Top similarity match: {top_similarities[0]:.2f}, {choices[top_ids[0]].name}" top_selection = SingleSelection(index=top_ids[0], reason=top_selection_reason) # parse output return SelectorResult(selections=[top_selection])
"""Pass input through a moderation endpoint.""" from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.utils import check_package_version, get_from_dict_or_env from pydantic import Field, model_validator from langchain.chains.base import Chain class OpenAIModerationChain(Chain): """Pass input through a moderation endpoint. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() """ client: Any = None #: :meta private: async_client: Any = None #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False """Whether or not to error if bad content was found.""" input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: openai_api_key: Optional[str] = None openai_organization: Optional[str] = None openai_pre_1_0: bool = Field(default=False) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["openai_pre_1_0"] = False try: check_package_version("openai", gte_version="1.0") except ValueError: values["openai_pre_1_0"] = True if values["openai_pre_1_0"]: values["client"] = openai.Moderation # type: ignore[attr-defined] else: values["client"] = openai.OpenAI(api_key=openai_api_key) values["async_client"] = openai.AsyncOpenAI(api_key=openai_api_key) except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def input_keys(self) -> list[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> list[str]: """Return output key. :meta private: """ return [self.output_key] def _moderate(self, text: str, results: Any) -> str: if self.openai_pre_1_0: condition = results["flagged"] else: condition = results.flagged if condition: error_str = "Text was found that violates OpenAI's content policy." if self.error: raise ValueError(error_str) else: return error_str return text def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: text = inputs[self.input_key] if self.openai_pre_1_0: results = self.client.create(text) output = self._moderate(text, results["results"][0]) else: results = self.client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output} async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: if self.openai_pre_1_0: return await super()._acall(inputs, run_manager=run_manager) text = inputs[self.input_key] results = await self.async_client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output}
"""Pass input through a moderation endpoint.""" from typing import Any, Dict, List, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.utils import check_package_version, get_from_dict_or_env from pydantic import Field, model_validator from langchain.chains.base import Chain class OpenAIModerationChain(Chain): """Pass input through a moderation endpoint. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() """ client: Any = None #: :meta private: async_client: Any = None #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False """Whether or not to error if bad content was found.""" input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: openai_api_key: Optional[str] = None openai_organization: Optional[str] = None openai_pre_1_0: bool = Field(default=False) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["openai_pre_1_0"] = False try: check_package_version("openai", gte_version="1.0") except ValueError: values["openai_pre_1_0"] = True if values["openai_pre_1_0"]: values["client"] = openai.Moderation # type: ignore[attr-defined] else: values["client"] = openai.OpenAI(api_key=openai_api_key) values["async_client"] = openai.AsyncOpenAI(api_key=openai_api_key) except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _moderate(self, text: str, results: Any) -> str: if self.openai_pre_1_0: condition = results["flagged"] else: condition = results.flagged if condition: error_str = "Text was found that violates OpenAI's content policy." if self.error: raise ValueError(error_str) else: return error_str return text def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: text = inputs[self.input_key] if self.openai_pre_1_0: results = self.client.create(text) output = self._moderate(text, results["results"][0]) else: results = self.client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if self.openai_pre_1_0: return await super()._acall(inputs, run_manager=run_manager) text = inputs[self.input_key] results = await self.async_client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output}
from __future__ import annotations import json import logging import os import torch from torch import Tensor, nn logger = logging.getLogger(__name__) class WordWeights(nn.Module): """This model can weight word embeddings, for example, with idf-values.""" def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1): """ Initializes the WordWeights class. Args: vocab (List[str]): Vocabulary of the tokenizer. word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values). unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup. These can be, for example, rare words in the vocab where no weight exists. Defaults to 1. """ super().__init__() self.config_keys = ["vocab", "word_weights", "unknown_word_weight"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info( f"{num_unknown_words} of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}" ) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: dict[str, Tensor]): attention_mask = features["attention_mask"] token_embeddings = features["token_embeddings"] # Compute a weight value for each token token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) # Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum}) return features def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return WordWeights(**config)
from __future__ import annotations import json import logging import os import torch from torch import Tensor, nn logger = logging.getLogger(__name__) class WordWeights(nn.Module): """This model can weight word embeddings, for example, with idf-values.""" def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1): """ Initializes the WordWeights class. Args: vocab (List[str]): Vocabulary of the tokenizer. word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values). unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup. These can be, for example, rare words in the vocab where no weight exists. Defaults to 1. """ super(WordWeights, self).__init__() self.config_keys = ["vocab", "word_weights", "unknown_word_weight"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info( "{} of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: dict[str, Tensor]): attention_mask = features["attention_mask"] token_embeddings = features["token_embeddings"] # Compute a weight value for each token token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) # Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum}) return features def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return WordWeights(**config)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path import numpy as np import pytest from jina import Document, DocumentArray, Executor from ...transformer_tf_text_encode import TransformerTFTextEncoder target_dim = 768 @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.pretrained_model_name_or_path == 'distilbert-base-uncased' def test_tf_batch(docs_generator): encoder = TransformerTFTextEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (target_dim,) def test_encodes_semantic_meaning(): sentences = dict() sentences['A'] = 'Hello, my name is Michael.' sentences['B'] = 'Today we are going to Disney World.' sentences['C'] = 'There are animals on the road' sentences['D'] = 'A dog is running down the road' encoder = TransformerTFTextEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('C', 'D') assert small_distance < dist('C', 'B') assert small_distance < dist('C', 'A') assert small_distance < dist('B', 'A') @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ ( pytest.lazy_fixture('docs_with_text'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r'], ), ( pytest.lazy_fixture("docs_with_chunk_text"), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c'], ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'], ), ], ) def test_traversal_path(docs: DocumentArray, docs_per_path, traversal_path): encoder = TransformerTFTextEncoder() encoder.encode(docs, parameters={'traversal_paths': traversal_path}) for path, count in docs_per_path: assert len(docs.traverse_flat(path).get_attributes("embedding")) == count
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import numpy as np import pytest from jina import Document, DocumentArray from ...transformer_tf_text_encode import TransformerTFTextEncoder target_dim = 768 @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_tf_batch(docs_generator): encoder = TransformerTFTextEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (target_dim,) def test_encodes_semantic_meaning(): sentences = dict() sentences['A'] = 'Hello, my name is Michael.' sentences['B'] = 'Today we are going to Disney World.' sentences['C'] = 'There are animals on the road' sentences['D'] = 'A dog is running down the road' encoder = TransformerTFTextEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('C', 'D') assert small_distance < dist('C', 'B') assert small_distance < dist('C', 'A') assert small_distance < dist('B', 'A') @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), ( pytest.lazy_fixture("docs_with_chunk_text"), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c'], ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc'], ), ], ) def test_traversal_path(docs: DocumentArray, docs_per_path, traversal_path): encoder = TransformerTFTextEncoder() encoder.encode(docs, parameters={'traversal_paths': traversal_path}) for path, count in docs_per_path: assert len(docs.traverse_flat(path).get_attributes("embedding")) == count
from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_pure_tensor, register_kernel # usort: skip from ._meta import ( clamp_bounding_boxes, convert_bounding_box_format, get_dimensions_image, _get_dimensions_image_pil, get_dimensions_video, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image, _get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_size_bounding_boxes, get_size_image, _get_size_image_pil, get_size_mask, get_size_video, get_size, ) # usort: skip from ._augment import _erase_image_pil, erase, erase_image, erase_video from ._color import ( _adjust_brightness_image_pil, _adjust_contrast_image_pil, _adjust_gamma_image_pil, _adjust_hue_image_pil, _adjust_saturation_image_pil, _adjust_sharpness_image_pil, _autocontrast_image_pil, _equalize_image_pil, _invert_image_pil, _permute_channels_image_pil, _posterize_image_pil, _rgb_to_grayscale_image_pil, _solarize_image_pil, adjust_brightness, adjust_brightness_image, adjust_brightness_video, adjust_contrast, adjust_contrast_image, adjust_contrast_video, adjust_gamma, adjust_gamma_image, adjust_gamma_video, adjust_hue, adjust_hue_image, adjust_hue_video, adjust_saturation, adjust_saturation_image, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image, adjust_sharpness_video, autocontrast, autocontrast_image, autocontrast_video, equalize, equalize_image, equalize_video, invert, invert_image, invert_video, permute_channels, permute_channels_image, permute_channels_video, posterize, posterize_image, posterize_video, rgb_to_grayscale, rgb_to_grayscale_image, solarize, solarize_image, solarize_video, to_grayscale, ) from ._geometry import ( _affine_image_pil, _center_crop_image_pil, _crop_image_pil, _elastic_image_pil, _five_crop_image_pil, _horizontal_flip_image_pil, _pad_image_pil, _perspective_image_pil, _resize_image_pil, _resized_crop_image_pil, _rotate_image_pil, _ten_crop_image_pil, _vertical_flip_image_pil, affine, affine_bounding_boxes, affine_image, affine_mask, affine_video, center_crop, center_crop_bounding_boxes, center_crop_image, center_crop_mask, center_crop_video, crop, crop_bounding_boxes, crop_image, crop_mask, crop_video, elastic, elastic_bounding_boxes, elastic_image, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_boxes, horizontal_flip_image, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_boxes, pad_image, pad_mask, pad_video, perspective, perspective_bounding_boxes, perspective_image, perspective_mask, perspective_video, resize, resize_bounding_boxes, resize_image, resize_mask, resize_video, resized_crop, resized_crop_bounding_boxes, resized_crop_image, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_boxes, rotate_image, rotate_mask, rotate_video, ten_crop, ten_crop_image, ten_crop_video, vertical_flip, vertical_flip_bounding_boxes, vertical_flip_image, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( _gaussian_blur_image_pil, convert_image_dtype, gaussian_blur, gaussian_blur_image, gaussian_blur_video, normalize, normalize_image, normalize_video, to_dtype, to_dtype_image, to_dtype_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image, to_pil_image from ._deprecated import get_image_size, to_tensor # usort: skip
from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_pure_tensor, register_kernel # usort: skip from ._meta import ( clamp_bounding_boxes, convert_format_bounding_boxes, get_dimensions_image, _get_dimensions_image_pil, get_dimensions_video, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image, _get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_size_bounding_boxes, get_size_image, _get_size_image_pil, get_size_mask, get_size_video, get_size, ) # usort: skip from ._augment import _erase_image_pil, erase, erase_image, erase_video from ._color import ( _adjust_brightness_image_pil, _adjust_contrast_image_pil, _adjust_gamma_image_pil, _adjust_hue_image_pil, _adjust_saturation_image_pil, _adjust_sharpness_image_pil, _autocontrast_image_pil, _equalize_image_pil, _invert_image_pil, _permute_channels_image_pil, _posterize_image_pil, _rgb_to_grayscale_image_pil, _solarize_image_pil, adjust_brightness, adjust_brightness_image, adjust_brightness_video, adjust_contrast, adjust_contrast_image, adjust_contrast_video, adjust_gamma, adjust_gamma_image, adjust_gamma_video, adjust_hue, adjust_hue_image, adjust_hue_video, adjust_saturation, adjust_saturation_image, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image, adjust_sharpness_video, autocontrast, autocontrast_image, autocontrast_video, equalize, equalize_image, equalize_video, invert, invert_image, invert_video, permute_channels, permute_channels_image, permute_channels_video, posterize, posterize_image, posterize_video, rgb_to_grayscale, rgb_to_grayscale_image, solarize, solarize_image, solarize_video, to_grayscale, ) from ._geometry import ( _affine_image_pil, _center_crop_image_pil, _crop_image_pil, _elastic_image_pil, _five_crop_image_pil, _horizontal_flip_image_pil, _pad_image_pil, _perspective_image_pil, _resize_image_pil, _resized_crop_image_pil, _rotate_image_pil, _ten_crop_image_pil, _vertical_flip_image_pil, affine, affine_bounding_boxes, affine_image, affine_mask, affine_video, center_crop, center_crop_bounding_boxes, center_crop_image, center_crop_mask, center_crop_video, crop, crop_bounding_boxes, crop_image, crop_mask, crop_video, elastic, elastic_bounding_boxes, elastic_image, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_boxes, horizontal_flip_image, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_boxes, pad_image, pad_mask, pad_video, perspective, perspective_bounding_boxes, perspective_image, perspective_mask, perspective_video, resize, resize_bounding_boxes, resize_image, resize_mask, resize_video, resized_crop, resized_crop_bounding_boxes, resized_crop_image, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_boxes, rotate_image, rotate_mask, rotate_video, ten_crop, ten_crop_image, ten_crop_video, vertical_flip, vertical_flip_bounding_boxes, vertical_flip_image, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( _gaussian_blur_image_pil, convert_image_dtype, gaussian_blur, gaussian_blur_image, gaussian_blur_video, normalize, normalize_image, normalize_video, to_dtype, to_dtype_image, to_dtype_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image, to_pil_image from ._deprecated import get_image_size, to_tensor # usort: skip
import io import json import struct from dataclasses import dataclass from typing import Any, Optional import torch _metadata_fn: str = "model.safetensors.index.json" FILE_NAME = "model-{cpt_idx}-of-{num_files}" SHARDED_FILE_NAME = "shard-{shard_idx}-model-{cpt_idx}-of-{num_files}" SUFFIX = ".safetensors" # metadata keys CUSTOM_METADATA_KEY = "DCP_SHARDING_INFO" DEFAULT_EXTRA_METADATA_KEY = "__metadata__" SAVED_OFFSETS_KEY = "saved_offsets" SHAPE_KEY = "shape" DATA_KEY = "data" DTYPE_KEY = "dtype" DATA_OFFSETS_KEY = "data_offsets" DTYPE_MAP = { "F16": torch.float16, "F32": torch.float32, "F64": torch.float64, "I8": torch.int8, "U8": torch.uint8, "I16": torch.int16, "I32": torch.int32, "I64": torch.int64, "BF16": torch.bfloat16, } HF_DCP_VERSION: float = 1.0 DCP_VERSION_KEY = "DCP_VERSION" DCP_SHARDING_INFO_KEY = "DCP_SHARDING_INFO" FORMAT_KEY = "format" FORMAT_VALUE = "pt" NUM_BYTES_FOR_HEADER_LEN = 8 SHARDED_DIR_NAME = "sharded" @dataclass class _HFStorageInfo: """This is the per entry storage info.""" relative_path: str offset: int length: int shape: torch.Size dtype: torch.dtype def _gen_file_name( index: int, largest_index: int, shard_index: Optional[int] = None ) -> str: if shard_index is not None: return ( SHARDED_FILE_NAME.format( shard_idx=f"{shard_index}".zfill(5), cpt_idx=f"{index}".zfill(5), num_files=f"{largest_index}".zfill(5), ) + SUFFIX ) else: return ( FILE_NAME.format( cpt_idx=f"{index}".zfill(5), num_files=f"{largest_index}".zfill(5) ) + SUFFIX ) def _get_safetensors_file_metadata(file_bytes: io.IOBase) -> tuple[Any, int]: # this uses the same logic that's done in HF code base # https://github.com/2404589803/huggingface_hub/blob/main/src/huggingface_hub/hf_api.py#L5308 # and follows their documentation on how their files are serialized # https://huggingface.co/docs/safetensors/index#format header_len_bytes = file_bytes.read(NUM_BYTES_FOR_HEADER_LEN) header_len = struct.unpack("<Q", header_len_bytes)[0] header_json = file_bytes.read(header_len) metadata = json.loads(header_json) return (metadata, header_len + NUM_BYTES_FOR_HEADER_LEN) def _get_dtype(dtype_str: str) -> torch.dtype: try: dtype = DTYPE_MAP[dtype_str] except KeyError: dtype = torch.get_default_dtype() return dtype def _get_dcp_custom_metadata(metadata: Any) -> Optional[Any]: if DEFAULT_EXTRA_METADATA_KEY in metadata: custom_metadata = metadata[DEFAULT_EXTRA_METADATA_KEY] if CUSTOM_METADATA_KEY in custom_metadata: return json.loads(custom_metadata[CUSTOM_METADATA_KEY]) return None
import io import json import struct from dataclasses import dataclass from typing import Any, Optional import torch _metadata_fn: str = "model.safetensors.index.json" FILE_NAME = "model-{cpt_idx}-of-{num_files}" SHARDED_FILE_NAME = "shard-{shard_idx}-model-{cpt_idx}-of-{num_files}" SUFFIX = ".safetensors" # metadata keys CUSTOM_METADATA_KEY = "DCP_SHARDING_INFO" DEFAULT_EXTRA_METADATA_KEY = "__metadata__" SAVED_OFFSETS_KEY = "saved_offsets" SHAPE_KEY = "shape" DATA_KEY = "data" DTYPE_KEY = "dtype" DATA_OFFSETS_KEY = "data_offsets" DTYPE_MAP = { "F16": torch.float16, "F32": torch.float32, "F64": torch.float64, "I8": torch.int8, "U8": torch.uint8, "I16": torch.int16, "I32": torch.int32, "I64": torch.int64, "BF16": torch.bfloat16, } HF_DCP_VERSION: float = 1.0 DCP_VERSION_KEY = "DCP_VERSION" DCP_SHARDING_INFO_KEY = "DCP_SHARDING_INFO" FORMAT_KEY = "format" FORMAT_VALUE = "pt" NUM_BYTES_FOR_HEADER_LEN = 8 @dataclass class _HFStorageInfo: """This is the per entry storage info.""" relative_path: str offset: int length: int shape: torch.Size dtype: torch.dtype def _gen_file_name( index: int, largest_index: int, shard_index: Optional[int] = None ) -> str: if shard_index is not None: return ( SHARDED_FILE_NAME.format( shard_idx=f"{shard_index}".zfill(5), cpt_idx=f"{index}".zfill(5), num_files=f"{largest_index}".zfill(5), ) + SUFFIX ) else: return ( FILE_NAME.format( cpt_idx=f"{index}".zfill(5), num_files=f"{largest_index}".zfill(5) ) + SUFFIX ) def _get_safetensors_file_metadata(file_bytes: io.IOBase) -> tuple[Any, int]: # this uses the same logic that's done in HF code base # https://github.com/2404589803/huggingface_hub/blob/main/src/huggingface_hub/hf_api.py#L5308 # and follows their documentation on how their files are serialized # https://huggingface.co/docs/safetensors/index#format header_len_bytes = file_bytes.read(NUM_BYTES_FOR_HEADER_LEN) header_len = struct.unpack("<Q", header_len_bytes)[0] header_json = file_bytes.read(header_len) metadata = json.loads(header_json) return (metadata, header_len + NUM_BYTES_FOR_HEADER_LEN) def _get_dtype(dtype_str: str) -> torch.dtype: try: dtype = DTYPE_MAP[dtype_str] except KeyError: dtype = torch.get_default_dtype() return dtype def _get_dcp_custom_metadata(metadata: Any) -> Optional[Any]: if DEFAULT_EXTRA_METADATA_KEY in metadata: custom_metadata = metadata[DEFAULT_EXTRA_METADATA_KEY] if CUSTOM_METADATA_KEY in custom_metadata: return json.loads(custom_metadata[CUSTOM_METADATA_KEY]) return None
from abc import ABC from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl if TYPE_CHECKING: import trimesh from pydantic import BaseConfig from pydantic.fields import ModelField MESH_FILE_FORMATS = ('obj', 'glb', 'ply') T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a .obj, .glb, or .ply file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) has_mesh_extension = any(url.endswith(ext) for ext in MESH_FILE_FORMATS) if not has_mesh_extension: raise ValueError( f'{cls.__name__} must have one of the following extensions:' f'{MESH_FILE_FORMATS}' ) return cls(str(url), scheme=None) def _load_trimesh_instance( self: T, force: Optional[str] = None ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param url: url to load data from :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse import trimesh scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force) return mesh
from abc import ABC from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.typing.url.any_url import AnyUrl if TYPE_CHECKING: import trimesh from pydantic import BaseConfig from pydantic.fields import ModelField MESH_FILE_FORMATS = ('obj', 'glb', 'ply') T = TypeVar('T', bound='Url3D') class Url3D(AnyUrl, ABC): """ URL to a .obj, .glb, or .ply file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) has_mesh_extension = any(url.endswith(ext) for ext in MESH_FILE_FORMATS) if not has_mesh_extension: raise ValueError( f'{cls.__name__} must have one of the following extensions:' f'{MESH_FILE_FORMATS}' ) return cls(str(url), scheme=None) def _load_trimesh_instance( self: T, force: Optional[str] = None ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param url: url to load data from :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse import trimesh scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force) return mesh
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .fileio import * from .utils import *
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .utils import *
""" This file contains some utilities functions used to find parallel sentences in two monolingual corpora. Code in this file has been adapted from the LASER repository: https://github.com/facebookresearch/LASER """ import gzip import lzma import time import faiss import numpy as np ######## Functions to find and score candidates def score(x, y, fwd_mean, bwd_mean, margin): return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin): scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin) return scores def kNN(x, y, k, use_ann_search=False, ann_num_clusters=32768, ann_num_cluster_probe=3): start_time = time.time() if use_ann_search: print("Perform approx. kNN search") n_cluster = min(ann_num_clusters, int(y.shape[0] / 1000)) quantizer = faiss.IndexFlatIP(y.shape[1]) index = faiss.IndexIVFFlat(quantizer, y.shape[1], n_cluster, faiss.METRIC_INNER_PRODUCT) index.nprobe = ann_num_cluster_probe index.train(y) index.add(y) sim, ind = index.search(x, k) else: print("Perform exact search") idx = faiss.IndexFlatIP(y.shape[1]) idx.add(y) sim, ind = idx.search(x, k) print("Done: {:.2f} sec".format(time.time() - start_time)) return sim, ind def file_open(filepath): # Function to allowing opening files based on file extension if filepath.endswith(".gz"): return gzip.open(filepath, "rt", encoding="utf8") elif filepath.endswith("xz"): return lzma.open(filepath, "rt", encoding="utf8") else: return open(filepath, "r", encoding="utf8")
""" This file contains some utilities functions used to find parallel sentences in two monolingual corpora. Code in this file has been adapted from the LASER repository: https://github.com/facebookresearch/LASER """ import faiss import numpy as np import time import gzip import lzma ######## Functions to find and score candidates def score(x, y, fwd_mean, bwd_mean, margin): return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin): scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin) return scores def kNN(x, y, k, use_ann_search=False, ann_num_clusters=32768, ann_num_cluster_probe=3): start_time = time.time() if use_ann_search: print("Perform approx. kNN search") n_cluster = min(ann_num_clusters, int(y.shape[0]/1000)) quantizer = faiss.IndexFlatIP(y.shape[1]) index = faiss.IndexIVFFlat(quantizer, y.shape[1], n_cluster, faiss.METRIC_INNER_PRODUCT) index.nprobe = ann_num_cluster_probe index.train(y) index.add(y) sim, ind = index.search(x, k) else: print("Perform exact search") idx = faiss.IndexFlatIP(y.shape[1]) idx.add(y) sim, ind = idx.search(x, k) print("Done: {:.2f} sec".format(time.time()-start_time)) return sim, ind def file_open(filepath): #Function to allowing opening files based on file extension if filepath.endswith('.gz'): return gzip.open(filepath, 'rt', encoding='utf8') elif filepath.endswith('xz'): return lzma.open(filepath, 'rt', encoding='utf8') else: return open(filepath, 'r', encoding='utf8')
from jina.orchestrate.pods.factory import PodFactory from tests.helper import _generate_pod_args def test_pod_instantiate_start_same_context(): arg = _generate_pod_args() pod_args = [arg, arg] for args in pod_args: pod = PodFactory.build_pod(args) with pod: pass def test_pod_instantiate_start_different_context(): arg = _generate_pod_args() pod_args = [arg, arg] pods = [] for args in pod_args: pods.append(PodFactory.build_pod(args)) for pod in pods: with pod: pass
from jina.parsers import set_pod_parser from jina.orchestrate.pods.factory import PodFactory def test_pod_instantiate_start_same_context(): arg = set_pod_parser().parse_args([]) pod_args = [arg, arg] for args in pod_args: pod = PodFactory.build_pod(args) with pod: pass def test_pod_instantiate_start_different_context(): arg = set_pod_parser().parse_args([]) pod_args = [arg, arg] pods = [] for args in pod_args: pods.append(PodFactory.build_pod(args)) for pod in pods: with pod: pass
from .AdaptiveLayerLoss import AdaptiveLayerLoss from .CosineSimilarityLoss import CosineSimilarityLoss from .SoftmaxLoss import SoftmaxLoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .TripletLoss import TripletDistanceMetric, TripletLoss from .MarginMSELoss import MarginMSELoss from .MatryoshkaLoss import MatryoshkaLoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MSELoss import MSELoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .ContrastiveLoss import SiameseDistanceMetric, ContrastiveLoss from .ContrastiveTensionLoss import ( ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ContrastiveTensionDataLoader, ) from .CoSENTLoss import CoSENTLoss from .AnglELoss import AnglELoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss # Triplet losses from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .BatchAllTripletLoss import BatchAllTripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
from .AdaptiveLayerLoss import AdaptiveLayerLoss from .CosineSimilarityLoss import CosineSimilarityLoss from .SoftmaxLoss import SoftmaxLoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .TripletLoss import TripletDistanceMetric, TripletLoss from .MarginMSELoss import MarginMSELoss from .MatryoshkaLoss import MatryoshkaLoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MSELoss import MSELoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .ContrastiveLoss import SiameseDistanceMetric, ContrastiveLoss from .ContrastiveTensionLoss import ( ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ContrastiveTensionDataLoader, ) from .CoSENTLoss import CoSENTLoss from .AnglELoss import AnglELoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss # Triplet losses from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .BatchAllTripletLoss import BatchAllTripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedMultipleNegativesRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .memory_profiler_hook import MemoryProfilerHook from .num_class_check_hook import NumClassCheckHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook', 'NumClassCheckHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .memory_profiler_hook import MemoryProfilerHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import OptConfigType, OptMultiConfig @MODELS.register_module() class ChannelMapper(BaseModule): """Channel Mapper to reduce/increase channels of backbone features. This is used to reduce/increase channels of backbone features. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). kernel_size (int, optional): kernel_size for reducing channels (used at each scale). Default: 3. conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for convolution layer. Default: None. norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for normalization layer. Default: None. act_cfg (:obj:`ConfigDict` or dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). num_outs (int, optional): Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels. init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or dict], optional): Initialization config dict. Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = ChannelMapper(in_channels, 11, 3).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__( self, in_channels: List[int], out_channels: int, kernel_size: int = 3, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, act_cfg: OptConfigType = dict(type='ReLU'), num_outs: int = None, init_cfg: OptMultiConfig = dict( type='Xavier', layer='Conv2d', distribution='uniform') ) -> None: super().__init__(init_cfg=init_cfg) assert isinstance(in_channels, list) self.extra_convs = None if num_outs is None: num_outs = len(in_channels) self.convs = nn.ModuleList() for in_channel in in_channels: self.convs.append( ConvModule( in_channel, out_channels, kernel_size, padding=(kernel_size - 1) // 2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) if num_outs > len(in_channels): self.extra_convs = nn.ModuleList() for i in range(len(in_channels), num_outs): if i == len(in_channels): in_channel = in_channels[-1] else: in_channel = out_channels self.extra_convs.append( ConvModule( in_channel, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) def forward(self, inputs: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function.""" assert len(inputs) == len(self.convs) outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] if self.extra_convs: for i in range(len(self.extra_convs)): if i == 0: outs.append(self.extra_convs[0](inputs[-1])) else: outs.append(self.extra_convs[i](outs[-1])) return tuple(outs)
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class ChannelMapper(BaseModule): r"""Channel Mapper to reduce/increase channels of backbone features. This is used to reduce/increase channels of backbone features. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). kernel_size (int, optional): kernel_size for reducing channels (used at each scale). Default: 3. conv_cfg (dict, optional): Config dict for convolution layer. Default: None. norm_cfg (dict, optional): Config dict for normalization layer. Default: None. act_cfg (dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). num_outs (int, optional): Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels. init_cfg (dict or list[dict], optional): Initialization config dict. Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = ChannelMapper(in_channels, 11, 3).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__(self, in_channels, out_channels, kernel_size=3, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), num_outs=None, init_cfg=dict( type='Xavier', layer='Conv2d', distribution='uniform')): super(ChannelMapper, self).__init__(init_cfg) assert isinstance(in_channels, list) self.extra_convs = None if num_outs is None: num_outs = len(in_channels) self.convs = nn.ModuleList() for in_channel in in_channels: self.convs.append( ConvModule( in_channel, out_channels, kernel_size, padding=(kernel_size - 1) // 2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) if num_outs > len(in_channels): self.extra_convs = nn.ModuleList() for i in range(len(in_channels), num_outs): if i == len(in_channels): in_channel = in_channels[-1] else: in_channel = out_channels self.extra_convs.append( ConvModule( in_channel, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) def forward(self, inputs): """Forward function.""" assert len(inputs) == len(self.convs) outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] if self.extra_convs: for i in range(len(self.extra_convs)): if i == 0: outs.append(self.extra_convs[0](inputs[-1])) else: outs.append(self.extra_convs[i](outs[-1])) return tuple(outs)
from __future__ import annotations from enum import Enum from typing import Any, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class SiameseDistanceMetric(Enum): """The metric for the contrastive loss""" EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y) class ContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average: bool = True, ) -> None: """ Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. size_average: Average by the size of the mini-batch. References: * Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf * `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs Relations: - :class:`OnlineContrastiveLoss` is similar, but uses hard positive and hard negative pairs. It often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.ContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.distance_metric = distance_metric self.margin = margin self.model = model self.size_average = size_average def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(SiameseDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"SiameseDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "margin": self.margin, "size_average": self.size_average} def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] assert len(reps) == 2 rep_anchor, rep_other = reps distances = self.distance_metric(rep_anchor, rep_other) losses = 0.5 * ( labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2) ) return losses.mean() if self.size_average else losses.sum() @property def citation(self) -> str: return """ @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } """
from __future__ import annotations from enum import Enum from typing import Any, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class SiameseDistanceMetric(Enum): """The metric for the contrastive loss""" EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y) class ContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average: bool = True, ) -> None: """ Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. size_average: Average by the size of the mini-batch. References: * Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf * `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs Relations: - :class:`OnlineContrastiveLoss` is similar, but uses hard positive and hard negative pairs. It often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.ContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(ContrastiveLoss, self).__init__() self.distance_metric = distance_metric self.margin = margin self.model = model self.size_average = size_average def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(SiameseDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "SiameseDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "margin": self.margin, "size_average": self.size_average} def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] assert len(reps) == 2 rep_anchor, rep_other = reps distances = self.distance_metric(rep_anchor, rep_other) losses = 0.5 * ( labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2) ) return losses.mean() if self.size_average else losses.sum() @property def citation(self) -> str: return """ @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } """
from typing import Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms.functional import pil_to_tensor, to_pil_image def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @torch.jit.unused def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace) def erase( inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT], i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> Union[features.ImageTypeJIT, features.VideoTypeJIT]: if isinstance(inpt, torch.Tensor) and ( torch.jit.is_scripting() or not isinstance(inpt, (features.Image, features.Video)) ): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) elif isinstance(inpt, features.Image): output = erase_image_tensor(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return features.Image.wrap_like(inpt, output) elif isinstance(inpt, features.Video): output = erase_video(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return features.Video.wrap_like(inpt, output) elif isinstance(inpt, PIL.Image.Image): return erase_image_pil(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) else: raise TypeError( f"Input can either be a plain tensor, an `Image` or `Video` tensor subclass, or a PIL image, " f"but got {type(inpt)} instead." )
from typing import Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms.functional import pil_to_tensor, to_pil_image def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @torch.jit.unused def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace) def erase( inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT], i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> Union[features.ImageTypeJIT, features.VideoTypeJIT]: if isinstance(inpt, torch.Tensor) and ( torch.jit.is_scripting() or not isinstance(inpt, (features.Image, features.Video)) ): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) elif isinstance(inpt, features.Image): output = erase_image_tensor(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return features.Image.wrap_like(inpt, output) elif isinstance(inpt, features.Video): output = erase_video(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return features.Video.wrap_like(inpt, output) else: # isinstance(inpt, PIL.Image.Image): return erase_image_pil(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
from docarray.documents.audio import Audio from docarray.documents.image import Image from docarray.documents.mesh import Mesh3D from docarray.documents.point_cloud import PointCloud3D from docarray.documents.text import Text from docarray.documents.video import Video __all__ = ['Text', 'Image', 'Audio', 'Mesh3D', 'PointCloud3D', 'Video']
from docarray.documents.audio import Audio from docarray.documents.image import Image from docarray.documents.mesh import Mesh3D from docarray.documents.point_cloud import PointCloud3D from docarray.documents.text import Text __all__ = ['Text', 'Image', 'Audio', 'Mesh3D', 'PointCloud3D']
from os.path import join from pathlib import Path from typing import Any, Callable, Optional, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, list_dir, list_files from .vision import VisionDataset class Omniglot(VisionDataset): """`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``omniglot-py`` exists. background (bool, optional): If True, creates dataset from the "background" set, otherwise creates from the "evaluation" set. This terminology is defined by the authors. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset zip files from the internet and puts it in root directory. If the zip files are already downloaded, they are not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ folder = "omniglot-py" download_url_prefix = "https://raw.githubusercontent.com/brendenlake/omniglot/master/python" zips_md5 = { "images_background": "68d2efa1b9178cc56df9314c21c6e718", "images_evaluation": "6b91aef0f799c5bb55b94e3f2daec811", } def __init__( self, root: Union[str, Path], background: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Optional[Callable[[Union[str, Path]], Any]] = None, ) -> None: super().__init__(join(root, self.folder), transform=transform, target_transform=target_transform) self.background = background if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") self.target_folder = join(self.root, self._get_target_folder()) self._alphabets = list_dir(self.target_folder) self._characters: list[str] = sum( ([join(a, c) for c in list_dir(join(self.target_folder, a))] for a in self._alphabets), [] ) self._character_images = [ [(image, idx) for image in list_files(join(self.target_folder, character), ".png")] for idx, character in enumerate(self._characters) ] self._flat_character_images: list[tuple[str, int]] = sum(self._character_images, []) self.loader = loader def __len__(self) -> int: return len(self._flat_character_images) def __getitem__(self, index: int) -> tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target character class. """ image_name, character_class = self._flat_character_images[index] image_path = join(self.target_folder, self._characters[character_class], image_name) image = Image.open(image_path, mode="r").convert("L") if self.loader is None else self.loader(image_path) if self.transform: image = self.transform(image) if self.target_transform: character_class = self.target_transform(character_class) return image, character_class def _check_integrity(self) -> bool: zip_filename = self._get_target_folder() if not check_integrity(join(self.root, zip_filename + ".zip"), self.zips_md5[zip_filename]): return False return True def download(self) -> None: if self._check_integrity(): return filename = self._get_target_folder() zip_filename = filename + ".zip" url = self.download_url_prefix + "/" + zip_filename download_and_extract_archive(url, self.root, filename=zip_filename, md5=self.zips_md5[filename]) def _get_target_folder(self) -> str: return "images_background" if self.background else "images_evaluation"
from os.path import join from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, list_dir, list_files from .vision import VisionDataset class Omniglot(VisionDataset): """`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``omniglot-py`` exists. background (bool, optional): If True, creates dataset from the "background" set, otherwise creates from the "evaluation" set. This terminology is defined by the authors. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset zip files from the internet and puts it in root directory. If the zip files are already downloaded, they are not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ folder = "omniglot-py" download_url_prefix = "https://raw.githubusercontent.com/brendenlake/omniglot/master/python" zips_md5 = { "images_background": "68d2efa1b9178cc56df9314c21c6e718", "images_evaluation": "6b91aef0f799c5bb55b94e3f2daec811", } def __init__( self, root: Union[str, Path], background: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Optional[Callable[[Union[str, Path]], Any]] = None, ) -> None: super().__init__(join(root, self.folder), transform=transform, target_transform=target_transform) self.background = background if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") self.target_folder = join(self.root, self._get_target_folder()) self._alphabets = list_dir(self.target_folder) self._characters: List[str] = sum( ([join(a, c) for c in list_dir(join(self.target_folder, a))] for a in self._alphabets), [] ) self._character_images = [ [(image, idx) for image in list_files(join(self.target_folder, character), ".png")] for idx, character in enumerate(self._characters) ] self._flat_character_images: List[Tuple[str, int]] = sum(self._character_images, []) self.loader = loader def __len__(self) -> int: return len(self._flat_character_images) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target character class. """ image_name, character_class = self._flat_character_images[index] image_path = join(self.target_folder, self._characters[character_class], image_name) image = Image.open(image_path, mode="r").convert("L") if self.loader is None else self.loader(image_path) if self.transform: image = self.transform(image) if self.target_transform: character_class = self.target_transform(character_class) return image, character_class def _check_integrity(self) -> bool: zip_filename = self._get_target_folder() if not check_integrity(join(self.root, zip_filename + ".zip"), self.zips_md5[zip_filename]): return False return True def download(self) -> None: if self._check_integrity(): return filename = self._get_target_folder() zip_filename = filename + ".zip" url = self.download_url_prefix + "/" + zip_filename download_and_extract_archive(url, self.root, filename=zip_filename, md5=self.zips_md5[filename]) def _get_target_folder(self) -> str: return "images_background" if self.background else "images_evaluation"
_base_ = '../nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict( _delete_=True, type='FPG', in_channels=[256, 512, 1024, 2048], out_channels=256, inter_channels=256, num_outs=5, add_extra_convs=True, start_level=1, stack_times=9, paths=['bu'] * 9, same_down_trans=None, same_up_trans=dict( type='conv', kernel_size=3, stride=2, padding=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_lateral_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_down_trans=dict( type='interpolation_conv', mode='nearest', kernel_size=3, norm_cfg=norm_cfg, order=('act', 'conv', 'norm'), inplace=False), across_up_trans=None, across_skip_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), output_trans=dict( type='last_conv', kernel_size=3, order=('act', 'conv', 'norm'), inplace=False), norm_cfg=norm_cfg, skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])) train_cfg = dict(val_interval=2)
_base_ = '../nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict( _delete_=True, type='FPG', in_channels=[256, 512, 1024, 2048], out_channels=256, inter_channels=256, num_outs=5, add_extra_convs=True, start_level=1, stack_times=9, paths=['bu'] * 9, same_down_trans=None, same_up_trans=dict( type='conv', kernel_size=3, stride=2, padding=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_lateral_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_down_trans=dict( type='interpolation_conv', mode='nearest', kernel_size=3, norm_cfg=norm_cfg, order=('act', 'conv', 'norm'), inplace=False), across_up_trans=None, across_skip_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), output_trans=dict( type='last_conv', kernel_size=3, order=('act', 'conv', 'norm'), inplace=False), norm_cfg=norm_cfg, skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])) evaluation = dict(interval=2)
""" Tatoeba (https://tatoeba.org/) is a collection of sentences and translation, mainly aiming for language learning. It is available for more than 300 languages. This script downloads the Tatoeba corpus and extracts the sentences & translations in the languages you like """ import gzip import os import tarfile import sentence_transformers # Note: Tatoeba uses 3 letter languages codes (ISO-639-2), # while other datasets like OPUS use 2 letter language codes (ISO-639-1) # For training of sentence transformers, which type of language code is used doesn't matter. # For language codes, see: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes source_languages = set(["eng"]) target_languages = set(["deu", "ara", "tur", "spa", "ita", "fra"]) num_dev_sentences = 1000 # Number of sentences that are used to create a development set tatoeba_folder = "../datasets/tatoeba" output_folder = "parallel-sentences/" sentences_file_bz2 = os.path.join(tatoeba_folder, "sentences.tar.bz2") sentences_file = os.path.join(tatoeba_folder, "sentences.csv") links_file_bz2 = os.path.join(tatoeba_folder, "links.tar.bz2") links_file = os.path.join(tatoeba_folder, "links.csv") download_url = "https://downloads.tatoeba.org/exports/" os.makedirs(tatoeba_folder, exist_ok=True) os.makedirs(output_folder, exist_ok=True) # Download files if needed for filepath in [sentences_file_bz2, links_file_bz2]: if not os.path.exists(filepath): url = download_url + os.path.basename(filepath) print("Download", url) sentence_transformers.util.http_get(url, filepath) # Extract files if needed if not os.path.exists(sentences_file): print("Extract", sentences_file_bz2) tar = tarfile.open(sentences_file_bz2, "r:bz2") tar.extract("sentences.csv", path=tatoeba_folder) tar.close() if not os.path.exists(links_file): print("Extract", links_file_bz2) tar = tarfile.open(links_file_bz2, "r:bz2") tar.extract("links.csv", path=tatoeba_folder) tar.close() # Read sentences sentences = {} all_langs = target_languages.union(source_languages) print("Read sentences.csv file") with open(sentences_file, encoding="utf8") as fIn: for line in fIn: id, lang, sentence = line.strip().split("\t") if lang in all_langs: sentences[id] = (lang, sentence) # Read links that map the translations between different languages print("Read links.csv") translations = {src_lang: {trg_lang: {} for trg_lang in target_languages} for src_lang in source_languages} with open(links_file, encoding="utf8") as fIn: for line in fIn: src_id, target_id = line.strip().split() if src_id in sentences and target_id in sentences: src_lang, src_sent = sentences[src_id] trg_lang, trg_sent = sentences[target_id] if src_lang in source_languages and trg_lang in target_languages: if src_sent not in translations[src_lang][trg_lang]: translations[src_lang][trg_lang][src_sent] = [] translations[src_lang][trg_lang][src_sent].append(trg_sent) # Write everything to the output folder print("Write output files") for src_lang in source_languages: for trg_lang in target_languages: source_sentences = list(translations[src_lang][trg_lang]) train_sentences = source_sentences[num_dev_sentences:] dev_sentences = source_sentences[0:num_dev_sentences] print(f"{src_lang}-{trg_lang} has {len(source_sentences)} sentences") if len(dev_sentences) > 0: with gzip.open( os.path.join(output_folder, f"Tatoeba-{src_lang}-{trg_lang}-dev.tsv.gz"), "wt", encoding="utf8", ) as fOut: for sent in dev_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") if len(train_sentences) > 0: with gzip.open( os.path.join(output_folder, f"Tatoeba-{src_lang}-{trg_lang}-train.tsv.gz"), "wt", encoding="utf8", ) as fOut: for sent in train_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") print("---DONE---")
""" Tatoeba (https://tatoeba.org/) is a collection of sentences and translation, mainly aiming for language learning. It is available for more than 300 languages. This script downloads the Tatoeba corpus and extracts the sentences & translations in the languages you like """ import gzip import os import tarfile import sentence_transformers # Note: Tatoeba uses 3 letter languages codes (ISO-639-2), # while other datasets like OPUS use 2 letter language codes (ISO-639-1) # For training of sentence transformers, which type of language code is used doesn't matter. # For language codes, see: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes source_languages = set(["eng"]) target_languages = set(["deu", "ara", "tur", "spa", "ita", "fra"]) num_dev_sentences = 1000 # Number of sentences that are used to create a development set tatoeba_folder = "../datasets/tatoeba" output_folder = "parallel-sentences/" sentences_file_bz2 = os.path.join(tatoeba_folder, "sentences.tar.bz2") sentences_file = os.path.join(tatoeba_folder, "sentences.csv") links_file_bz2 = os.path.join(tatoeba_folder, "links.tar.bz2") links_file = os.path.join(tatoeba_folder, "links.csv") download_url = "https://downloads.tatoeba.org/exports/" os.makedirs(tatoeba_folder, exist_ok=True) os.makedirs(output_folder, exist_ok=True) # Download files if needed for filepath in [sentences_file_bz2, links_file_bz2]: if not os.path.exists(filepath): url = download_url + os.path.basename(filepath) print("Download", url) sentence_transformers.util.http_get(url, filepath) # Extract files if needed if not os.path.exists(sentences_file): print("Extract", sentences_file_bz2) tar = tarfile.open(sentences_file_bz2, "r:bz2") tar.extract("sentences.csv", path=tatoeba_folder) tar.close() if not os.path.exists(links_file): print("Extract", links_file_bz2) tar = tarfile.open(links_file_bz2, "r:bz2") tar.extract("links.csv", path=tatoeba_folder) tar.close() # Read sentences sentences = {} all_langs = target_languages.union(source_languages) print("Read sentences.csv file") with open(sentences_file, encoding="utf8") as fIn: for line in fIn: id, lang, sentence = line.strip().split("\t") if lang in all_langs: sentences[id] = (lang, sentence) # Read links that map the translations between different languages print("Read links.csv") translations = {src_lang: {trg_lang: {} for trg_lang in target_languages} for src_lang in source_languages} with open(links_file, encoding="utf8") as fIn: for line in fIn: src_id, target_id = line.strip().split() if src_id in sentences and target_id in sentences: src_lang, src_sent = sentences[src_id] trg_lang, trg_sent = sentences[target_id] if src_lang in source_languages and trg_lang in target_languages: if src_sent not in translations[src_lang][trg_lang]: translations[src_lang][trg_lang][src_sent] = [] translations[src_lang][trg_lang][src_sent].append(trg_sent) # Write everything to the output folder print("Write output files") for src_lang in source_languages: for trg_lang in target_languages: source_sentences = list(translations[src_lang][trg_lang]) train_sentences = source_sentences[num_dev_sentences:] dev_sentences = source_sentences[0:num_dev_sentences] print("{}-{} has {} sentences".format(src_lang, trg_lang, len(source_sentences))) if len(dev_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-dev.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in dev_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") if len(train_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-train.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in train_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") print("---DONE---")
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import tensorflow as tf from packaging.version import parse try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) def _gelu(x): """ Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://huggingface.co/papers/1606.08415 """ x = tf.convert_to_tensor(x) cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype))) return x * cdf def _gelu_new(x): """ Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://huggingface.co/papers/1606.0841 Args: x: float Tensor to perform activation Returns: `x` with the GELU activation applied. """ x = tf.convert_to_tensor(x) pi = tf.cast(math.pi, x.dtype) coeff = tf.cast(0.044715, x.dtype) cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3)))) return x * cdf def mish(x): x = tf.convert_to_tensor(x) return x * tf.tanh(tf.math.softplus(x)) def gelu_fast(x): x = tf.convert_to_tensor(x) coeff1 = tf.cast(0.044715, x.dtype) coeff2 = tf.cast(0.7978845608, x.dtype) return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x))) def quick_gelu(x): x = tf.convert_to_tensor(x) coeff = tf.cast(1.702, x.dtype) return x * tf.math.sigmoid(coeff * x) def gelu_10(x): """ Clip the range of possible GeLU outputs between [-10, 10]. This is especially useful for quantization purpose, as it allows mapping 2 negatives values in the GeLU spectrum. For more information on this trick, please refer to https://huggingface.co/papers/2004.09602 Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://huggingface.co/papers/1606.08415 :param x: :return: """ return tf.clip_by_value(_gelu(x), -10, 10) def glu(x, axis=-1): """ Gated Linear Unit. Implementation as defined in the original paper (see https://huggingface.co/papers/1612.08083), where the input `x` is split in two halves across a dimension (`axis`), A and B, returning A * sigmoid(B). Args: `x`: float Tensor to perform activation `axis`: dimension across which `x` be split in half Returns: `x` with the GLU activation applied (with its size halved across the dimension `axis`). """ a, b = tf.split(x, 2, axis=axis) return a * tf.math.sigmoid(b) if parse(tf.version.VERSION) >= parse("2.4"): def approximate_gelu_wrap(x): return keras.activations.gelu(x, approximate=True) gelu = keras.activations.gelu gelu_new = approximate_gelu_wrap else: gelu = _gelu gelu_new = _gelu_new ACT2FN = { "gelu": gelu, "gelu_10": gelu_10, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": keras.activations.relu, "sigmoid": keras.activations.sigmoid, "silu": keras.activations.swish, "swish": keras.activations.swish, "tanh": keras.activations.tanh, } def get_tf_activation(activation_string): if activation_string in ACT2FN: return ACT2FN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import tensorflow as tf from packaging.version import parse try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) def _gelu(x): """ Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ x = tf.convert_to_tensor(x) cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype))) return x * cdf def _gelu_new(x): """ Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://arxiv.org/abs/1606.0841 Args: x: float Tensor to perform activation Returns: `x` with the GELU activation applied. """ x = tf.convert_to_tensor(x) pi = tf.cast(math.pi, x.dtype) coeff = tf.cast(0.044715, x.dtype) cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3)))) return x * cdf def mish(x): x = tf.convert_to_tensor(x) return x * tf.tanh(tf.math.softplus(x)) def gelu_fast(x): x = tf.convert_to_tensor(x) coeff1 = tf.cast(0.044715, x.dtype) coeff2 = tf.cast(0.7978845608, x.dtype) return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x))) def quick_gelu(x): x = tf.convert_to_tensor(x) coeff = tf.cast(1.702, x.dtype) return x * tf.math.sigmoid(coeff * x) def gelu_10(x): """ Clip the range of possible GeLU outputs between [-10, 10]. This is especially useful for quantization purpose, as it allows mapping 2 negatives values in the GeLU spectrum. For more information on this trick, please refer to https://arxiv.org/abs/2004.09602 Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 :param x: :return: """ return tf.clip_by_value(_gelu(x), -10, 10) def glu(x, axis=-1): """ Gated Linear Unit. Implementation as defined in the original paper (see https://arxiv.org/abs/1612.08083), where the input `x` is split in two halves across a dimension (`axis`), A and B, returning A * sigmoid(B). Args: `x`: float Tensor to perform activation `axis`: dimension across which `x` be split in half Returns: `x` with the GLU activation applied (with its size halved across the dimension `axis`). """ a, b = tf.split(x, 2, axis=axis) return a * tf.math.sigmoid(b) if parse(tf.version.VERSION) >= parse("2.4"): def approximate_gelu_wrap(x): return keras.activations.gelu(x, approximate=True) gelu = keras.activations.gelu gelu_new = approximate_gelu_wrap else: gelu = _gelu gelu_new = _gelu_new ACT2FN = { "gelu": gelu, "gelu_10": gelu_10, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": keras.activations.relu, "sigmoid": keras.activations.sigmoid, "silu": keras.activations.swish, "swish": keras.activations.swish, "tanh": keras.activations.tanh, } def get_tf_activation(activation_string): if activation_string in ACT2FN: return ACT2FN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch from torch import nn from sentence_transformers.models.Module import Module class CNN(Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" config_keys: list[str] = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] config_file_name: str = "cnn_config.json" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) self.save_torch_weights(output_path, safe_serialization=safe_serialization) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json")) as fIn: config = json.load(fIn) model = CNN(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, preprocess_cfg=None, pretrained=None, init_cfg=None): super(RetinaNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, preprocess_cfg, pretrained, init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(RetinaNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg, img_norm_cfg)
""" This script translates the queries in the MS MARCO dataset to the defined target languages. For machine translation, we use EasyNMT: https://github.com/UKPLab/EasyNMT You can install it via: pip install easynmt Usage: python translate_queries [target_language] """ import logging import os import sys import tarfile from easynmt import EasyNMT from sentence_transformers import LoggingHandler, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout target_lang = sys.argv[1] output_folder = "multilingual-data" data_folder = "../msmarco-data" output_filename = os.path.join(output_folder, f"train_queries.en-{target_lang}.tsv") os.makedirs(output_folder, exist_ok=True) ## Does the output file exists? If yes, read it so we can continue the translation translated_qids = set() if os.path.exists(output_filename): with open(output_filename, encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") translated_qids.add(splits[0]) ### Now we read the MS Marco dataset os.makedirs(data_folder, exist_ok=True) # Read qrels file for relevant positives per query train_queries = {} qrels_train = os.path.join(data_folder, "qrels.train.tsv") if not os.path.exists(qrels_train): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.train.tsv", qrels_train) with open(qrels_train) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split() if qid not in translated_qids: train_queries[qid] = None # Read all queries queries_filepath = os.path.join(data_folder, "queries.train.tsv") if not os.path.exists(queries_filepath): tar_filepath = os.path.join(data_folder, "queries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download queries.tar.gz") util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/queries.tar.gz", tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) with open(queries_filepath, encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") if qid in train_queries: train_queries[qid] = query.strip() qids = [qid for qid in train_queries if train_queries[qid] is not None] queries = [train_queries[qid] for qid in qids] # Define our translation model translation_model = EasyNMT("opus-mt") print(f"Start translation of {len(queries)} queries.") print("This can take a while. But you can stop this script at any point") with open(output_filename, "a" if os.path.exists(output_filename) else "w", encoding="utf8") as fOut: for qid, query, translated_query in zip( qids, queries, translation_model.translate_stream( queries, source_lang="en", target_lang=target_lang, beam_size=2, perform_sentence_splitting=False, chunk_size=256, batch_size=64, ), ): fOut.write("{}\t{}\n".format(qid, translated_query.replace("\t", " "))) fOut.flush()
""" This script translates the queries in the MS MARCO dataset to the defined target languages. For machine translation, we use EasyNMT: https://github.com/UKPLab/EasyNMT You can install it via: pip install easynmt Usage: python translate_queries [target_language] """ import logging import os import sys import tarfile from easynmt import EasyNMT from sentence_transformers import LoggingHandler, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout target_lang = sys.argv[1] output_folder = "multilingual-data" data_folder = "../msmarco-data" output_filename = os.path.join(output_folder, "train_queries.en-{}.tsv".format(target_lang)) os.makedirs(output_folder, exist_ok=True) ## Does the output file exists? If yes, read it so we can continue the translation translated_qids = set() if os.path.exists(output_filename): with open(output_filename, "r", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") translated_qids.add(splits[0]) ### Now we read the MS Marco dataset os.makedirs(data_folder, exist_ok=True) # Read qrels file for relevant positives per query train_queries = {} qrels_train = os.path.join(data_folder, "qrels.train.tsv") if not os.path.exists(qrels_train): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.train.tsv", qrels_train) with open(qrels_train) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split() if qid not in translated_qids: train_queries[qid] = None # Read all queries queries_filepath = os.path.join(data_folder, "queries.train.tsv") if not os.path.exists(queries_filepath): tar_filepath = os.path.join(data_folder, "queries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download queries.tar.gz") util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/queries.tar.gz", tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) with open(queries_filepath, "r", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") if qid in train_queries: train_queries[qid] = query.strip() qids = [qid for qid in train_queries if train_queries[qid] is not None] queries = [train_queries[qid] for qid in qids] # Define our translation model translation_model = EasyNMT("opus-mt") print("Start translation of {} queries.".format(len(queries))) print("This can take a while. But you can stop this script at any point") with open(output_filename, "a" if os.path.exists(output_filename) else "w", encoding="utf8") as fOut: for qid, query, translated_query in zip( qids, queries, translation_model.translate_stream( queries, source_lang="en", target_lang=target_lang, beam_size=2, perform_sentence_splitting=False, chunk_size=256, batch_size=64, ), ): fOut.write("{}\t{}\n".format(qid, translated_query.replace("\t", " "))) fOut.flush()
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import RerankingEvaluator from sentence_transformers.util import cos_sim if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseRerankingEvaluator(RerankingEvaluator): def __init__( self, samples: list[dict[str, str | list[str]]], at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): return super().__init__( samples=samples, at_k=at_k, name=name, write_csv=write_csv, similarity_fct=similarity_fct, batch_size=batch_size, show_progress_bar=show_progress_bar, use_batched_encoding=use_batched_encoding, truncate_dim=truncate_dim, mrr_at_k=mrr_at_k, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder): return super().compute_metrices(model) def compute_metrices_batched(self, model: SparseEncoder): return super().compute_metrices_batched(model) def compute_metrices_individual(self, model: SparseEncoder): return super().compute_metrices_individual(model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, show_progress_bar: bool | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=show_progress_bar, convert_to_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import RerankingEvaluator from sentence_transformers.util import cos_sim if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseRerankingEvaluator(RerankingEvaluator): def __init__( self, samples: list[dict[str, str | list[str]]], at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): super().__init__( samples=samples, at_k=at_k, name=name, write_csv=write_csv, similarity_fct=similarity_fct, batch_size=batch_size, show_progress_bar=show_progress_bar, use_batched_encoding=use_batched_encoding, truncate_dim=truncate_dim, mrr_at_k=mrr_at_k, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path, epoch, steps) def compute_metrices( self, model: SparseEncoder, ): return super().compute_metrices(model) def compute_metrices_batched( self, model: SparseEncoder, ): return super().compute_metrices_batched(model) def compute_metrices_individual( self, model: SparseEncoder, ): return super().compute_metrices_individual(model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, show_progress_bar: bool | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=show_progress_bar, convert_to_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
import os from typing import Tuple import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm from xgboost.testing.basic_models import run_custom_objective class TestGPUBasicModels: def run_cls(self, X: np.ndarray, y: np.ndarray) -> Tuple[int, int]: cls = xgb.XGBClassifier(tree_method="hist", device="cuda") cls.fit(X, y) cls.get_booster().save_model("test_deterministic_gpu_hist-0.json") cls = xgb.XGBClassifier(tree_method="hist", device="cuda") cls.fit(X, y) cls.get_booster().save_model("test_deterministic_gpu_hist-1.json") with open("test_deterministic_gpu_hist-0.json", "r") as fd: model_0 = fd.read() with open("test_deterministic_gpu_hist-1.json", "r") as fd: model_1 = fd.read() os.remove("test_deterministic_gpu_hist-0.json") os.remove("test_deterministic_gpu_hist-1.json") return hash(model_0), hash(model_1) def test_custom_objective(self) -> None: dtrain, dtest = tm.load_agaricus(__file__) run_custom_objective("hist", "cuda", dtrain, dtest) def test_deterministic_gpu_hist(self) -> None: kRows = 1000 kCols = 64 kClasses = 4 # Create large values to force rounding. X = np.random.randn(kRows, kCols) * 1e4 y = np.random.randint(0, kClasses, size=kRows) model_0, model_1 = self.run_cls(X, y) assert model_0 == model_1 @pytest.mark.skipif(**tm.no_sklearn()) def test_invalid_gpu_id(self) -> None: from sklearn.datasets import load_digits X, y = load_digits(return_X_y=True) # should pass with invalid gpu id cls1 = xgb.XGBClassifier(tree_method="hist", device="cuda:9999") cls1.fit(X, y) # should throw error with fail_on_invalid_gpu_id enabled cls2 = xgb.XGBClassifier( tree_method="hist", device="cuda:9999", fail_on_invalid_gpu_id=True ) with pytest.raises(ValueError, match="ordinal 9999 is invalid"): cls2.fit(X, y) cls2 = xgb.XGBClassifier( tree_method="hist", device="cuda:9999", fail_on_invalid_gpu_id=True ) with pytest.raises(ValueError, match="ordinal 9999 is invalid"): cls2.fit(X, y)
import os import sys import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm sys.path.append("tests/python") import test_basic_models as test_bm # Don't import the test class, otherwise they will run twice. import test_callback as test_cb # noqa rng = np.random.RandomState(1994) class TestGPUBasicModels: cpu_test_cb = test_cb.TestCallbacks() cpu_test_bm = test_bm.TestModels() def run_cls(self, X, y): cls = xgb.XGBClassifier(tree_method="hist", device="cuda") cls.fit(X, y) cls.get_booster().save_model("test_deterministic_gpu_hist-0.json") cls = xgb.XGBClassifier(tree_method="hist", device="cuda") cls.fit(X, y) cls.get_booster().save_model("test_deterministic_gpu_hist-1.json") with open("test_deterministic_gpu_hist-0.json", "r") as fd: model_0 = fd.read() with open("test_deterministic_gpu_hist-1.json", "r") as fd: model_1 = fd.read() os.remove("test_deterministic_gpu_hist-0.json") os.remove("test_deterministic_gpu_hist-1.json") return hash(model_0), hash(model_1) def test_custom_objective(self): self.cpu_test_bm.run_custom_objective("gpu_hist") def test_eta_decay(self): self.cpu_test_cb.run_eta_decay("gpu_hist") @pytest.mark.parametrize( "objective", ["binary:logistic", "reg:absoluteerror", "reg:quantileerror"] ) def test_eta_decay_leaf_output(self, objective) -> None: self.cpu_test_cb.run_eta_decay_leaf_output("gpu_hist", objective) def test_deterministic_gpu_hist(self): kRows = 1000 kCols = 64 kClasses = 4 # Create large values to force rounding. X = np.random.randn(kRows, kCols) * 1e4 y = np.random.randint(0, kClasses, size=kRows) model_0, model_1 = self.run_cls(X, y) assert model_0 == model_1 @pytest.mark.skipif(**tm.no_sklearn()) def test_invalid_gpu_id(self): from sklearn.datasets import load_digits X, y = load_digits(return_X_y=True) # should pass with invalid gpu id cls1 = xgb.XGBClassifier(tree_method="gpu_hist", gpu_id=9999) cls1.fit(X, y) # should throw error with fail_on_invalid_gpu_id enabled cls2 = xgb.XGBClassifier( tree_method="gpu_hist", gpu_id=9999, fail_on_invalid_gpu_id=True ) with pytest.raises(ValueError, match="ordinal 9999 is invalid"): cls2.fit(X, y) cls2 = xgb.XGBClassifier( tree_method="hist", device="cuda:9999", fail_on_invalid_gpu_id=True ) with pytest.raises(ValueError, match="ordinal 9999 is invalid"): cls2.fit(X, y)
from typing import Any, Dict, Union import torch from torchvision import datapoints, transforms as _transforms from torchvision.transforms.v2 import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): """[BETA] Convert bounding box coordinates to the given ``format``, e.g. from "CXCYWH" to "XYXY". .. betastatus:: ConvertBoundingBoxFormat transform Args: format (str or datapoints.BoundingBoxFormat): output bounding box format. Possible values are defined by :class:`~torchvision.datapoints.BoundingBoxFormat` and string values match the enums, e.g. "XYXY" or "XYWH" etc. """ _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): """[BETA] Convert input image or video to the given ``dtype`` and scale the values accordingly. .. betastatus:: ConvertDtype transform This function does not support PIL Image. Args: dtype (torch.dtype): Desired data type of the output .. note:: When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly. If converted back and forth, this mismatch has no effect. Raises: RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range of the integer ``dtype``. """ _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints._TensorImageType, datapoints._TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints._TensorImageType, datapoints._TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBox(Transform): """[BETA] Clamp bounding boxes to their corresponding image dimensions. The clamping is done according to the bounding boxes' ``spatial_size`` meta-data. .. betastatus:: ClampBoundingBox transform """ _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from typing import Any, Dict, Union import torch from torchvision import datapoints, transforms as _transforms from torchvision.transforms.v2 import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): """[BETA] Convert a tensor image/box/mask to the given ``dtype`` and scale the values accordingly .. betastatus:: ConvertDtype transform This function does not support PIL Image. Args: dtype (torch.dtype): Desired data type of the output .. note:: When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly. If converted back and forth, this mismatch has no effect. Raises: RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range of the integer ``dtype``. """ _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints._TensorImageType, datapoints._TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints._TensorImageType, datapoints._TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBox(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from typing import Union import numpy as np import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_image_tensor(inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(inpt, np.ndarray): output = torch.from_numpy(inpt).permute((2, 0, 1)).contiguous() elif isinstance(inpt, PIL.Image.Image): output = pil_to_tensor(inpt) elif isinstance(inpt, torch.Tensor): output = inpt else: raise TypeError(f"Input can either be a numpy array or a PIL image, but got {type(inpt)} instead.") return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
from typing import Union import numpy as np import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(image, np.ndarray): output = torch.from_numpy(image).permute((2, 0, 1)).contiguous() elif isinstance(image, PIL.Image.Image): output = pil_to_tensor(image) else: # isinstance(inpt, torch.Tensor): output = image return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
"""LLMResult class.""" from __future__ import annotations from copy import deepcopy from typing import Literal, Optional, Union from pydantic import BaseModel from langchain_core.outputs.chat_generation import ChatGeneration, ChatGenerationChunk from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.run_info import RunInfo class LLMResult(BaseModel): """A container for results of an LLM call. Both chat models and LLMs generate an LLMResult object. This object contains the generated outputs and any additional information that the model provider wants to return. """ generations: list[ list[Union[Generation, ChatGeneration, GenerationChunk, ChatGenerationChunk]] ] """Generated outputs. The first dimension of the list represents completions for different input prompts. The second dimension of the list represents different candidate generations for a given prompt. When returned from an LLM the type is list[list[Generation]]. When returned from a chat model the type is list[list[ChatGeneration]]. ChatGeneration is a subclass of Generation that has a field for a structured chat message. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output. This dictionary is a free-form dictionary that can contain any information that the provider wants to return. It is not standardized and is provider-specific. Users should generally avoid relying on this field and instead rely on accessing relevant information from standardized fields present in AIMessage. """ run: Optional[list[RunInfo]] = None """List of metadata info for model call for each input.""" type: Literal["LLMResult"] = "LLMResult" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def flatten(self) -> list[LLMResult]: """Flatten generations into a single list. Unpack list[list[Generation]] -> list[LLMResult] where each returned LLMResult contains only a single Generation. If token usage information is available, it is kept only for the LLMResult corresponding to the top-choice Generation, to avoid over-counting of token usage downstream. Returns: List of LLMResults where each returned LLMResult contains a single Generation. """ llm_results = [] for i, gen_list in enumerate(self.generations): # Avoid double counting tokens in OpenAICallback if i == 0: llm_results.append( LLMResult( generations=[gen_list], llm_output=self.llm_output, ) ) else: if self.llm_output is not None: llm_output = deepcopy(self.llm_output) llm_output["token_usage"] = {} else: llm_output = None llm_results.append( LLMResult( generations=[gen_list], llm_output=llm_output, ) ) return llm_results def __eq__(self, other: object) -> bool: """Check for LLMResult equality by ignoring any metadata related to runs.""" if not isinstance(other, LLMResult): return NotImplemented return ( self.generations == other.generations and self.llm_output == other.llm_output )
"""LLMResult class.""" from __future__ import annotations from copy import deepcopy from typing import Literal, Optional, Union from pydantic import BaseModel from langchain_core.outputs.chat_generation import ChatGeneration, ChatGenerationChunk from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.run_info import RunInfo class LLMResult(BaseModel): """A container for results of an LLM call. Both chat models and LLMs generate an LLMResult object. This object contains the generated outputs and any additional information that the model provider wants to return. """ generations: list[ list[Union[Generation, ChatGeneration, GenerationChunk, ChatGenerationChunk]] ] """Generated outputs. The first dimension of the list represents completions for different input prompts. The second dimension of the list represents different candidate generations for a given prompt. When returned from an LLM the type is List[List[Generation]]. When returned from a chat model the type is List[List[ChatGeneration]]. ChatGeneration is a subclass of Generation that has a field for a structured chat message. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output. This dictionary is a free-form dictionary that can contain any information that the provider wants to return. It is not standardized and is provider-specific. Users should generally avoid relying on this field and instead rely on accessing relevant information from standardized fields present in AIMessage. """ run: Optional[list[RunInfo]] = None """List of metadata info for model call for each input.""" type: Literal["LLMResult"] = "LLMResult" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def flatten(self) -> list[LLMResult]: """Flatten generations into a single list. Unpack List[List[Generation]] -> List[LLMResult] where each returned LLMResult contains only a single Generation. If token usage information is available, it is kept only for the LLMResult corresponding to the top-choice Generation, to avoid over-counting of token usage downstream. Returns: List of LLMResults where each returned LLMResult contains a single Generation. """ llm_results = [] for i, gen_list in enumerate(self.generations): # Avoid double counting tokens in OpenAICallback if i == 0: llm_results.append( LLMResult( generations=[gen_list], llm_output=self.llm_output, ) ) else: if self.llm_output is not None: llm_output = deepcopy(self.llm_output) llm_output["token_usage"] = {} else: llm_output = None llm_results.append( LLMResult( generations=[gen_list], llm_output=llm_output, ) ) return llm_results def __eq__(self, other: object) -> bool: """Check for LLMResult equality by ignoring any metadata related to runs.""" if not isinstance(other, LLMResult): return NotImplemented return ( self.generations == other.generations and self.llm_output == other.llm_output )
from typing import Any, Dict, List, Optional, Union from huggingface_hub.utils import get_session from .. import config from ..exceptions import DatasetsError from .file_utils import ( get_authentication_headers_for_url, ) from .logging import get_logger logger = get_logger(__name__) class DatasetViewerError(DatasetsError): """Dataset viewer error. Raised when trying to use the dataset viewer HTTP API and when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. - unavailable /parquet or /info responses """ def get_exported_parquet_files(dataset: str, revision: str, token: Optional[Union[str, bool]]) -> List[Dict[str, Any]]: """ Get the dataset exported parquet files Docs: https://huggingface.co/docs/datasets-server/parquet """ dataset_viewer_parquet_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/parquet?dataset=" try: parquet_data_files_response = get_session().get( url=dataset_viewer_parquet_url + dataset, headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), timeout=100.0, ) parquet_data_files_response.raise_for_status() if "X-Revision" in parquet_data_files_response.headers: if parquet_data_files_response.headers["X-Revision"] == revision or revision is None: parquet_data_files_response_json = parquet_data_files_response.json() if ( parquet_data_files_response_json.get("partial") is False and not parquet_data_files_response_json.get("pending", True) and not parquet_data_files_response_json.get("failed", True) and "parquet_files" in parquet_data_files_response_json ): return parquet_data_files_response_json["parquet_files"] else: logger.debug(f"Parquet export for {dataset} is not completely ready yet.") else: logger.debug( f"Parquet export for {dataset} is available but outdated (revision='{parquet_data_files_response.headers['X-Revision']}')" ) except Exception as e: # noqa catch any exception of the dataset viewer API and consider the parquet export doesn't exist logger.debug(f"No parquet export for {dataset} available ({type(e).__name__}: {e})") raise DatasetViewerError("No exported Parquet files available.") def get_exported_dataset_infos( dataset: str, revision: str, token: Optional[Union[str, bool]] ) -> Dict[str, Dict[str, Any]]: """ Get the dataset information, can be useful to get e.g. the dataset features. Docs: https://huggingface.co/docs/datasets-server/info """ dataset_viewer_info_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/info?dataset=" try: info_response = get_session().get( url=dataset_viewer_info_url + dataset, headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), timeout=100.0, ) info_response.raise_for_status() if "X-Revision" in info_response.headers: if info_response.headers["X-Revision"] == revision or revision is None: info_response = info_response.json() if ( info_response.get("partial") is False and not info_response.get("pending", True) and not info_response.get("failed", True) and "dataset_info" in info_response ): return info_response["dataset_info"] else: logger.debug(f"Dataset info for {dataset} is not completely ready yet.") else: logger.debug( f"Dataset info for {dataset} is available but outdated (revision='{info_response.headers['X-Revision']}')" ) except Exception as e: # noqa catch any exception of the dataset viewer API and consider the dataset info doesn't exist logger.debug(f"No dataset info for {dataset} available ({type(e).__name__}: {e})") raise DatasetViewerError("No exported dataset infos available.")
from typing import Any, Dict, List, Optional, Union from .. import config from ..exceptions import DatasetsError from .file_utils import ( get_authentication_headers_for_url, http_get, ) from .logging import get_logger logger = get_logger(__name__) class DatasetViewerError(DatasetsError): """Dataset viewer error. Raised when trying to use the dataset viewer HTTP API and when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. - unavailable /parquet or /info responses """ def get_exported_parquet_files(dataset: str, revision: str, token: Optional[Union[str, bool]]) -> List[Dict[str, Any]]: """ Get the dataset exported parquet files Docs: https://huggingface.co/docs/datasets-server/parquet """ dataset_viewer_parquet_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/parquet?dataset=" try: parquet_data_files_response = http_get( url=dataset_viewer_parquet_url + dataset, temp_file=None, headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), timeout=100.0, max_retries=3, ) parquet_data_files_response.raise_for_status() if "X-Revision" in parquet_data_files_response.headers: if parquet_data_files_response.headers["X-Revision"] == revision or revision is None: parquet_data_files_response_json = parquet_data_files_response.json() if ( parquet_data_files_response_json.get("partial") is False and not parquet_data_files_response_json.get("pending", True) and not parquet_data_files_response_json.get("failed", True) and "parquet_files" in parquet_data_files_response_json ): return parquet_data_files_response_json["parquet_files"] else: logger.debug(f"Parquet export for {dataset} is not completely ready yet.") else: logger.debug( f"Parquet export for {dataset} is available but outdated (revision='{parquet_data_files_response.headers['X-Revision']}')" ) except Exception as e: # noqa catch any exception of the dataset viewer API and consider the parquet export doesn't exist logger.debug(f"No parquet export for {dataset} available ({type(e).__name__}: {e})") raise DatasetViewerError("No exported Parquet files available.") def get_exported_dataset_infos( dataset: str, revision: str, token: Optional[Union[str, bool]] ) -> Dict[str, Dict[str, Any]]: """ Get the dataset information, can be useful to get e.g. the dataset features. Docs: https://huggingface.co/docs/datasets-server/info """ dataset_viewer_info_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/info?dataset=" try: info_response = http_get( url=dataset_viewer_info_url + dataset, temp_file=None, headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), timeout=100.0, max_retries=3, ) info_response.raise_for_status() if "X-Revision" in info_response.headers: if info_response.headers["X-Revision"] == revision or revision is None: info_response = info_response.json() if ( info_response.get("partial") is False and not info_response.get("pending", True) and not info_response.get("failed", True) and "dataset_info" in info_response ): return info_response["dataset_info"] else: logger.debug(f"Dataset info for {dataset} is not completely ready yet.") else: logger.debug( f"Dataset info for {dataset} is available but outdated (revision='{info_response.headers['X-Revision']}')" ) except Exception as e: # noqa catch any exception of the dataset viewer API and consider the dataset info doesn't exist logger.debug(f"No dataset info for {dataset} available ({type(e).__name__}: {e})") raise DatasetViewerError("No exported dataset infos available.")
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=img_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=img_size), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_size, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer_config = dict(grad_clip=None) optimizer = dict( type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[8, 11]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=12) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (4 samples per GPU) auto_scale_lr = dict(base_batch_size=32)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=img_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=img_size), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_size, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer_config = dict(grad_clip=None) optimizer = dict( type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[8, 11]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=12) # NOTE: This variable is for automatically scaling LR, # USER SHOULD NOT CHANGE THIS VALUE. default_batch_size = 32 # (8 GPUs) x (4 samples per GPU)
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export("keras.optimizers.SGD") class SGD(optimizer.Optimizer): """Gradient descent (with momentum) optimizer. Update rule for parameter `w` with gradient `g` when `momentum` is 0: ```python w = w - learning_rate * g ``` Update rule when `momentum` is larger than 0: ```python velocity = momentum * velocity - learning_rate * g w = w + velocity ``` When `nesterov=True`, this rule becomes: ```python velocity = momentum * velocity - learning_rate * g w = w + momentum * velocity - learning_rate * g ``` Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.01`. momentum: float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. 0 is vanilla gradient descent. Defaults to `0.0`. nesterov: boolean. Whether to apply Nesterov momentum. Defaults to `False`. {{base_optimizer_keyword_args}} """ def __init__( self, learning_rate=0.01, momentum=0.0, nesterov=False, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="SGD", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) if not isinstance(momentum, float) or momentum < 0 or momentum > 1: raise ValueError("`momentum` must be a float between [0, 1].") self.momentum = momentum self.nesterov = nesterov def build(self, variables): """Initialize optimizer variables. SGD optimizer has one variable `momentums`, only set if `self.momentum` is not 0. Args: var_list: list of model variables to build SGD variables on. """ if self.built: return super().build(variables) self.momentums = [] if self.momentum != 0: self.momentums = self.add_optimizer_variables(variables, "momentum") def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" learning_rate = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) m = None if self.momentum != 0: m = self.momentums[self._get_variable_index(variable)] if m is not None: momentum = ops.cast(self.momentum, variable.dtype) self.assign( m, ops.subtract( ops.multiply(m, momentum), ops.multiply(gradient, learning_rate), ), ) if self.nesterov: self.assign_add( variable, ops.subtract( ops.multiply(m, momentum), ops.multiply(gradient, learning_rate), ), ) else: self.assign_add(variable, m) else: self.assign_sub(variable, ops.multiply(gradient, learning_rate)) def get_config(self): config = super().get_config() config.update( { "momentum": self.momentum, "nesterov": self.nesterov, } ) return config SGD.__doc__ = SGD.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export("keras.optimizers.SGD") class SGD(optimizer.Optimizer): """Gradient descent (with momentum) optimizer. Update rule for parameter `w` with gradient `g` when `momentum` is 0: ```python w = w - learning_rate * g ``` Update rule when `momentum` is larger than 0: ```python velocity = momentum * velocity - learning_rate * g w = w + velocity ``` When `nesterov=True`, this rule becomes: ```python velocity = momentum * velocity - learning_rate * g w = w + momentum * velocity - learning_rate * g ``` Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.01`. momentum: float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. 0 is vanilla gradient descent. Defaults to `0.0`. nesterov: boolean. Whether to apply Nesterov momentum. Defaults to `False`. {{base_optimizer_keyword_args}} """ def __init__( self, learning_rate=0.01, momentum=0.0, nesterov=False, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="SGD", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) if not isinstance(momentum, float) or momentum < 0 or momentum > 1: raise ValueError("`momentum` must be a float between [0, 1].") self.momentum = momentum self.nesterov = nesterov def build(self, variables): """Initialize optimizer variables. SGD optimizer has one variable `momentums`, only set if `self.momentum` is not 0. Args: var_list: list of model variables to build SGD variables on. """ if self.built: return super().build(variables) self.momentums = [] if self.momentum != 0: for variable in variables: self.momentums.append( self.add_variable_from_reference( reference_variable=variable, name="momentum" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" learning_rate = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) m = None if self.momentum != 0: m = self.momentums[self._get_variable_index(variable)] if m is not None: momentum = ops.cast(self.momentum, variable.dtype) self.assign( m, ops.subtract( ops.multiply(m, momentum), ops.multiply(gradient, learning_rate), ), ) if self.nesterov: self.assign_add( variable, ops.subtract( ops.multiply(m, momentum), ops.multiply(gradient, learning_rate), ), ) else: self.assign_add(variable, m) else: self.assign_sub(variable, ops.multiply(gradient, learning_rate)) def get_config(self): config = super().get_config() config.update( { "momentum": self.momentum, "nesterov": self.nesterov, } ) return config SGD.__doc__ = SGD.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
import torch from torch import Tensor class ImageList: """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image Args: tensors (tensor): Tensor containing images. image_sizes (list[tuple[int, int]]): List of Tuples each containing size of images. """ def __init__(self, tensors: Tensor, image_sizes: list[tuple[int, int]]) -> None: self.tensors = tensors self.image_sizes = image_sizes def to(self, device: torch.device) -> "ImageList": cast_tensor = self.tensors.to(device) return ImageList(cast_tensor, self.image_sizes)
from typing import List, Tuple import torch from torch import Tensor class ImageList: """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image Args: tensors (tensor): Tensor containing images. image_sizes (list[tuple[int, int]]): List of Tuples each containing size of images. """ def __init__(self, tensors: Tensor, image_sizes: List[Tuple[int, int]]) -> None: self.tensors = tensors self.image_sizes = image_sizes def to(self, device: torch.device) -> "ImageList": cast_tensor = self.tensors.to(device) return ImageList(cast_tensor, self.image_sizes)
from typing import Optional, List, Dict, Any, TYPE_CHECKING, Union from pydantic import BaseModel, validator from docarray.math.ndarray import to_list if TYPE_CHECKING: # pragma: no cover from docarray.typing import ArrayType # this order must be preserved: https://pydantic-docs.helpmanual.io/usage/types/#unions _ProtoValueType = Optional[Union[bool, float, str, list, dict]] _StructValueType = Union[ _ProtoValueType, List[_ProtoValueType], Dict[str, _ProtoValueType] ] _MetadataType = Dict[str, _StructValueType] def _convert_ndarray_to_list(v: 'ArrayType'): if v is not None: return to_list(v) class _NamedScore(BaseModel): value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None class _MetadataModel(BaseModel): metadata: _MetadataType class PydanticDocument(BaseModel): id: Optional[str] parent_id: Optional[str] granularity: Optional[int] adjacency: Optional[int] blob: Optional[str] tensor: Optional[Any] mime_type: Optional[str] text: Optional[str] weight: Optional[float] uri: Optional[str] tags: Optional[Dict[str, '_StructValueType']] _metadata: Optional[Dict[str, '_StructValueType']] offset: Optional[float] location: Optional[List[float]] embedding: Optional[Any] modality: Optional[str] evaluations: Optional[Dict[str, '_NamedScore']] scores: Optional[Dict[str, '_NamedScore']] chunks: Optional[List['PydanticDocument']] matches: Optional[List['PydanticDocument']] _tensor2list = validator('tensor', allow_reuse=True)(_convert_ndarray_to_list) _embedding2list = validator('embedding', allow_reuse=True)(_convert_ndarray_to_list) class Config: smart_union = True def __init__(self, **data): super().__init__(**data) # underscore attributes need to be set and validated manually _metadata = data.get('_metadata', None) if _metadata is not None: _md_model = _MetadataModel(metadata=_metadata) # validate _metadata object.__setattr__(self, '_metadata', _md_model.metadata) PydanticDocument.update_forward_refs() PydanticDocumentArray = List[PydanticDocument]
from typing import Optional, List, Dict, Any, TYPE_CHECKING, Union from pydantic import BaseModel, validator from docarray.math.ndarray import to_list if TYPE_CHECKING: from docarray.typing import ArrayType # this order must be preserved: https://pydantic-docs.helpmanual.io/usage/types/#unions _ProtoValueType = Optional[Union[bool, float, str, list, dict]] _StructValueType = Union[ _ProtoValueType, List[_ProtoValueType], Dict[str, _ProtoValueType] ] _MetadataType = Dict[str, _StructValueType] def _convert_ndarray_to_list(v: 'ArrayType'): if v is not None: return to_list(v) class _NamedScore(BaseModel): value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None class _MetadataModel(BaseModel): metadata: _MetadataType class PydanticDocument(BaseModel): id: Optional[str] parent_id: Optional[str] granularity: Optional[int] adjacency: Optional[int] blob: Optional[str] tensor: Optional[Any] mime_type: Optional[str] text: Optional[str] weight: Optional[float] uri: Optional[str] tags: Optional[Dict[str, '_StructValueType']] _metadata: Optional[Dict[str, '_StructValueType']] offset: Optional[float] location: Optional[List[float]] embedding: Optional[Any] modality: Optional[str] evaluations: Optional[Dict[str, '_NamedScore']] scores: Optional[Dict[str, '_NamedScore']] chunks: Optional[List['PydanticDocument']] matches: Optional[List['PydanticDocument']] _tensor2list = validator('tensor', allow_reuse=True)(_convert_ndarray_to_list) _embedding2list = validator('embedding', allow_reuse=True)(_convert_ndarray_to_list) class Config: smart_union = True def __init__(self, **data): super().__init__(**data) # underscore attributes need to be set and validated manually _metadata = data.get('_metadata', None) if _metadata is not None: _md_model = _MetadataModel(metadata=_metadata) # validate _metadata object.__setattr__(self, '_metadata', _md_model.metadata) PydanticDocument.update_forward_refs() PydanticDocumentArray = List[PydanticDocument]
_base_ = 'fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model setting model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_head=dict( norm_on_bbox=True, centerness_on_reg=True, dcn_on_last_conv=False, center_sampling=True, conv_bias=True, loss_bbox=dict(type='GIoULoss', loss_weight=1.0)), # training and testing settings test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6))) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict(clip_grad=None)
_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model setting model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_head=dict( norm_on_bbox=True, centerness_on_reg=True, dcn_on_last_conv=False, center_sampling=True, conv_bias=True, loss_bbox=dict(type='GIoULoss', loss_weight=1.0)), # training and testing settings test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6))) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict(clip_grad=None)
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry, build_runner_from_cfg # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry, build_runner_from_cfg # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage evaluator EVALUATOR = Registry('evaluator')
from ._transforms import BarkScale, BarkSpectrogram, ChromaScale, ChromaSpectrogram, InverseBarkScale __all__ = [ "BarkScale", "BarkSpectrogram", "ChromaScale", "ChromaSpectrogram", "InverseBarkScale", ]
from ._transforms import BarkScale, BarkSpectrogram, InverseBarkScale __all__ = [ "BarkScale", "BarkSpectrogram", "InverseBarkScale", ]
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseTranslationEvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseTranslationEvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}")
"""Tool for interacting with a single API with natural language definition.""" from __future__ import annotations from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import Tool from langchain_community.chains.openapi.chain import OpenAPIEndpointChain from langchain_community.tools.openapi.utils.api_models import APIOperation from langchain_community.tools.openapi.utils.openapi_utils import OpenAPISpec from langchain_community.utilities.requests import Requests class NLATool(Tool): """Natural Language API Tool.""" @classmethod def from_open_api_endpoint_chain( cls, chain: OpenAPIEndpointChain, api_title: str ) -> "NLATool": """Convert an endpoint chain to an API endpoint tool. Args: chain: The endpoint chain. api_title: The title of the API. Returns: The API endpoint tool. """ expanded_name = ( f"{api_title.replace(' ', '_')}.{chain.api_operation.operation_id}" ) description = ( f"I'm an AI from {api_title}. Instruct what you want," " and I'll assist via an API with description:" f" {chain.api_operation.description}" ) return cls(name=expanded_name, func=chain.run, description=description) @classmethod def from_llm_and_method( cls, llm: BaseLanguageModel, path: str, method: str, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, **kwargs: Any, ) -> "NLATool": """Instantiate the tool from the specified path and method. Args: llm: The language model to use. path: The path of the API. method: The method of the API. spec: The OpenAPI spec. requests: Optional requests object. Default is None. verbose: Whether to print verbose output. Default is False. return_intermediate_steps: Whether to return intermediate steps. Default is False. kwargs: Additional arguments. Returns: The tool. """ api_operation = APIOperation.from_openapi_spec(spec, path, method) chain = OpenAPIEndpointChain.from_api_operation( api_operation, llm, requests=requests, verbose=verbose, return_intermediate_steps=return_intermediate_steps, **kwargs, ) return cls.from_open_api_endpoint_chain(chain, spec.info.title)
"""Tool for interacting with a single API with natural language definition.""" from __future__ import annotations from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import Tool from langchain_community.chains.openapi.chain import OpenAPIEndpointChain from langchain_community.tools.openapi.utils.api_models import APIOperation from langchain_community.tools.openapi.utils.openapi_utils import OpenAPISpec from langchain_community.utilities.requests import Requests class NLATool(Tool): # type: ignore[override] """Natural Language API Tool.""" @classmethod def from_open_api_endpoint_chain( cls, chain: OpenAPIEndpointChain, api_title: str ) -> "NLATool": """Convert an endpoint chain to an API endpoint tool. Args: chain: The endpoint chain. api_title: The title of the API. Returns: The API endpoint tool. """ expanded_name = ( f"{api_title.replace(' ', '_')}.{chain.api_operation.operation_id}" ) description = ( f"I'm an AI from {api_title}. Instruct what you want," " and I'll assist via an API with description:" f" {chain.api_operation.description}" ) return cls(name=expanded_name, func=chain.run, description=description) @classmethod def from_llm_and_method( cls, llm: BaseLanguageModel, path: str, method: str, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, **kwargs: Any, ) -> "NLATool": """Instantiate the tool from the specified path and method. Args: llm: The language model to use. path: The path of the API. method: The method of the API. spec: The OpenAPI spec. requests: Optional requests object. Default is None. verbose: Whether to print verbose output. Default is False. return_intermediate_steps: Whether to return intermediate steps. Default is False. kwargs: Additional arguments. Returns: The tool. """ api_operation = APIOperation.from_openapi_spec(spec, path, method) chain = OpenAPIEndpointChain.from_api_operation( api_operation, llm, requests=requests, verbose=verbose, return_intermediate_steps=return_intermediate_steps, **kwargs, ) return cls.from_open_api_endpoint_chain(chain, spec.info.title)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity: Pearson: 0.8429 Spearman: 0.8366 Model Sparsity: Active Dimensions: 78.3, Sparsity Ratio: 0.9974 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8366
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity: Pearson: 0.8430 Spearman: 0.8368 Model Sparsity: Active Dimensions: 81.1, Sparsity Ratio: 0.9973 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8368
import os from unittest.mock import MagicMock, patch import pytest from llama_index.core.base.llms.base import BaseLLM from llama_index.llms.openai.base import ChatMessage, MessageRole from llama_index.llms.asi import ASI def test_embedding_class(): names_of_base_classes = [b.__name__ for b in ASI.__mro__] assert BaseLLM.__name__ in names_of_base_classes @patch.dict(os.environ, {}, clear=True) def test_initialization(): """Test initialization with API key.""" # Test with explicit API key llm = ASI(api_key="test_key") assert llm.api_key == "test_key" # Test with missing API key with pytest.raises( ValueError, match="Must specify `api_key` or set environment variable `ASI_API_KEY`", ): ASI(api_key=None) @patch("llama_index.llms.asi.base.ASI.stream_complete") def test_stream_complete(mock_stream_complete): """Test stream_complete method.""" # Create a mock response mock_chunk = MagicMock() mock_chunk.text = "Test response" # Set up the mock to return our test chunk mock_stream_complete.return_value = [mock_chunk] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_complete stream = llm.stream_complete("Test prompt") # Check that we get the expected response chunks = list(stream) assert len(chunks) == 1 assert chunks[0].text == "Test response" # Verify that stream_complete was called with the right arguments mock_stream_complete.assert_called_once_with("Test prompt") @patch("llama_index.llms.asi.base.ASI.stream_chat") def test_stream_chat_with_content(mock_stream_chat): """Test stream_chat method with content in delta.""" # Create a mock for the response mock_chunk = MagicMock() mock_chunk.delta = "Test content" # Set up the mock to return our test chunk mock_stream_chat.return_value = [mock_chunk] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_chat messages = [ChatMessage(role=MessageRole.USER, content="Test message")] stream = llm.stream_chat(messages) # Check that we get the expected response chunks = list(stream) assert len(chunks) == 1 assert chunks[0].delta == "Test content" # Verify that stream_chat was called with the right arguments mock_stream_chat.assert_called_once_with(messages) @patch("llama_index.llms.asi.base.ASI.stream_chat") def test_stream_chat_empty_content(mock_stream_chat): """Test stream_chat method with empty content in delta.""" # Create mock chunks for the response mock_chunk1 = MagicMock() mock_chunk1.delta = "Thinking..." mock_chunk2 = MagicMock() mock_chunk2.delta = "Final response" # Set up the mock to return our test chunks mock_stream_chat.return_value = [mock_chunk1, mock_chunk2] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_chat messages = [ChatMessage(role=MessageRole.USER, content="Test message")] stream = llm.stream_chat(messages) # Check that we get the expected response chunks = list(stream) assert len(chunks) == 2 assert chunks[0].delta == "Thinking..." assert chunks[1].delta == "Final response" # Verify that stream_chat was called with the right arguments mock_stream_chat.assert_called_once_with(messages) @patch("llama_index.llms.asi.base.ASI.stream_chat") def test_stream_chat_init_thought(mock_stream_chat): """Test stream_chat method with init_thought field.""" # Create a mock for the response mock_chunk = MagicMock() mock_chunk.delta = "Initial thinking..." # Set up the mock to return our test chunk mock_stream_chat.return_value = [mock_chunk] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_chat messages = [ChatMessage(role=MessageRole.USER, content="Test message")] stream = llm.stream_chat(messages) # Check that we get the expected response chunks = list(stream) assert len(chunks) == 1 assert chunks[0].delta == "Initial thinking..." # Verify that stream_chat was called with the right arguments mock_stream_chat.assert_called_once_with(messages)
import os from unittest.mock import MagicMock, patch import pytest from llama_index.core.base.llms.base import BaseLLM from llama_index.llms.openai.base import ChatMessage, MessageRole from llama_index.llms.asi import ASI def test_embedding_class(): names_of_base_classes = [b.__name__ for b in ASI.__mro__] assert BaseLLM.__name__ in names_of_base_classes @patch.dict(os.environ, {}, clear=True) def test_initialization(): """Test initialization with API key.""" # Test with explicit API key llm = ASI(api_key="test_key") assert llm.api_key == "test_key" # Test with missing API key with pytest.raises( ValueError, match="Must specify `api_key` or set environment variable " "`ASI_API_KEY`", ): ASI(api_key=None) @patch("llama_index.llms.asi.base.ASI.stream_complete") def test_stream_complete(mock_stream_complete): """Test stream_complete method.""" # Create a mock response mock_chunk = MagicMock() mock_chunk.text = "Test response" # Set up the mock to return our test chunk mock_stream_complete.return_value = [mock_chunk] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_complete stream = llm.stream_complete("Test prompt") # Check that we get the expected response chunks = list(stream) assert len(chunks) == 1 assert chunks[0].text == "Test response" # Verify that stream_complete was called with the right arguments mock_stream_complete.assert_called_once_with("Test prompt") @patch("llama_index.llms.asi.base.ASI.stream_chat") def test_stream_chat_with_content(mock_stream_chat): """Test stream_chat method with content in delta.""" # Create a mock for the response mock_chunk = MagicMock() mock_chunk.delta = "Test content" # Set up the mock to return our test chunk mock_stream_chat.return_value = [mock_chunk] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_chat messages = [ChatMessage(role=MessageRole.USER, content="Test message")] stream = llm.stream_chat(messages) # Check that we get the expected response chunks = list(stream) assert len(chunks) == 1 assert chunks[0].delta == "Test content" # Verify that stream_chat was called with the right arguments mock_stream_chat.assert_called_once_with(messages) @patch("llama_index.llms.asi.base.ASI.stream_chat") def test_stream_chat_empty_content(mock_stream_chat): """Test stream_chat method with empty content in delta.""" # Create mock chunks for the response mock_chunk1 = MagicMock() mock_chunk1.delta = "Thinking..." mock_chunk2 = MagicMock() mock_chunk2.delta = "Final response" # Set up the mock to return our test chunks mock_stream_chat.return_value = [mock_chunk1, mock_chunk2] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_chat messages = [ChatMessage(role=MessageRole.USER, content="Test message")] stream = llm.stream_chat(messages) # Check that we get the expected response chunks = list(stream) assert len(chunks) == 2 assert chunks[0].delta == "Thinking..." assert chunks[1].delta == "Final response" # Verify that stream_chat was called with the right arguments mock_stream_chat.assert_called_once_with(messages) @patch("llama_index.llms.asi.base.ASI.stream_chat") def test_stream_chat_init_thought(mock_stream_chat): """Test stream_chat method with init_thought field.""" # Create a mock for the response mock_chunk = MagicMock() mock_chunk.delta = "Initial thinking..." # Set up the mock to return our test chunk mock_stream_chat.return_value = [mock_chunk] # Create the ASI instance llm = ASI(api_key="test_key") # Call stream_chat messages = [ChatMessage(role=MessageRole.USER, content="Test message")] stream = llm.stream_chat(messages) # Check that we get the expected response chunks = list(stream) assert len(chunks) == 1 assert chunks[0].delta == "Initial thinking..." # Verify that stream_chat was called with the right arguments mock_stream_chat.assert_called_once_with(messages)
from functools import wraps from typing import TYPE_CHECKING, List from jina.excepts import FlowBuildLevelError # noinspection PyUnreachableCode if TYPE_CHECKING: # pragma: no cover from jina.enums import FlowBuildLevel from jina.orchestrate.flow.base import Flow def allowed_levels(levels: List['FlowBuildLevel']): """Annotate a function so that it requires certain build level to run. Example: .. highlight:: python .. code-block:: python @build_required(FlowBuildLevel.RUNTIME) def foo(): print(1) :param levels: required build level to run this function. :return: annotated function """ def __build_level(func): @wraps(func) def arg_wrapper(self, *args, **kwargs): if hasattr(self, '_build_level'): if self._build_level in levels: return func(self, *args, **kwargs) else: raise FlowBuildLevelError( f'build_level check failed for {func!r}, required level: {levels}, actual level: {self._build_level}' ) else: raise AttributeError(f'{self!r} has no attribute "_build_level"') return arg_wrapper return __build_level def _hanging_deployments(op_flow: 'Flow') -> List[str]: """ :param op_flow: the Flow we're operating on :return: names of floating Deployments (nobody recv from them) in the Flow. """ all_needs = {k for p, v in op_flow for k in v.needs} all_names = {p for p, v in op_flow if not v.args.floating} # all_names is always a superset of all_needs return list(all_names.difference(all_needs))
from functools import wraps from typing import TYPE_CHECKING, List from jina.excepts import FlowBuildLevelError # noinspection PyUnreachableCode if TYPE_CHECKING: # pragma: no cover from jina.enums import FlowBuildLevel from jina.orchestrate.flow.base import Flow def allowed_levels(levels: List['FlowBuildLevel']): """Annotate a function so that it requires certain build level to run. Example: .. highlight:: python .. code-block:: python @build_required(FlowBuildLevel.RUNTIME) def foo(): print(1) :param levels: required build level to run this function. :return: annotated function """ def __build_level(func): @wraps(func) def arg_wrapper(self, *args, **kwargs): if hasattr(self, '_build_level'): if self._build_level in levels: return func(self, *args, **kwargs) else: raise FlowBuildLevelError( f'build_level check failed for {func!r}, required level: {levels}, actual level: {self._build_level}' ) else: raise AttributeError(f'{self!r} has no attribute "_build_level"') return arg_wrapper return __build_level def _hanging_deployments(op_flow: 'Flow') -> List[str]: """ :param op_flow: the Flow we're operating on :return: names of floating Deployments (nobody recv from them) in the Flow. """ all_needs = {k for p, v in op_flow for k in v.needs} all_names = {p for p, v in op_flow if not v.args.floating} # all_names is always a superset of all_needs return list(all_names.difference(all_needs))
from llama_index_instrumentation.span_handlers.simple import SimpleSpanHandler # noqa
import inspect from typing import Any, Dict, cast, List, Optional, TYPE_CHECKING from llama_index.core.instrumentation.span.simple import SimpleSpan from llama_index.core.instrumentation.span_handlers.base import BaseSpanHandler from datetime import datetime from functools import reduce import warnings if TYPE_CHECKING: from treelib import Tree class SimpleSpanHandler(BaseSpanHandler[SimpleSpan]): """Span Handler that manages SimpleSpan's.""" def class_name(cls) -> str: """Class name.""" return "SimpleSpanHandler" def new_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, parent_span_id: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> SimpleSpan: """Create a span.""" return SimpleSpan(id_=id_, parent_id=parent_span_id, tags=tags or {}) def prepare_to_exit_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, result: Optional[Any] = None, **kwargs: Any, ) -> SimpleSpan: """Logic for preparing to drop a span.""" span = self.open_spans[id_] span = cast(SimpleSpan, span) span.end_time = datetime.now() span.duration = (span.end_time - span.start_time).total_seconds() with self.lock: self.completed_spans += [span] return span def prepare_to_drop_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, err: Optional[BaseException] = None, **kwargs: Any, ) -> Optional[SimpleSpan]: """Logic for droppping a span.""" if id_ in self.open_spans: with self.lock: span = self.open_spans[id_] span.metadata = {"error": str(err)} self.dropped_spans += [span] return span return None def _get_parents(self) -> List[SimpleSpan]: """Helper method to get all parent/root spans.""" all_spans = self.completed_spans + self.dropped_spans return [s for s in all_spans if s.parent_id is None] def _build_tree_by_parent( self, parent: SimpleSpan, acc: List[SimpleSpan], spans: List[SimpleSpan] ) -> List[SimpleSpan]: """Builds the tree by parent root.""" if not spans: return acc children = [s for s in spans if s.parent_id == parent.id_] if not children: return acc updated_spans = [s for s in spans if s not in children] children_trees = [ self._build_tree_by_parent( parent=c, acc=[c], spans=[s for s in updated_spans if c != s] ) for c in children ] return acc + reduce(lambda x, y: x + y, children_trees) def _get_trace_trees(self) -> List["Tree"]: """Method for getting trace trees.""" try: from treelib import Tree except ImportError as e: raise ImportError( "`treelib` package is missing. Please install it by using " "`pip install treelib`." ) all_spans = self.completed_spans + self.dropped_spans for s in all_spans: if s.parent_id is None: continue if not any(ns.id_ == s.parent_id for ns in all_spans): warnings.warn(f"Parent with id {s.parent_id} missing from spans") s.parent_id += "-MISSING" all_spans.append(SimpleSpan(id_=s.parent_id, parent_id=None)) parents = self._get_parents() span_groups = [] for p in parents: this_span_group = self._build_tree_by_parent( parent=p, acc=[p], spans=[s for s in all_spans if s != p] ) sorted_span_group = sorted(this_span_group, key=lambda x: x.start_time) span_groups.append(sorted_span_group) trees = [] tree = Tree() for grp in span_groups: for span in grp: if span.parent_id is None: # complete old tree unless its empty (i.e., start of loop) if tree.all_nodes(): trees.append(tree) # start new tree tree = Tree() tree.create_node( tag=f"{span.id_} ({span.duration})", identifier=span.id_, parent=span.parent_id, data=span.start_time, ) trees.append(tree) return trees def print_trace_trees(self) -> None: """Method for viewing trace trees.""" trees = self._get_trace_trees() for tree in trees: print(tree.show(stdout=False, sorting=True, key=lambda node: node.data)) print("")
from __future__ import annotations __version__ = "5.1.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os import warnings from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.sampler import DefaultBatchSampler, MultiDatasetDefaultBatchSampler from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" # Globally silence PyTorch sparse CSR tensor beta warning warnings.filterwarnings("ignore", message="Sparse CSR tensor support is in beta state") __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "DefaultBatchSampler", "MultiDatasetDefaultBatchSampler", "mine_hard_negatives", ]
from __future__ import annotations __version__ = "4.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os import warnings from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.sampler import DefaultBatchSampler, MultiDatasetDefaultBatchSampler from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" # Globally silence PyTorch sparse CSR tensor beta warning warnings.filterwarnings("ignore", message="Sparse CSR tensor support is in beta state") __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "DefaultBatchSampler", "MultiDatasetDefaultBatchSampler", "mine_hard_negatives", ]
from jina import DocumentArray, Flow from ...clip_text import CLIPTextEncoder def test_no_documents(): test_docs = DocumentArray() f = Flow().add(uses=CLIPTextEncoder) with f: f.search(test_docs, {}) assert len(test_docs) == 0 # SUCCESS
from jina import DocumentArray, Flow from jinahub.encoder.clip_text import CLIPTextEncoder def test_no_documents(): test_docs = DocumentArray() f = Flow().add(uses=CLIPTextEncoder) with f: f.search(test_docs, {}) assert len(test_docs) == 0 # SUCCESS
import inspect import re from hashlib import sha256 from typing import List from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } _EXTENSION_TO_MODULE = { "csv": ("csv", {}), "tsv": ("csv", {"sep": "\t"}), "json": ("json", {}), "jsonl": ("json", {}), "parquet": ("parquet", {}), "txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext[1:]: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext[1:].upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext[1:]: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext[1:].upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"}
import inspect import re from hashlib import sha256 from typing import List from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .text import text def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } _EXTENSION_TO_MODULE = { "csv": ("csv", {}), "tsv": ("csv", {"sep": "\t"}), "json": ("json", {}), "jsonl": ("json", {}), "parquet": ("parquet", {}), "txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext[1:]: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext[1:].upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext[1:]: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext[1:].upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"}
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import torch from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() # build the model from a config file and a checkpoint file device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( name='result', image=img, data_sample=result, draw_gt=False, pred_score_thr=args.score_thr, show=False) img = visualizer.get_image() img = mmcv.imconvert(img, 'bgr', 'rgb') cv2.imshow('result', img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import torch from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( name='result', image=img, data_sample=result, draw_gt=False, pred_score_thr=args.score_thr, show=False) img = visualizer.get_image() img = mmcv.imconvert(img, 'bgr', 'rgb') cv2.imshow('result', img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break if __name__ == '__main__': main()
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseMSEEvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model student_model = SparseEncoder("prithivida/Splade_PP_en_v1") teacher_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load any dataset with some texts dataset = load_dataset("sentence-transformers/stsb", split="validation") sentences = dataset["sentence1"] + dataset["sentence2"] # Given queries, a corpus and a mapping with relevant documents, the SparseMSEEvaluator computes different MSE metrics. mse_evaluator = SparseMSEEvaluator( source_sentences=sentences, target_sentences=sentences, teacher_model=teacher_model, name="stsb-dev", ) results = mse_evaluator(student_model) """ MSE evaluation (lower = better) on the stsb-dev dataset: MSE (*100): 0.035540 """ # Print the results print(f"Primary metric: {mse_evaluator.primary_metric}") # => Primary metric: stsb-dev_negative_mse print(f"Primary metric value: {results[mse_evaluator.primary_metric]:.4f}") # => Primary metric value: -0.0355
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseMSEEvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load any dataset with some texts dataset = load_dataset("sentence-transformers/stsb", split="validation") sentences = dataset["sentence1"] + dataset["sentence2"] # Given queries, a corpus and a mapping with relevant documents, the InformationRetrievalEvaluator computes different IR metrics. mse_evaluator = SparseMSEEvaluator( source_sentences=sentences, target_sentences=sentences, teacher_model=teacher_model, name="stsb-dev", ) results = mse_evaluator(student_model) # Print the results print(f"Primary metric: {mse_evaluator.primary_metric}") print(f"Primary metric value: {results[mse_evaluator.primary_metric]:.4f}")
__all__ = ['filter_docs'] import json from typing import Dict, List, Union from docarray.array.any_array import AnyDocArray from docarray.array.doc_list.doc_list import DocList def filter_docs( docs: AnyDocArray, query: Union[str, Dict, List[Dict]], ) -> AnyDocArray: """ Filter the Documents in the index according to the given filter query. Filter queries use the same syntax as the MongoDB query language (https://www.mongodb.com/docs/manual/tutorial/query-documents/#specify-conditions-using-query-operators). You can see a list of the supported operators here (https://www.mongodb.com/docs/manual/reference/operator/query/#std-label-query-selectors) --- ```python from docarray import DocList, BaseDoc from docarray.documents import TextDoc, ImageDoc from docarray.utils.filter import filter_docs class MyDocument(BaseDoc): caption: TextDoc ImageDoc: ImageDoc price: int docs = DocList[MyDocument]( [ MyDocument( caption='A tiger in the jungle', ImageDoc=ImageDoc(url='tigerphoto.png'), price=100, ), MyDocument( caption='A swimming turtle', ImageDoc=ImageDoc(url='turtlepic.png'), price=50, ), MyDocument( caption='A couple birdwatching with binoculars', ImageDoc=ImageDoc(url='binocularsphoto.png'), price=30, ), ] ) query = { '$and': { 'ImageDoc__url': {'$regex': 'photo'}, 'price': {'$lte': 50}, } } results = filter_docs(docs, query) assert len(results) == 1 assert results[0].price == 30 assert results[0].caption == 'A couple birdwatching with binoculars' assert results[0].ImageDoc.url == 'binocularsphoto.png' ``` --- :param docs: the DocList where to apply the filter :param query: the query to filter by :return: A DocList containing the Documents in `docs` that fulfill the filter conditions in the `query` """ from docarray.utils._internal.query_language.query_parser import QueryParser if query: query = query if not isinstance(query, str) else json.loads(query) parser = QueryParser(query) return DocList.__class_getitem__(docs.doc_type)( d for d in docs if parser.evaluate(d) ) else: return docs
__all__ = ['filter_docs'] import json from typing import Dict, List, Union from docarray.array.any_array import AnyDocArray from docarray.array.doc_list.doc_list import DocList def filter_docs( docs: AnyDocArray, query: Union[str, Dict, List[Dict]], ) -> AnyDocArray: """ Filter the Documents in the index according to the given filter query. --- ```python from docarray import DocList, BaseDoc from docarray.documents import TextDoc, ImageDoc from docarray.utils.filter import filter_docs class MyDocument(BaseDoc): caption: TextDoc ImageDoc: ImageDoc price: int docs = DocList[MyDocument]( [ MyDocument( caption='A tiger in the jungle', ImageDoc=ImageDoc(url='tigerphoto.png'), price=100, ), MyDocument( caption='A swimming turtle', ImageDoc=ImageDoc(url='turtlepic.png'), price=50, ), MyDocument( caption='A couple birdwatching with binoculars', ImageDoc=ImageDoc(url='binocularsphoto.png'), price=30, ), ] ) query = { '$and': { 'ImageDoc__url': {'$regex': 'photo'}, 'price': {'$lte': 50}, } } results = filter_docs(docs, query) assert len(results) == 1 assert results[0].price == 30 assert results[0].caption == 'A couple birdwatching with binoculars' assert results[0].ImageDoc.url == 'binocularsphoto.png' ``` --- :param docs: the DocList where to apply the filter :param query: the query to filter by :return: A DocList containing the Documents in `docs` that fulfill the filter conditions in the `query` """ from docarray.utils._internal.query_language.query_parser import QueryParser if query: query = query if not isinstance(query, str) else json.loads(query) parser = QueryParser(query) return DocList.__class_getitem__(docs.doc_type)( d for d in docs if parser.evaluate(d) ) else: return docs
import os from pathlib import Path import pytest from jina import Document, DocumentArray, Executor def test_config(): ranker = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'query_features': ['query'], 'match_features': ['match'], 'relevance_label': 'relevance', }, ) assert ranker.query_features == ['query'] assert ranker.match_features == ['match'] def test_dump_load_path_not_exist(ranker): with pytest.raises(ValueError): ranker.dump(parameters={}) ranker.load(parameters={}) def test_train(ranker, documents_to_train_price_sensitive_model): ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster def test_train_with_categorical_features( ranker_with_categorical_features, documents_to_train_price_sensitive_model ): """Weight field specify the importance of the features.""" ranker_with_categorical_features.train( docs=documents_to_train_price_sensitive_model ) assert ranker_with_categorical_features.booster def test_dump_load(ranker, documents_to_train_price_sensitive_model, tmpdir): model_path = str(tmpdir) + 'model.txt' ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.dump(parameters={'model_path': model_path}) assert os.path.exists(model_path) ranker.load({'model_path': model_path}) assert ranker.booster def test_rank_price_sensitive_model( ranker, documents_to_train_price_sensitive_model, documents_random_brand, ): """train the model using price sensitive data, assure higher price get lower relevance score.""" ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.rank(documents_random_brand) for doc in documents_random_brand: predicted_relevances = [] predicted_ids = [] expected_ids = ['3', '4', '2', '1'] # Price smaller to large. for match in doc.matches: predicted_relevances.append(match.scores.get('relevance').value) predicted_ids.append(match.id) assert ( predicted_relevances[0] >= predicted_relevances[1] >= predicted_relevances[2] ) assert predicted_ids == expected_ids def test_rank_empty_docs(ranker): da = DocumentArray([]) ranker.rank(da) assert len(da) == 0 def test_train_empty_docs(ranker): da = DocumentArray([]) ranker.train(da) assert len(da) == 0 def test_rank_none(ranker): ranker.rank(None) def test_train_none(ranker): ranker.train(None)
import os from pathlib import Path import pytest from jina import Executor def test_config(): ranker = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'query_features': ['query'], 'match_features': ['match'], 'relevance_label': 'relevance', }, ) assert ranker.query_features == ['query'] assert ranker.match_features == ['match'] def test_dump_load_path_not_exist(ranker): with pytest.raises(ValueError): ranker.dump(parameters={}) ranker.load(parameters={}) def test_train(ranker, documents_to_train_price_sensitive_model): ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster def test_train_with_categorical_features( ranker_with_categorical_features, documents_to_train_price_sensitive_model ): """Weight field specify the importance of the features.""" ranker_with_categorical_features.train( docs=documents_to_train_price_sensitive_model ) assert ranker_with_categorical_features.booster def test_dump_load(ranker, documents_to_train_price_sensitive_model, tmpdir): model_path = str(tmpdir) + 'model.txt' ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.dump(parameters={'model_path': model_path}) assert os.path.exists(model_path) ranker.load({'model_path': model_path}) assert ranker.booster def test_rank_price_sensitive_model( ranker, documents_to_train_price_sensitive_model, documents_random_brand, ): """train the model using price sensitive data, assure higher price get lower relevance score.""" ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.rank(documents_random_brand) for doc in documents_random_brand: predicted_relevances = [] predicted_ids = [] expected_ids = ['3', '4', '2', '1'] # Price smaller to large. for match in doc.matches: predicted_relevances.append(match.scores.get('relevance').value) predicted_ids.append(match.id) assert ( predicted_relevances[0] >= predicted_relevances[1] >= predicted_relevances[2] ) assert predicted_ids == expected_ids
# Owner(s): ["module: dynamo"] import torch import torch._dynamo import torch._dynamo.test_case import torch._functorch from torch._dynamo.precompile_context import PrecompileContext from torch._functorch import config as functorch_config from torch._functorch._aot_autograd.autograd_cache import ( BundledAOTAutogradCacheArtifact, ) from torch._inductor.test_case import TestCase as InductorTestCase from torch.testing._internal.inductor_utils import GPU_TYPE, requires_triton @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch( {"bundled_autograd_cache": True} ) # Requires bundledaotautograd cache for now class PrecompileContextTests(InductorTestCase): def setUp(self): """ Reset all counters and caches before each unit test """ super().setUp() # Clear PrecompileContext cache artifacts PrecompileContext.clear() @requires_triton() def test_basic(self): """ Test that after torch.compile, PrecompileContext._new_cache_artifacts length is 1 """ def simple_function(x): return x.sin() + x.cos() compiled_fn = torch.compile(simple_function) # Run the compiled function x = torch.randn(10, device=GPU_TYPE, requires_grad=True) result = compiled_fn(x) result.sum().backward() # Check that PrecompileContext._new_cache_artifacts_by_key has length 1 self.assertEqual(len(PrecompileContext._new_cache_artifacts_by_key), 1) self.assertEqual(len(PrecompileContext._new_cache_artifacts), 0) result = PrecompileContext.serialize() assert result is not None serialized, cache_info = result self.assertEqual(len(cache_info.precompile_aot_autograd_artifacts), 1) artifacts = PrecompileContext.deserialize(serialized) assert artifacts is not None deserialized = artifacts["precompile_aot_autograd"] assert len(deserialized) == 1 entry = deserialized[0] assert isinstance(entry, BundledAOTAutogradCacheArtifact) entry = entry.after_deserialization() # Now that we've serialized, there should be no new cache artifacts self.assertEqual( len(PrecompileContext._new_cache_artifacts["precompile_aot_autograd"]), 0 ) @requires_triton() def test_serialize_by_key(self): """ Test that after torch.compile, PrecompileContext._new_cache_artifacts length is 1 """ def simple_function(x): return x.sin() + x.cos() compiled_fn = torch.compile(simple_function) # Run the compiled function x = torch.randn(10, device=GPU_TYPE, requires_grad=True) result = compiled_fn(x) result.sum().backward() # Check that PrecompileContext._new_cache_artifacts_by_key has length 1 # TODO: the key right now is the AOTAutogradCacheKey, but will be backend_id once # we have torch._dynamo.package implemented self.assertEqual(len(PrecompileContext._new_cache_artifacts_by_key), 1) key = next(iter(PrecompileContext._new_cache_artifacts_by_key.keys())) result = PrecompileContext.serialize_artifact_by_key(key) assert isinstance(result, BundledAOTAutogradCacheArtifact) self.assertEqual(result.key, key) self.assertEqual(len(PrecompileContext._new_cache_artifacts), 0) result = PrecompileContext.serialize() assert result is not None _, cache_info = result self.assertEqual(len(cache_info.precompile_aot_autograd_artifacts), 1) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
# Owner(s): ["module: dynamo"] import torch import torch._dynamo import torch._dynamo.test_case import torch._functorch from torch._dynamo.precompile_context import PrecompileContext from torch._functorch import config as functorch_config from torch._functorch._aot_autograd.autograd_cache import ( BundledAOTAutogradCacheArtifact, BundledAOTAutogradCacheEntry, ) from torch._inductor.test_case import TestCase as InductorTestCase from torch.testing._internal.inductor_utils import GPU_TYPE, requires_triton @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch( {"bundled_autograd_cache": True} ) # Requires bundledaotautograd cache for now class PrecompileContextTests(InductorTestCase): def setUp(self): """ Reset all counters and caches before each unit test """ super().setUp() # Clear PrecompileContext cache artifacts PrecompileContext.clear() @requires_triton() def test_basic(self): """ Test that after torch.compile, PrecompileContext._new_cache_artifacts length is 1 """ def simple_function(x): return x.sin() + x.cos() compiled_fn = torch.compile(simple_function) # Run the compiled function x = torch.randn(10, device=GPU_TYPE, requires_grad=True) result = compiled_fn(x) result.sum().backward() # Check that PrecompileContext._new_cache_artifacts_by_key has length 1 self.assertEqual(len(PrecompileContext._new_cache_artifacts_by_key), 1) self.assertEqual(len(PrecompileContext._new_cache_artifacts), 0) result = PrecompileContext.serialize() assert result is not None serialized, cache_info = result self.assertEqual(len(cache_info.precompile_aot_autograd_artifacts), 1) artifacts = PrecompileContext.deserialize(serialized) assert artifacts is not None deserialized = artifacts["precompile_aot_autograd"] assert len(deserialized) == 1 entry = deserialized[0] assert isinstance(entry, BundledAOTAutogradCacheArtifact) entry = entry.after_deserialization() assert isinstance( entry, BundledAOTAutogradCacheEntry, ) # Now that we've serialized, there should be no new cache artifacts self.assertEqual( len(PrecompileContext._new_cache_artifacts["precompile_aot_autograd"]), 0 ) @requires_triton() def test_serialize_by_key(self): """ Test that after torch.compile, PrecompileContext._new_cache_artifacts length is 1 """ def simple_function(x): return x.sin() + x.cos() compiled_fn = torch.compile(simple_function) # Run the compiled function x = torch.randn(10, device=GPU_TYPE, requires_grad=True) result = compiled_fn(x) result.sum().backward() # Check that PrecompileContext._new_cache_artifacts_by_key has length 1 # TODO: the key right now is the AOTAutogradCacheKey, but will be backend_id once # we have torch._dynamo.package implemented self.assertEqual(len(PrecompileContext._new_cache_artifacts_by_key), 1) key = next(iter(PrecompileContext._new_cache_artifacts_by_key.keys())) result = PrecompileContext.serialize_artifact_by_key(key) assert isinstance(result, BundledAOTAutogradCacheArtifact) self.assertEqual(result.key, key) self.assertEqual(len(PrecompileContext._new_cache_artifacts), 0) result = PrecompileContext.serialize() assert result is not None _, cache_info = result self.assertEqual(len(cache_info.precompile_aot_autograd_artifacts), 1) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
_base_ = './gfl_r50_fpn_ms-2x_coco.py' model = dict( type='GFL', backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
_base_ = './gfl_r50_fpn_mstrain_2x_coco.py' model = dict( type='GFL', backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
"""Argparser module for WorkerRuntime""" from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) gp.add_argument( '--no-reduce', '--disable-reduce', action='store_true', default=False, help='Disable the built-in reduction mechanism. Set this if the reduction is to be handled by the Executor itself by operating on a `docs_matrix` or `docs_map`', ) mixin_base_runtime_parser(gp)
"""Argparser module for WorkerRuntime""" from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) mixin_base_runtime_parser(gp)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from jina import Document, Flow def data_generator(num_docs): for i in range(num_docs): doc = Document(text='it is a good day! the dog sits on the floor.') yield doc def test_use_in_flow(): with Flow.load_config('flow.yml') as flow: resp = flow.post(on='/encode', inputs=data_generator(5), return_results=True) docs = resp[0].docs assert len(docs) == 5 for doc in docs: assert doc.embedding.shape == (768,)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from jina import Flow, Document def data_generator(num_docs): for i in range(num_docs): doc = Document( text='it is a good day! the dog sits on the floor.') yield doc def test_use_in_flow(): with Flow.load_config('flow.yml') as flow: resp = flow.post(on='/encode', inputs=data_generator(5), return_results=True) docs = resp[0].docs assert len(docs) == 5 for doc in docs: assert doc.embedding.shape == (768,)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import xml.etree.ElementTree as ET import mmcv from mmdet.registry import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class WIDERFaceDataset(XMLDataset): """Reader for the WIDER Face dataset in PASCAL VOC format. Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations """ CLASSES = ('face', ) PALETTE = [(0, 255, 0)] def __init__(self, **kwargs): super(WIDERFaceDataset, self).__init__(**kwargs) def load_annotations(self, ann_file): """Load annotation from WIDERFace XML style annotation file. Args: ann_file (str): Path of XML file. Returns: list[dict]: Annotation info from XML file. """ data_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = f'{img_id}.jpg' xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) folder = root.find('folder').text data_infos.append( dict( id=img_id, filename=osp.join(folder, filename), width=width, height=height)) return data_infos
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import xml.etree.ElementTree as ET import mmcv from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class WIDERFaceDataset(XMLDataset): """Reader for the WIDER Face dataset in PASCAL VOC format. Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations """ CLASSES = ('face', ) PALETTE = [(0, 255, 0)] def __init__(self, **kwargs): super(WIDERFaceDataset, self).__init__(**kwargs) def load_annotations(self, ann_file): """Load annotation from WIDERFace XML style annotation file. Args: ann_file (str): Path of XML file. Returns: list[dict]: Annotation info from XML file. """ data_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = f'{img_id}.jpg' xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) folder = root.find('folder').text data_infos.append( dict( id=img_id, filename=osp.join(folder, filename), width=width, height=height)) return data_infos
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.export.saved_model import ExportArchive as ExportArchive
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.export.saved_model import ExportArchive
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax.linen as nn import jax import jax.numpy as jnp class FlaxUpsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, hidden_states): batch, height, width, channels = hidden_states.shape hidden_states = jax.image.resize( hidden_states, shape=(batch, height * 2, width * 2, channels), method="nearest", ) hidden_states = self.conv(hidden_states) return hidden_states class FlaxDownsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), # padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) hidden_states = self.conv(hidden_states) return hidden_states class FlaxResnetBlock2D(nn.Module): in_channels: int out_channels: int = None dropout_prob: float = 0.0 use_nin_shortcut: bool = None dtype: jnp.dtype = jnp.float32 def setup(self): out_channels = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.conv1 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype) self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.dropout = nn.Dropout(self.dropout_prob) self.conv2 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut self.conv_shortcut = None if use_nin_shortcut: self.conv_shortcut = nn.Conv( out_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, temb, deterministic=True): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.conv1(hidden_states) temb = self.time_emb_proj(nn.swish(temb)) temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1) hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.dropout(hidden_states, deterministic) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) return hidden_states + residual
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax.linen as nn import jax import jax.numpy as jnp class FlaxUpsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, hidden_states): batch, height, width, channels = hidden_states.shape hidden_states = jax.image.resize( hidden_states, shape=(batch, height * 2, width * 2, channels), method="nearest", ) hidden_states = self.conv(hidden_states) return hidden_states class FlaxDownsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), # padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) hidden_states = self.conv(hidden_states) return hidden_states class FlaxResnetBlock2D(nn.Module): in_channels: int out_channels: int = None dropout_prob: float = 0.0 use_nin_shortcut: bool = None dtype: jnp.dtype = jnp.float32 def setup(self): out_channels = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.conv1 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype) self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.dropout = nn.Dropout(self.dropout_prob) self.conv2 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut self.conv_shortcut = None if use_nin_shortcut: self.conv_shortcut = nn.Conv( out_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, temb, deterministic=True): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.conv1(hidden_states) temb = self.time_emb_proj(nn.swish(temb)) temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1) hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.dropout(hidden_states, deterministic) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) return hidden_states + residual
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.unit_tests import ChatModelUnitTests from langchain_openai import AzureChatOpenAI class TestOpenAIStandard(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": "test", "openai_api_version": "2021-10-01", "azure_endpoint": "https://test.azure.com", } @pytest.mark.xfail(reason="AzureOpenAI does not support tool_choice='any'") def test_bind_tool_pydantic( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_bind_tool_pydantic(model, my_adder_tool) @property def init_from_env_params(self) -> tuple[dict, dict, dict]: return ( { "AZURE_OPENAI_API_KEY": "api_key", "AZURE_OPENAI_ENDPOINT": "https://endpoint.com", "AZURE_OPENAI_AD_TOKEN": "token", "OPENAI_ORG_ID": "org_id", "OPENAI_API_VERSION": "yyyy-mm-dd", "OPENAI_API_TYPE": "type", }, {}, { "openai_api_key": "api_key", "azure_endpoint": "https://endpoint.com", "azure_ad_token": "token", "openai_organization": "org_id", "openai_api_version": "yyyy-mm-dd", "openai_api_type": "type", }, )
"""Standard LangChain interface tests""" from typing import Tuple, Type import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.unit_tests import ChatModelUnitTests from langchain_openai import AzureChatOpenAI class TestOpenAIStandard(ChatModelUnitTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": "test", "openai_api_version": "2021-10-01", "azure_endpoint": "https://test.azure.com", } @pytest.mark.xfail(reason="AzureOpenAI does not support tool_choice='any'") def test_bind_tool_pydantic( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_bind_tool_pydantic(model, my_adder_tool) @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: return ( { "AZURE_OPENAI_API_KEY": "api_key", "AZURE_OPENAI_ENDPOINT": "https://endpoint.com", "AZURE_OPENAI_AD_TOKEN": "token", "OPENAI_ORG_ID": "org_id", "OPENAI_API_VERSION": "yyyy-mm-dd", "OPENAI_API_TYPE": "type", }, {}, { "openai_api_key": "api_key", "azure_endpoint": "https://endpoint.com", "azure_ad_token": "token", "openai_organization": "org_id", "openai_api_version": "yyyy-mm-dd", "openai_api_type": "type", }, )
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.device import (get_device, is_cuda_available, is_mlu_available, is_mps_available, is_musa_available, is_npu_available) def test_get_device(): device = get_device() if is_npu_available(): assert device == 'npu' elif is_cuda_available(): assert device == 'cuda' elif is_mlu_available(): assert device == 'mlu' elif is_mps_available(): assert device == 'mps' elif is_musa_available(): assert device == 'musa' else: assert device == 'cpu'
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.device import (get_device, is_cuda_available, is_mlu_available, is_mps_available, is_npu_available) def test_get_device(): device = get_device() if is_npu_available(): assert device == 'npu' elif is_cuda_available(): assert device == 'cuda' elif is_mlu_available(): assert device == 'mlu' elif is_mps_available(): assert device == 'mps' else: assert device == 'cpu'
# Copyright (c) OpenMMLab. All rights reserved. from .utils import (get_device, get_max_cuda_memory, is_cuda_available, is_dipu_available, is_mlu_available, is_mps_available, is_npu_available, is_npu_support_full_precision) __all__ = [ 'get_max_cuda_memory', 'get_device', 'is_cuda_available', 'is_mlu_available', 'is_mps_available', 'is_npu_available', 'is_dipu_available', 'is_npu_support_full_precision' ]
# Copyright (c) OpenMMLab. All rights reserved. from .utils import (get_device, get_max_cuda_memory, is_cuda_available, is_mlu_available, is_mps_available, is_npu_available, is_npu_support_full_precision) __all__ = [ 'get_max_cuda_memory', 'get_device', 'is_cuda_available', 'is_mlu_available', 'is_mps_available', 'is_npu_available', 'is_npu_support_full_precision' ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_transformers import BeautifulSoupTransformer # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BeautifulSoupTransformer": "langchain_community.document_transformers", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BeautifulSoupTransformer", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_transformers import BeautifulSoupTransformer # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BeautifulSoupTransformer": "langchain_community.document_transformers" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BeautifulSoupTransformer", ]
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import AspectRatioBatchSampler from .class_aware_sampler import ClassAwareSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import AspectRatioBatchSampler from .class_aware_sampler import ClassAwareSampler __all__ = ['ClassAwareSampler', 'AspectRatioBatchSampler']
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Adamax"]) class Adamax(optimizer.Optimizer): """Optimizer that implements the Adamax algorithm. Adamax, a variant of Adam based on the infinity norm, is a first-order gradient-based optimization method. Due to its capability of adjusting the learning rate based on data characteristics, it is suited to learn time-variant process, e.g., speech data with dynamically changed noise conditions. Default parameters follow those provided in the paper (see references below). Initialization: ```python m = 0 # Initialize initial 1st moment vector u = 0 # Initialize the exponentially weighted infinity norm t = 0 # Initialize timestep ``` The update rule for parameter `w` with gradient `g` is described at the end of section 7.1 of the paper (see the reference section): ```python t += 1 m = beta1 * m + (1 - beta) * g u = max(beta2 * u, abs(g)) current_lr = learning_rate / (1 - beta1 ** t) w = w - current_lr * m / (u + epsilon) ``` Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta_2: A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. epsilon: A small constant for numerical stability. {{base_optimizer_keyword_args}} Reference: - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adamax", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon def build(self, var_list): """Initialize optimizer variables. Adamax optimizer has 2 types of variables: momentums (denoted as m), exponentially weighted infinity norm (denoted as u). Args: var_list: list of model variables to build Adamax variables on. """ if self.built: return super().build(var_list) self._m, self._u = self.add_optimizer_variables( var_list, ["momentum", "norm"] ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) local_step = ops.cast(self.iterations + 1, variable.dtype) beta_1_power = ops.power( ops.cast(self.beta_1, variable.dtype), local_step ) m = self._m[self._get_variable_index(variable)] u = self._u[self._get_variable_index(variable)] self.assign_add( m, ops.multiply(ops.subtract(gradient, m), (1 - self.beta_1)) ) self.assign( u, ops.maximum(ops.multiply(self.beta_2, u), ops.abs(gradient)) ) self.assign_sub( variable, ops.divide( ops.multiply(lr, m), ops.multiply((1 - beta_1_power), ops.add(u, self.epsilon)), ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, } ) return config Adamax.__doc__ = Adamax.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Adamax"]) class Adamax(optimizer.Optimizer): """Optimizer that implements the Adamax algorithm. Adamax, a variant of Adam based on the infinity norm, is a first-order gradient-based optimization method. Due to its capability of adjusting the learning rate based on data characteristics, it is suited to learn time-variant process, e.g., speech data with dynamically changed noise conditions. Default parameters follow those provided in the paper (see references below). Initialization: ```python m = 0 # Initialize initial 1st moment vector u = 0 # Initialize the exponentially weighted infinity norm t = 0 # Initialize timestep ``` The update rule for parameter `w` with gradient `g` is described at the end of section 7.1 of the paper (see the reference section): ```python t += 1 m = beta1 * m + (1 - beta) * g u = max(beta2 * u, abs(g)) current_lr = learning_rate / (1 - beta1 ** t) w = w - current_lr * m / (u + epsilon) ``` Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta_2: A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. epsilon: A small constant for numerical stability. {{base_optimizer_keyword_args}} Reference: - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adamax", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon def build(self, var_list): """Initialize optimizer variables. Adamax optimizer has 2 types of variables: momentums (denoted as m), exponentially weighted infinity norm (denoted as u). Args: var_list: list of model variables to build Adamax variables on. """ if self.built: return super().build(var_list) self._m = self.add_optimizer_variables(var_list, "momentum") self._u = self.add_optimizer_variables(var_list, "norm") def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) local_step = ops.cast(self.iterations + 1, variable.dtype) beta_1_power = ops.power( ops.cast(self.beta_1, variable.dtype), local_step ) m = self._m[self._get_variable_index(variable)] u = self._u[self._get_variable_index(variable)] self.assign_add( m, ops.multiply(ops.subtract(gradient, m), (1 - self.beta_1)) ) self.assign( u, ops.maximum(ops.multiply(self.beta_2, u), ops.abs(gradient)) ) self.assign_sub( variable, ops.divide( ops.multiply(lr, m), ops.multiply((1 - beta_1_power), ops.add(u, self.epsilon)), ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, } ) return config Adamax.__doc__ = Adamax.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
import os import time import pytest import requests as general_requests from jina import Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def executor_images_built(): import docker client = docker.from_env() client.images.build(path=os.path.join(cur_dir, 'executor1'), tag='encoder-executor') client.images.build(path=os.path.join(cur_dir, 'executor2'), tag='indexer-executor') client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize('protocol', ['http', 'grpc']) def test_flow_with_docker(executor_images_built, protocol): from docarray import BaseDoc, DocList from typing import Optional, List from docarray.typing import NdArray class MyDoc(BaseDoc): text: str embedding: Optional[NdArray] = None class MyDocWithMatches(MyDoc): matches: DocList[MyDoc] = [] scores: List[float] = [] f = ( Flow(protocol=protocol) .add(uses='docker://encoder-executor') .add(uses='docker://indexer-executor') ) with f: if protocol == 'http': resp = general_requests.get(f'http://localhost:{f.port}/openapi.json') resp.json() sentences = [ 'This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.', ] inputs = DocList[MyDoc]([MyDoc(text=sentence) for sentence in sentences]) f.post(on='/index', inputs=inputs) queries = inputs[0:2] search_results = f.post( on='/search', inputs=queries, return_type=DocList[MyDocWithMatches] ) assert len(search_results) == len(queries) for result in search_results: assert result.text in sentences assert len(result.matches) == len(sentences) for m in result.matches: assert m.text in sentences
import os import time import pytest import requests as general_requests from jina import Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def executor_images_built(): import docker client = docker.from_env() client.images.build(path=os.path.join(cur_dir, 'executor1'), tag='encoder-executor') client.images.build(path=os.path.join(cur_dir, 'executor2'), tag='indexer-executor') client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize('protocol', ['http', 'grpc']) def test_flow_with_docker(executor_images_built, protocol): from docarray import BaseDoc, DocList from typing import Optional, List from docarray.typing import NdArray class MyDoc(BaseDoc): text: str embedding: Optional[NdArray] = None class MyDocWithMatches(MyDoc): matches: DocList[MyDoc] = [] scores: List[float] = [] f = Flow(protocol=protocol).add(uses='docker://encoder-executor').add(uses='docker://indexer-executor') with f: if protocol == 'http': resp = general_requests.get(f'http://localhost:{f.port}/openapi.json') resp.json() sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] inputs = DocList[MyDoc]([MyDoc(text=sentence) for sentence in sentences]) f.post(on='/index', inputs=inputs) queries = inputs[0:2] search_results = f.post(on='/search', inputs=queries, return_type=DocList[MyDocWithMatches]) assert len(search_results) == len(queries) for result in search_results: assert result.text in sentences assert len(result.matches) == len(sentences) for m in result.matches: assert m.text in sentences
from torchaudio._internal import module_utils as _mod_utils from . import ( sox_utils, ) from .download import download_asset if _mod_utils.is_sox_available(): sox_utils.set_verbosity(1) __all__ = [ "download_asset", "sox_utils", ]
from torchaudio._internal import module_utils as _mod_utils from . import ( sox_utils, ) if _mod_utils.is_sox_available(): sox_utils.set_verbosity(1)
from typing import Any, Dict from pydantic.tools import parse_obj_as from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ID, AnyUrl, Embedding, ImageUrl, Tensor class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls, pb_msg: 'DocumentProto') -> 'ProtoMixin': """create a Document from a protobuf message""" from docarray import DocumentArray fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level if content_type == 'tensor': fields[field] = Tensor._read_from_proto(value.tensor) elif content_type == 'embedding': fields[field] = Embedding._read_from_proto(value.embedding) elif content_type == 'any_url': fields[field] = parse_obj_as(AnyUrl, value.any_url) elif content_type == 'image_url': fields[field] = parse_obj_as(ImageUrl, value.image_url) elif content_type == 'id': fields[field] = parse_obj_as(ID, value.id) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import Any, Dict, Type from docarray.proto import DocumentProto, NodeProto from docarray.typing import Tensor from ..abstract_document import AbstractDocument from ..base_node import BaseNode class ProtoMixin(AbstractDocument, BaseNode): @classmethod def _get_nested_document_class(cls, field: str) -> Type['ProtoMixin']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].type_ @classmethod def from_protobuf(cls, pb_msg: 'DocumentProto') -> 'ProtoMixin': """create a Document from a protobuf message""" from docarray import DocumentArray fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') if content_type == 'tensor': fields[field] = Tensor.read_ndarray(value.tensor) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Type, TypeVar from pydantic import create_model, create_model_from_typeddict from pydantic.config import BaseConfig from typing_extensions import TypedDict from docarray import BaseDoc if TYPE_CHECKING: from pydantic.typing import AnyClassMethod T_doc = TypeVar('T_doc', bound=BaseDoc) def create_doc( __model_name: str, *, __config__: Optional[Type[BaseConfig]] = None, __base__: Type['T_doc'] = BaseDoc, # type: ignore __module__: str = __name__, __validators__: Dict[str, 'AnyClassMethod'] = None, # type: ignore __cls_kwargs__: Dict[str, Any] = None, # type: ignore __slots__: Optional[Tuple[str, ...]] = None, **field_definitions: Any, ) -> Type['T_doc']: """ Dynamically create a subclass of BaseDoc. This is a wrapper around pydantic's create_model. :param __model_name: name of the created model :param __config__: config class to use for the new model :param __base__: base class for the new model to inherit from, must be BaseDoc or its subclass :param __module__: module of the created model :param __validators__: a dict of method names and @validator class methods :param __cls_kwargs__: a dict for class creation :param __slots__: Deprecated, `__slots__` should not be passed to `create_model` :param field_definitions: fields of the model (or extra fields if a base is supplied) in the format `<name>=(<type>, <default default>)` or `<name>=<default value>` :return: the new Document class ```python from docarray.documents import Audio from docarray.documents.helper import create_doc from docarray.typing.tensor.audio import AudioNdArray MyAudio = create_doc( 'MyAudio', __base__=Audio, title=(str, ...), tensor=(AudioNdArray, ...), ) assert issubclass(MyAudio, BaseDoc) assert issubclass(MyAudio, Audio) ``` """ if not issubclass(__base__, BaseDoc): raise ValueError(f'{type(__base__)} is not a BaseDoc or its subclass') doc = create_model( __model_name, __config__=__config__, __base__=__base__, __module__=__module__, __validators__=__validators__, __cls_kwargs__=__cls_kwargs__, __slots__=__slots__, **field_definitions, ) return doc def create_doc_from_typeddict( typeddict_cls: Type['TypedDict'], # type: ignore **kwargs: Any, ): """ Create a subclass of BaseDoc based on the fields of a `TypedDict`. This is a wrapper around pydantic's create_model_from_typeddict. :param typeddict_cls: TypedDict class to use for the new Document class :param kwargs: extra arguments to pass to `create_model_from_typeddict` :return: the new Document class EXAMPLE USAGE .. code-block:: python from typing_extensions import TypedDict from docarray import BaseDoc from docarray.documents import Audio from docarray.documents.helper import create_doc_from_typeddict from docarray.typing.tensor.audio import AudioNdArray class MyAudio(TypedDict): title: str tensor: AudioNdArray Doc = create_doc_from_typeddict(MyAudio, __base__=Audio) assert issubclass(Doc, BaseDoc) assert issubclass(Doc, Audio) """ if '__base__' in kwargs: if not issubclass(kwargs['__base__'], BaseDoc): raise ValueError(f'{kwargs["__base__"]} is not a BaseDoc or its subclass') else: kwargs['__base__'] = BaseDoc doc = create_model_from_typeddict(typeddict_cls, **kwargs) return doc def create_doc_from_dict(model_name: str, data_dict: Dict[str, Any]) -> Type['T_doc']: """ Create a subclass of BaseDoc based on example data given as a dictionary. In case the example contains None as a value, corresponding field will be viewed as the type Any. :param model_name: Name of the new Document class :param data_dict: Dictionary of field types to their corresponding values. :return: the new Document class EXAMPLE USAGE .. code-block:: python import numpy as np from docarray.documents import ImageDoc from docarray.documents.helper import create_doc_from_dict data_dict = {'image': ImageDoc(tensor=np.random.rand(3, 224, 224)), 'author': 'me'} MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDoc) """ if not data_dict: raise ValueError('`data_dict` should contain at least one item') field_types = { field: (type(value) if value else Any, ...) for field, value in data_dict.items() } return create_doc(__model_name=model_name, **field_types) # type: ignore
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Type, TypeVar from pydantic import create_model, create_model_from_typeddict from pydantic.config import BaseConfig from typing_extensions import TypedDict from docarray import BaseDoc if TYPE_CHECKING: from pydantic.typing import AnyClassMethod T_doc = TypeVar('T_doc', bound=BaseDoc) def create_doc( __model_name: str, *, __config__: Optional[Type[BaseConfig]] = None, __base__: Type['T_doc'] = BaseDoc, # type: ignore __module__: str = __name__, __validators__: Dict[str, 'AnyClassMethod'] = None, # type: ignore __cls_kwargs__: Dict[str, Any] = None, # type: ignore __slots__: Optional[Tuple[str, ...]] = None, **field_definitions: Any, ) -> Type['T_doc']: """ Dynamically create a subclass of BaseDoc. This is a wrapper around pydantic's create_model. :param __model_name: name of the created model :param __config__: config class to use for the new model :param __base__: base class for the new model to inherit from, must be BaseDoc or its subclass :param __module__: module of the created model :param __validators__: a dict of method names and @validator class methods :param __cls_kwargs__: a dict for class creation :param __slots__: Deprecated, `__slots__` should not be passed to `create_model` :param field_definitions: fields of the model (or extra fields if a base is supplied) in the format `<name>=(<type>, <default default>)` or `<name>=<default value>` :return: the new Document class EXAMPLE USAGE .. code-block:: python from docarray.documents import Audio from docarray.documents.helper import create_doc from docarray.typing.tensor.audio import AudioNdArray MyAudio = create_doc( 'MyAudio', __base__=Audio, title=(str, ...), tensor=(AudioNdArray, ...), ) assert issubclass(MyAudio, BaseDoc) assert issubclass(MyAudio, Audio) """ if not issubclass(__base__, BaseDoc): raise ValueError(f'{type(__base__)} is not a BaseDoc or its subclass') doc = create_model( __model_name, __config__=__config__, __base__=__base__, __module__=__module__, __validators__=__validators__, __cls_kwargs__=__cls_kwargs__, __slots__=__slots__, **field_definitions, ) return doc def create_doc_from_typeddict( typeddict_cls: Type['TypedDict'], # type: ignore **kwargs: Any, ): """ Create a subclass of BaseDoc based on the fields of a `TypedDict`. This is a wrapper around pydantic's create_model_from_typeddict. :param typeddict_cls: TypedDict class to use for the new Document class :param kwargs: extra arguments to pass to `create_model_from_typeddict` :return: the new Document class EXAMPLE USAGE .. code-block:: python from typing_extensions import TypedDict from docarray import BaseDoc from docarray.documents import Audio from docarray.documents.helper import create_doc_from_typeddict from docarray.typing.tensor.audio import AudioNdArray class MyAudio(TypedDict): title: str tensor: AudioNdArray Doc = create_doc_from_typeddict(MyAudio, __base__=Audio) assert issubclass(Doc, BaseDoc) assert issubclass(Doc, Audio) """ if '__base__' in kwargs: if not issubclass(kwargs['__base__'], BaseDoc): raise ValueError(f'{kwargs["__base__"]} is not a BaseDoc or its subclass') else: kwargs['__base__'] = BaseDoc doc = create_model_from_typeddict(typeddict_cls, **kwargs) return doc def create_doc_from_dict(model_name: str, data_dict: Dict[str, Any]) -> Type['T_doc']: """ Create a subclass of BaseDoc based on example data given as a dictionary. In case the example contains None as a value, corresponding field will be viewed as the type Any. :param model_name: Name of the new Document class :param data_dict: Dictionary of field types to their corresponding values. :return: the new Document class EXAMPLE USAGE .. code-block:: python import numpy as np from docarray.documents import ImageDoc from docarray.documents.helper import create_doc_from_dict data_dict = {'image': ImageDoc(tensor=np.random.rand(3, 224, 224)), 'author': 'me'} MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDoc) """ if not data_dict: raise ValueError('`data_dict` should contain at least one item') field_types = { field: (type(value) if value else Any, ...) for field, value in data_dict.items() } return create_doc(__model_name=model_name, **field_types) # type: ignore
import json from typing import Any, Callable, Optional, Union from langchain_core.utils.json import parse_json_markdown from langchain.evaluation.schema import StringEvaluator class JsonEditDistanceEvaluator(StringEvaluator): """ An evaluator that calculates the edit distance between JSON strings. This evaluator computes a normalized Damerau-Levenshtein distance between two JSON strings after parsing them and converting them to a canonical format (i.e., whitespace and key order are normalized). It can be customized with alternative distance and canonicalization functions. Args: string_distance (Optional[Callable[[str, str], float]]): A callable that computes the distance between two strings. If not provided, a Damerau-Levenshtein distance from the `rapidfuzz` package will be used. canonicalize (Optional[Callable[[Any], Any]]): A callable that converts a parsed JSON object into its canonical string form. If not provided, the default behavior is to serialize the JSON with sorted keys and no extra whitespace. **kwargs (Any): Additional keyword arguments. Attributes: _string_distance (Callable[[str, str], float]): The internal distance computation function. _canonicalize (Callable[[Any], Any]): The internal canonicalization function. Examples: >>> evaluator = JsonEditDistanceEvaluator() >>> result = evaluator.evaluate_strings(prediction='{"a": 1, "b": 2}', reference='{"a": 1, "b": 3}') >>> assert result["score"] is not None Raises: ImportError: If `rapidfuzz` is not installed and no alternative `string_distance` function is provided. """ # noqa: E501 def __init__( self, string_distance: Optional[Callable[[str, str], float]] = None, canonicalize: Optional[Callable[[Any], Any]] = None, **kwargs: Any, ) -> None: super().__init__() if string_distance is not None: self._string_distance = string_distance else: try: from rapidfuzz import distance as rfd except ImportError: msg = ( "The default string_distance operator for the " " JsonEditDistanceEvaluator requires installation of " "the rapidfuzz package. " "Please install it with `pip install rapidfuzz`." ) raise ImportError(msg) self._string_distance = rfd.DamerauLevenshtein.normalized_distance if canonicalize is not None: self._canonicalize = canonicalize else: self._canonicalize = lambda x: json.dumps( x, separators=(",", ":"), sort_keys=True, # eliminate whitespace ) @property def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "json_edit_distance" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) return node def _evaluate_strings( self, prediction: str, input: Optional[str] = None, reference: Optional[str] = None, **kwargs: Any, ) -> dict: parsed = self._canonicalize(self._parse_json(prediction)) label = self._canonicalize(self._parse_json(reference)) distance = self._string_distance(parsed, label) return {"score": distance}
import json from typing import Any, Callable, Optional, Union from langchain_core.utils.json import parse_json_markdown from langchain.evaluation.schema import StringEvaluator class JsonEditDistanceEvaluator(StringEvaluator): """ An evaluator that calculates the edit distance between JSON strings. This evaluator computes a normalized Damerau-Levenshtein distance between two JSON strings after parsing them and converting them to a canonical format (i.e., whitespace and key order are normalized). It can be customized with alternative distance and canonicalization functions. Args: string_distance (Optional[Callable[[str, str], float]]): A callable that computes the distance between two strings. If not provided, a Damerau-Levenshtein distance from the `rapidfuzz` package will be used. canonicalize (Optional[Callable[[Any], Any]]): A callable that converts a parsed JSON object into its canonical string form. If not provided, the default behavior is to serialize the JSON with sorted keys and no extra whitespace. **kwargs (Any): Additional keyword arguments. Attributes: _string_distance (Callable[[str, str], float]): The internal distance computation function. _canonicalize (Callable[[Any], Any]): The internal canonicalization function. Examples: >>> evaluator = JsonEditDistanceEvaluator() >>> result = evaluator.evaluate_strings(prediction='{"a": 1, "b": 2}', reference='{"a": 1, "b": 3}') >>> assert result["score"] is not None Raises: ImportError: If `rapidfuzz` is not installed and no alternative `string_distance` function is provided. """ # noqa: E501 def __init__( self, string_distance: Optional[Callable[[str, str], float]] = None, canonicalize: Optional[Callable[[Any], Any]] = None, **kwargs: Any, ) -> None: super().__init__() if string_distance is not None: self._string_distance = string_distance else: try: from rapidfuzz import distance as rfd except ImportError: raise ImportError( "The default string_distance operator for the " " JsonEditDistanceEvaluator requires installation of " "the rapidfuzz package. " "Please install it with `pip install rapidfuzz`." ) self._string_distance = rfd.DamerauLevenshtein.normalized_distance if canonicalize is not None: self._canonicalize = canonicalize else: self._canonicalize = lambda x: json.dumps( x, separators=(",", ":"), sort_keys=True, # eliminate whitespace ) @property def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "json_edit_distance" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) return node def _evaluate_strings( self, prediction: str, input: Optional[str] = None, reference: Optional[str] = None, **kwargs: Any, ) -> dict: parsed = self._canonicalize(self._parse_json(prediction)) label = self._canonicalize(self._parse_json(reference)) distance = self._string_distance(parsed, label) return {"score": distance}
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa depths = [2, 2, 6, 2] model = dict( type='Mask2Former', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=depths, num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( type='Mask2FormerHead', in_channels=[96, 192, 384, 768]), init_cfg=None) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa depths = [2, 2, 6, 2] model = dict( type='Mask2Former', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=depths, num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( type='Mask2FormerHead', in_channels=[96, 192, 384, 768]), init_cfg=None) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
__version__ = '0.13.23' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.13.22' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.runner.hooks import Hook from mmdet.registry import HOOKS @HOOKS.register_module() class MemoryProfilerHook(Hook): """Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): try: from psutil import swap_memory, virtual_memory self._swap_memory = swap_memory self._virtual_memory = virtual_memory except ImportError: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') try: from memory_profiler import memory_usage self._memory_usage = memory_usage except ImportError: raise ImportError( 'memory_profiler is not installed, please install it by: ' 'pip install memory_profiler') self.interval = interval def after_iter(self, runner): if self.every_n_iters(runner, self.interval): # in Byte virtual_memory = self._virtual_memory() swap_memory = self._swap_memory() # in MB process_memory = self._memory_usage()[0] factor = 1024 * 1024 runner.logger.info( 'Memory information ' 'available_memory: ' f'{round(virtual_memory.available / factor)} MB, ' 'used_memory: ' f'{round(virtual_memory.used / factor)} MB, ' f'memory_utilization: {virtual_memory.percent} %, ' 'available_swap_memory: ' f'{round((swap_memory.total - swap_memory.used) / factor)}' ' MB, ' f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' f'swap_memory_utilization: {swap_memory.percent} %, ' 'current_process_memory: ' f'{round(process_memory)} MB')
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.runner.hooks import HOOKS, Hook @HOOKS.register_module() class MemoryProfilerHook(Hook): """Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): try: from psutil import swap_memory, virtual_memory self._swap_memory = swap_memory self._virtual_memory = virtual_memory except ImportError: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') try: from memory_profiler import memory_usage self._memory_usage = memory_usage except ImportError: raise ImportError( 'memory_profiler is not installed, please install it by: ' 'pip install memory_profiler') self.interval = interval def after_iter(self, runner): if self.every_n_iters(runner, self.interval): # in Byte virtual_memory = self._virtual_memory() swap_memory = self._swap_memory() # in MB process_memory = self._memory_usage()[0] factor = 1024 * 1024 runner.logger.info( 'Memory information ' 'available_memory: ' f'{round(virtual_memory.available / factor)} MB, ' 'used_memory: ' f'{round(virtual_memory.used / factor)} MB, ' f'memory_utilization: {virtual_memory.percent} %, ' 'available_swap_memory: ' f'{round((swap_memory.total - swap_memory.used) / factor)}' ' MB, ' f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' f'swap_memory_utilization: {swap_memory.percent} %, ' 'current_process_memory: ' f'{round(process_memory)} MB')